Molecular Modeling and Simulation: Opportunities for Research, Education, and Outreach

Shekhar Garde, Linda S. Schadler, and Richard W. Siegel
Chemical & Biological Engineering & Materials Science & Engg.
Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures
Rensselaer Polytechnic Institute.

2nd US-Korea Forum on Nanotechnology, Los Angeles, CA.
February, 17-18, 2005
Biological Systems

• Protein Folding/stability
• Peptide Folding/structure
 • Bioinformatics
• Biomaterials (enzymes in novel media)
• Mechanistic Studies (intein splicing)

Water & aqueous solutions

• Liquid state theory
• Water structure near stuff
• Water-mediated interactions

Statistical Mechanics
Molecular Simulations
Experiments (collaboration)

Garde Group@ RPI

Polymers

• Coarse-graining strategies
• Phase behavior

Nanosystems

• Water flow through CNTs
• Selective partitioning into CNTs
• Friction at the nanoscale
Synthesis of Biocatalytic Plastic Materials

Why important?

What are the key exptl results?

- **Organic phase**
 - Enzyme in aqueous solution
 - Biocatalytic Plastic
 - Polymerization
 - Modification
- **Aqueous phase**
 - Up to 500 mg/ml
Molecular Dynamics Simulations

A snapshot from MD simulation in octane: subtilisin, water molecules, AOT, sodium ions, and octane molecules are shown. Active site is shown in magenta.
Water stripping from protein in different solvents

What is being shown?
- 186 waters in every picture
- 90 pictures are superimposed

Octane

THF

ACN

of hydration waters

What is being shown?
- 186 waters in every picture
- 90 pictures are superimposed

- Red: tightly bound
- Orange: weakly bound
- Yellow: mobile
The well-hydrated active site in water and octane contains both mobile and tightly bound waters. THF and ACN penetrate the active site. Very little mobile water is observed.

Hydration of the active site of the enzyme by dynamic layer(s) of waters appears to be essential for its biological function.
Motivation for studies of nanotubes and nanopores

- Mechanical and electrical properties
- Components in nanoscale devices
- Nanochannels for separations
- Confinement and protection of species or delivery
- Biomolecular nanopores as valves for selective transport

Micro / Nanofluidic devices

Austin and coworkers, PNAS (1999)

*Han and Craighead, Science (2000)
Efficient Filters Produced From Carbon Nanotubes Through Rensselaer Polytechnic Institute-Banaras Hindu University Collaborative Research

Filters remove nano-scale germs from water, heavy hydrocarbons from petroleum

TROY, N.Y. — Researchers at Rensselaer Polytechnic Institute and Banaras Hindu University (India) have devised a simple method to produce carbon nanotube filters that efficiently remove micro-to nano-scale contaminants from water and heavy hydrocarbons from petroleum. Made entirely of carbon nanotubes, the filters are easily manufactured using a novel method for controlling the cylindrical geometry of the structure.

http://www.rpi.edu/
Membrane channel proteins: selectivity filters

Biological nanopores

Escherichia coli glycerol facilitator (GlpF)

Fu et al., Science (2000)

Water permeation across Aquaporin (AQP1)

de Groot and Grubmüller, Science (2001)
Carbon nanotubes as fluid channels?

Water inside nanotubes

Water conduction through a hydrophobic channel of a nanotube

Hummer et al., Nature (2001)

In situ multiphase fluid experiments in hydrothermal carbon nanotubes

Gogotsi et al., APL (2001)
Fundamental questions

Transport
-- Can water flow through open ended CNTs?
-- How can we describe the flow?

Structure/dynamics
-- What is the effect of confinement on molecular structure and dynamics of water?
Molecular dynamics simulations

Osmotic pressure difference between pure water and aqueous salt chambers drives water flow

CNT (6,6)
Length = 13.4 Å
Diameter = 8.1 Å

Water flow through CNT membranes

Short time behavior
(water flow can be monitored)

Long time behavior
(interrupted flow)

Study effects of confinement
Signatures of water flow through “small” short pipes

Flow rates are independent of the length of the NTs (13.4Å – 45Å)

Thermal fluctuations lead to frequent back flow against the driving force

Flow rates are independent of the length of the NTs (13.4Å – 45Å)
Modeling stochastic nature of water flow

Net flow

\[\Delta N(t) \]

NaCl + H₂O → H₂O

- Water chain remains intact
- Flow occurs by hopping forward/backward

\[k \text{- hopping frequency} \]
(# of hops per unit time)

Average net flow

\[\Delta N(t) = k t (p-q) \]

Variance

\[\sigma (\Delta N(t)) = kt \]

Continuous time random walk model

\[P[\Delta N(t) = n] = \exp(-kt)(p/q)^{n/2} I_n(2kt p^{1/2} q^{1/2}) \]
Summary (water flow through NTs)

- Water flows through arrays of open-ended nanotubes with negligible friction
- Water transport is influenced by microscopic fluctuations and can be described by a one-dimensional continuous time random walk.
- The observed flow rates are comparable to those measured for biological water channels (aquaporin)*.
- Water can form remarkably (meta)stable one- and two-water thick sheets sandwiched between the membranes
- Carbon nanotubes can be used as channels for partitioning of molecular species

* Zeidel et al., *Biochemistry* 31, 7436 (1992)

• Molecular simulations provide fundamental understanding (as well as beautiful visuals!)

