Material and Structural Design for High Efficiency Dye-Sensitized Solar Cell

Hyung-Jun Koo, Beomjin Yoo, Jihee Park, Kicheon Yoo, Kyoungkon Kim, <u>Nam-Gyu Park</u>* Center for Energy Materials, Materials Science and Engineering Division Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea

We report here (part 1) the size-dependent scattering efficiency and (part 2) the bifunctional material of nano-embossing hollow spherical (NeHS) TiO₂ for high efficiency dye-sensitized solar cell. Part 1. Effect of scattering particle size on light scattering efficiency in dye-sensitized solar cell has been investigated using two different rutile TiO₂ particles of 0.3 µm (G1) and 0.5 µm (G2). The conversion efficiency of 7.55% for the thin nano TiO₂ underlayer film is improved to 8.94% and 8.78% when G1 and G2 particulate overlayer is introduced, respectively, corresponding to 18.4% and 16.3% increases. Significant improvement and strong size-dependence are associated with the quantity and wavelength of transmitted light and the difference in reflectivity of G1 and G2 scattering particles. Part 2. Nano-embossing hollow sphere (NeHS) TiO₂ was prepared without the aid of template or surfactant. TEM study for the sliced NeHS confirms that the wall of hollow sphere is composed of ~18 nm anatase TiO₂ particles with mesoporous structure. Photovoltaic property is studied using a bilayer structured film having the NeHS TiO₂ overlayer. Upon deposition of the NeHS TiO₂ particulate film on the 6 µm-thick nanocrystalline TiO₂ film, the conversion efficiency is improved remarkably from 7.79% to 9.43%, corresponding to 21% increase. The NeHS TiO₂ overlayer film exhibits even better conversion efficiency than the films consisting of the mainly nanocrystalline TiO₂ and the light scattering overlayer with large TiO₂ particles having flat surface. Studies of incident photon-to-current conversion efficiency (IPCE) and UV-Vis reflectance suggest that such superior photovoltaic performance is attributed to the efficient light scattering and photocurrent generation characteristics by NeHS TiO₂. Using the bi-functional property of NeHS TiO₂ and adjusting layer thickness, the conversion efficiency as high as 10.34% has been achieved under AM-1.5G one sun light intensity.