Nanotechnology and a Sustainable Environment

Dr. Donald R. Baer

Lead Scientist Interfacial Chemistry Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory don.baer@pnl.gov

3rd US-Korea Forum on Nanotechnology Seoul Korea April 3-5, 2006

Three Main Messages

- Nanoscience and nanotechnology offer important new tools to work toward a sustainable environment
 - Environmental Remediation
 - Energy Production
 - Environmental Security
- Because nanotechnology is a reality in the market place and will have increasing importance, we need to understand how these powerful material behave in the environment.
 - This need is not unique to nanotechnology, but relevant to any new material, chemical or technology
- In my view many nanomaterials systems are not as well characterized and understood as appropriate.
 - Such factors include: Contamination, environmental effects, time effects, stability, processing history

PNNL in the US Department of Energy National Laboratory System

Pacific Northwest National Laboratory *Sometimes called DOE's environmental laboratory*

Mission: Perform **basic** and **applied research** to deliver **energy**, **environmental**, and national **security** for our Nation.

- Managed by Battelle since 1965
- \$638 million FY04 business volume for government and private industry
- Steward: Office of Biological and Environmental Research
- 3,900 staff
- National user facilities
- More than 1,200 patents and 200 active licenses

Battelle Helped Found KRIST

Battelle-Korea Office

ARA

Established January 13, 2006

Three business models: Contract R&D Laboratory Management Technology Commercialization

www.battelle-korea.com (active mid-April)

Battelle 2 The Business of Innovation

Nara Tower, Floor 7, Cheongdam Dong, Seoul

Nanoscience and Nanotechnology are integral parts of the major business activities at Pacific Northwest National Laboratory

- Fundamental and applied research relating nanoscience and nanotechnology concepts to a sustainable environment
 - Homeland security
 - Energy
 - Environmental cleanup
- World-class user facilities and multidisciplinary teams

Collaborating with others throughout the World, e.g.,

- Courses in Nanostructured Materials
- Joint Institute of Nanotechnology
- Microproducts Breakthrough Institute
- Oregon Nanoscience and Microtechnologies Institute

Control of the nanostructure is a gateway to solving environmental problems

Nanoscience is a collaborative field requiring the formation of unique teams and access to state of the art tools William R. Wiley's Vision:

An innovative multipurpose user facility providing "synergism between the physical, mathematical, and life sciences."

Environmental Molecular Sciences Laboratory U. S. Department of Energy User Facility

33341

EMSL is a U.S. scientific user facility provides integrated experimental and computational resources for discovery and technological innovation in the **environmental molecular sciences** to support the needs of DOE, the nation, and the world. **Science Themes**

- Science of Interfacial Phenomena: (Tailored Interfacial Structures for Dynamics, Reactivity and Transport)
 - "New" energy development (H2 economy, solar, catalysis)
- Biogeochemistry and Subsurface Science
 - Environmental remediation, geochemical cycling
 - Atmospheric Aerosol Chemistry
 - Climate change impacts
 - Biological Interactions and Interfaces
 - Bioremediation, alternative energy (biomass), geochemical cycling

EMSL Facilities

All EMSL Facilities have important tools that are being applied to address problems that have nanoscience and nanotechnology components

- Interfacial & Nanoscale Science
- Molecular Science Computing
- Proteomics and High Performance Mass Spectrometry
- Chemistry & Physics of Complex Systems
- Environmental Spectroscopy & Biogeochemistry
- High Field Magnetic Resonance

Possible use of iron nanoparticles to assist environmental remediation one research area driving analysis needs

- Transmission Electron Microscopy Size, structure, shape
- X-ray Photoelectron Spectroscopy Surface Chemistry; Composition; Contamination
- Surface Area Gas Adsorption BET
- XRD Structure, Grain Size
- Reaction Studies and Electrochemical Measurements
- X-ray adsorption Spectroscopy electronic structure, oxidation state, property variation
- Modeling Structure, Transport Properties

The Secret Life of Nanoparticles: characteristics of nanoparticles and nanostructured materials that are frequently forgotten or ignored

D. R. Baer, M. H. Engelhard, A. S. Lea, D. G. Gaspar, K. Pecher, C-M Wang, J. E. Amonette, Pacific Northwest National Laboratory

> A. A. El-Azab Florida State University

S. Kuchibhatla and S. Seal University of Central Florida

> TMS 2006 San Antonio Texas

Increasingly we need analyze nano-structured materials. Frequently we find that analysis of nano-structured materials involves a variety of different surprises. This talk has evolved from those surprises.

