Electronic Transport in Molecular Scale Devices

<u>Takhee Lee,</u>

Tae-Wook Kim, Hyunwook Song, Gunuk Wang

Department of Materials Science and Engineering

Gwangju Institute of Science and Technology (GIST), Korea

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

I. Electronic Transport of Micro & Nano Via-hole Structures for Molecular Electronic Devices

Tae-Wook Kim, Gunuk Wang, Hyunwook Song

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

Formation of Alkanethiol Self-Assembled Monolayers

Standard alkanethiol molecule

- Octanethiol (C8) $CH_3(CH_2)_7SH$ / length = 13.3Å
- Dodecanethiol (C12) $CH_3(CH_2)_{11}SH / length = 18.2Å$
- Hexadecanethiol (C16) $CH_3(CH_2)_{15}SH / length = 23.2Å$

Conjugated molecule: Oligo(phenylene ethynylene) (OPE)

Self-assembled monolayer (SAM)

Reed & Tour, Am. Sci. June 2000

Gwangju Institute of Science and Technology • A spontaneous chemisorption process RS-H + Au → RS-Au + 0.5 H₂

- Chemical bond formation of functional end groups of molecules with the substrate surface
- Intermolecular interactions between the backbones

Fabrication of Planar-type Via-Hole Molecular Devices

Design and Fabrication of molecular electronic devices

Optical lithography: $\sim 2 \ \mu m$ Plan: E-beam lithography: $\sim 50 \ nm$

SEM / AFM / Optical images

A" wafor				2 μm	
(Collaboration with ETRI, Dr. Hyoyoung Lee)	1 cm piece	Die	Devices	AFM image of a device	After Top electrode

TW Kim, HW Song, GW Wang

Mask pattern

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

Yield of Microscale Via-Hole Molecular Devices

- 1. Yield of molecular devices ?
- 2. How to define working molecular devices ?

Device yield (micro-via hole molecular devices)

# of	Fab			Working		
fabricated device	failure	short Open		C8	C12	C16
13440	392	11744	1103	84	57	60
				201		
100%	2.9%	87.4%	8.2%	1.5%		

Simmons tunneling fitting results for all working devices

Alkanethiol	J at 1 V (A/cm ²)	$\Phi_{\rm B}({ m eV})$	α	β (Å-1)
C8	78000 ± 46000	1.29 ± 0.49	$0.76 {\pm} 0.09$	$0.87 {\pm} 0.16$
C12	2000 ± 400	1.26 ± 0.08	0.72 ± 0.04	0.83 ± 0.04
C16	5.2±4.7	2.67 ± 0.28	0.52 ± 0.04	0.87 ± 0.05

Representative devices determined by Gaussian fitting of J !

Molecular NanoElectronics

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

5

Laboratory

Determination of Working Molecular Devices

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

II. Molecular Electronic Junctions Studied by Conducting Atomic Force Microscopy

Hyunwook Song

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

Charge Transport Study by CAFM

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

Force-and Length-Dependent Tunneling

• J: C8 > C12 > C16

Gwangju Institute of

Science and Technology

• Error bar: sample-to-sample variation

$$R \propto \exp{(\beta d)}$$

Through-bond vs. Through-space

- The dominant transport mechanism of alkanethiol SAM: "through-bond" tunneling
- When tilted considerably, chain-to-chain coupling: "through-space tunneling" appears

Gwangju Institute of Science and Technology

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

C8: Thru-bond + Thru-space (Single hopping: N = 1)

N~1 (N $\leq L_{M} \cos \theta / d_{cc}$)

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

C12: Thru-bond + Thru-space (Double hopping: N = 2)

N~2 (N $\leq L_{M} \cos \theta / d_{cc}$)

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

C16: Thru-bond + Thru-space (Triple hopping: N = 3)

N~3 (N $\leq L_{M} \cos \theta / d_{cc}$)

The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006

Molecular NanoElectronics Laboratory

Conclusions

- Electronic transport study by CAFM
 - Tip-loading force effects on molecular structural properties
 - Thru-bond vs. thru-space transport
- Fabrication and characterization of micro-via hole molecular devices
 - Detail yield study ~ 1.5 % (out of > 13,000 devices measured)
- Electronic properties of various nanoscale building blocks