• Could we use them in a creative way to educate and excite children about Science and Engineering?

• Science awareness, education of the broader public is a critical need
 -- science and technology is fast evolving
 -- modern paradigm in science
 atoms, molecules \rightarrow properties of materials

How do we reach children effectively?

Molecularium…
My own challenge

\[E_{\text{total}} = \sum_{\text{bonds}} K_r (r - r_{eq})^2 + \sum_{\text{angles}} K_\theta (\theta - \theta_{eq})^2 \]

\[+ \sum_{\text{dihedrals}} \frac{V_n}{2}[1 + \cos(n\phi - \gamma)] + \sum_{i<j} \left[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^6} + \frac{q_i q_j}{\varepsilon R_{ij}} \right] \]
The Molecularium at The Junior Museum of Troy

Goal: To introduce 5-10 year olds to the wonders of the molecular world, much the way that they've been learning about the wonders of the Solar System and Universe.

- Tektraxadex hired - started Feb 1 part time / May 1 full time.
- Script finalized.
- Production has started.
- Applied to Dreyfuss Foundation to do a Spanish language version.
- IP agreements in place.

From pilot show to a professional show
1st Molecularium animation show

Meet the characters!

Hydro

Oxy

Hydra

Carbone

Trademarked images
"Fantastical" ship is a character named MEL.
Can shrink to see molecules.
Can change time to see molecular activity.
Can travel super fast.
Has multiple view screens to present ideas.
Molecularium: Riding Snowflakes

1. Meet characters
 - Define Atoms & Molecules
 - Everything is made of Atoms & Molecules

2. States of Matter
 - Cloud (vapor, rain, snowflake)

3. Snowflake Ride
 - Melting
 - "solids are slow, liquids flow, gas is fast"
 - Meet "Carbone"

4. Graphite, Diamond, Buckyballs
 - Polymer Ride to Earth

5. Inside a Penny (Copper, Zinc)
 - Recap while inside Gum, Paper, Aluminum, Polymer.
 - End with Carbone loving life! (DNA)
Opportunity for molecular simulation in Mollywood!

SHOT#:

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

DUR:

818 2653 1446 497 397 1089 650 1570 697 279 820 606 550 1943 635 1919 275

IN @:

000 818 3476 4922 5419 5816 5605 7555 9125 9822 10101 10921 11527 12077 14020 14715 16634

IN: 00000 00:00:00

TRT = 16909 09:23:19

OUT: 16908 09:23:18

★ = screens
Red = static camera
Green = flying camera
Blue = molecular world
Black = cartoon world
Orange = "real" world
The process…. (partial)

Molecular simulations of systems of interest with proper force fields

Trajectory \((x,y,z,t)\)

Porting to Maya/Animation software

Rendering/display

Challenges?…Many!!

~50 people

Administrative…(Schadler/Siegel)
The process.... (partial)

Molecular simulations of systems of interest with proper force fields

Software/hardware infrastructure

Trajectory (x,y,z,t)

How does one send MD coordinates to Maya? formats, representations, (spheres, ribbons, sticks) connectivity of atoms.

Porting to Maya/Animation software

Art/visual: nonflatscreen rendering, colors, feel, flight paths, backgrounds, Interpolations.

Rendering/display

Audio, visual etc.
Computational requirements

Molecular simulations

Rendering process

Large images
(10-20MB/frame)
~30 frames/second

Each image can take 10-20 mins to render!

Needs a cluster...
PLEASE JOIN US AS WE PREMIERE MOLECULARIUM “RIDING SNOWFLAKES” A MAGICAL MUSICAL ADVENTURE INTO THE WORLD OF MOLECULES

FRIDAY FEBRUARY FOUR 2005. RECEPTION FROM 10:30AM - 1:00PM, PUBLIC SCREENINGS ON THE HOUR FROM 1:00PM - 8:00PM. PLEASE RSVP: (518) 276-6846 OR SIMONM@RPI.EDU

AT THE CHILDRENS MUSEUM OF SCIENCE & TECHNOLOGY, 250 JORDAN ROAD, IN THE RENSSELAER TECHNOLOGY PARK, TROY NEW YORK,
Assessment

• Assessment is being performed.
• Pre and post show activities emphasize the concepts learned during the show.
Future plans for the molecularium?
--- nationwide distribution (planetariums, school districts,..)
--- next show (biologically oriented)

Thoughts:
--- Introduction of molecular ideas early on to children actually works. We need to use the right tools.
--- incorporation of molecular concepts into undergraduate curriculum (texts? problem sets? Hard work!)
--- raising awareness of the general public about science and technology issues.
Acknowledgments

NSF: NSEC

Garde research group is also funded by NIRT, CAREER, ITR, MRI, and other NSF grants

ACS-PRF
NIH
Group members

Tuhin Ghosh Amrit Kalra
Eric Storm Lu Yang
Harshit Patel Sowmi Rajamani
Manoj Athavale Hongjun Liu
Brian Pereira Sandeep Jain
Sapna Sarupria Rahul Godawat

Parbati Biswas

Many UG students
Thank you!

http://www.moleculararium.com
http://www.rpi.edu

See Materials Research Society Bulletin, Feb 2005

Contact me? gardes@rpi.edu

Please see Prof. Chang Ryu’s poster on other NSEC related education/outreach activities