I have come to believe that:

• Some of the issues are intrinsic to the nature of nano-materials and that these materials present a variety of challenges for understanding and characterization that are often not acknowledged.

• Many studies of nano-sized materials involve incomplete description of sample history and inadequate characterization. *Contamination and uncharacterized coatings are a dirty secret of nanotechnology*

• Surface analysis methods are underused in the study of nanomaterials.

Information needed about nano-structured materials?

Results of Synthesis or Processing: size and size distribution composition and structure component segregation surface contamination defect concentration shape

Experimental Axes

- Energy; Composition; Spectroscopy; Structure
- Resolution; Dimension; Position

2 Dimensional Analysis

Composition

²osition

Information needed about nano-structured materials?

Results of Synthesis or Processing: size and size distribution composition and structure component segregation surface contamination defect concentration shape

Influence of History, Aging (Time) and Environment:

processing aggregation and growth environmental interactions reactive layer formation structure changes with time

Analyses are usually done assuming that the properties are independent of time and environment.

Experimental Axes Change to Multi Dimensional Analysis •Energy/composition Resolution/Dimension •Time •Environment

Multi Axis Analysis from Bob Hwang BNL PNNL Nanotechnology Research Activities

Advanced Nanoscale Materials Research

From cosmetics to hydrogen storage—nanoscale materials push the frontier

Thin films enable next-generation displays Flexible and highly portable displays

Nanoparticles may mean longer life for enzymes

Biosensors, waste destruction, medicine

Putting carbon nanotubes to work Functionalized nanotube sensors

Supercritical fluids—making nanoparticles easy Rapid nanoparticle synthesis

Hydrogen storage for fuel-efficient vehicles Storing hydrogen in NH₄BH₄

Self-Assembled Monolayers on Mesoporous Supports

Nanosponges with several environmental and energy applications

http://www.pnl.gov/breakthroughs/

Enhanced Single Enzyme Nanoparticles (SENs)

Coperated by Balletie for the fin at 5. Department of Lorenza

SAMMS: A hierarchical self-assembly process

Nanoscience can offer solutions to < vironmental prof `ms Energy Hydrogen **Storage .e** ction SANY

Cleaner Water: SAMMS in a Nutshell

- High capacity from high surface area
- Fast sorption from rigid, open pore structure
- Chemical specificity dictated by monolayer interface
- Easily modified for new targets
- Chemically and thermally stable
- Easily regenerated or recycled

What's Coming Next...

Understanding how the nature of nanoparticles varies with time and environment; examining nanoparticle toxicity

When properties of nanoparticles vary with time and distance, the exposure risk would also vary

 A DOE Office of science program is looking at the evolution of nanoparticles in the environment

• Northwest Toxicology is working with the National Toxicology Institute to examine inhalation effects of nanoparticles

Nanotechnology Facilitates Development of New Technologies that Have Environmental Benefits

- Many groups around the world are using nanotechnolgy creatively to address interrelated environmental, energy and security issues.
- This presentation highlighted as examples some activities at PNNL. Other related activities include:
 - Sensors coated Au nanoparticles, Carbon Nanotube Concentrators
 - Energy
 - Fuel Cells Catalysts and nanostructured electrodes
 - Hydrogen production Photocatalysis
 - Institute for Interfacial Catalysis Energy production and emission control
 - Medical Nanoparticle Enhance Imaging and Drug Delivery
 - Environmental Remediation Iron nanoparticles for decontamination

Conclusions

- Nanoscience and nanotechnology are powerful parts of many different technologies and are here to stay.
- They provide critical tools for creating a sustainable environment.
- They are powerful and we need to understand any unique or new toxicology issues.

