

Metallic Nano Electro Mechanically Actuated Gripper and Tunable Nano Photonic Device

Jeong-Bong (J-B.) Lee

Department of Electrical Engineering The University of Texas at Dallas Richardson, Texas

MiNDs (Micro/Nano Devices and Systems) Laboratory

UT D

mems.utdallas.edu

Nanoelectromechanical systems (NEMS)

- Possible to realize smaller mechanical, biological and chemical systems
- Nano grippers
 - Actuators for nano manipulation devices/systems
 - Relatively large displacement with low actuation voltages
- Tunable Nano Photonic Devices
 - New functionalities unachievable with passive nano photonic devices.
 - Real-time, on-demand control can greatly enhance the functionality of photonic devices and systems.

UTD Clean Room

- 5,866 sq. ft. class 1,000 and 100
- Equipped with various processing and metrology equipment including evaporators, sputters, RIE, PECVD, LPCVD, mask aligners, e-beam lithography system, SEM, AFM, ellipsometer, Flexus, etc.
- UTD's Nano Research Facilities
 - Dual beam FIB, XPS, TEM, