

Surface Modification of TiO₂ NPs for Improving DSC Performance

School of Advanced Materials Kookmin University

Hyun Suk Jung

* Dye-sensitized solar cells (DSC)

• DSCs: a promising candidate for next-generation solar cell (low cost/energy saving process, environmental friendly, flexible device)

<Operating sequence of DSSC>

- 1) Exciting electron of dye by absorbing solar spectrum
- 2) Electron extraction at dye-TiO₂ interface
- 3) Electron diffusion through TiO₂ anode
- 4) Electron injection at TiO₂-TCO interface
- 5) **Current** to counter electrode through an external load
- 6) Charge transfer in electrolyte

KMU

KOOKMIN UNIVERSITY

• Scope of study

- At step 2, requiring more dye adsorption and retardation of back electron transfer
- Study on surface modification of TiO_2 nanoparticles and their solar cell performance

hjung@kookmin.ac.kr

MgO Content (wt %)

Influence of Nanoporous MgO Layer

H.S. Jung et al, Langmuir 21, 10332 (2005)

Enhanced solar cell performance

- I_{sc} increases to 11.7 mA/cm² from the 10.2 mA/cm² of the bare TiO₂.
- V_{oc} and the fill factor (FF) also increase.

Origin of enhanced solar cell performance

- The coating of the MgO nanolayer apparently increases the amount of adsorbed dye molecules (2 times) \rightarrow Nanoporous structure of MgO
- The nanoporous MgO shell reduces back electron reaction with electrolyte
 - \rightarrow Insulating nature of MgO
- Increase in dye adsorption (I_{SC} \uparrow) & retardation of back electron transfer (I_{SC}&V_{OC} \uparrow)

• Naporous Oxide Coating on TiO₂

hjung@kookmin.ac.kr

***** Influence of nanoporous CaCO₃ Layer

Origin of enhanced solar cell performance

-Increasing the amount of adsorbed dye molecules \rightarrow Nanoporous structure of CaCO₃ Reducing back electron reaction with electrolyte \rightarrow Insulating nature of CaCO₃

0.6

Voltage(V)

8.8

0.1 0.2

8.7

Current and Future Work

hjung@kookmin.ac.kr

- Research approach : improving the carrier transport in semiconductor nanoparticles
 - To synthesize **arrays** of semiconductor oxide **nanwires**.
 - The grain boundaries: preventing the transport of carriers via a scattering mechanism.
 - To increase the mobility of carriers in 1-dimensional nanowires by removing grain boundaries.
 - To exploit the ALD process and the anodizing method for arrays of semiconductor nanowires (TiO₂, ZnO)

Spherical TiO₂ NPs

Elongated TiO, NPs

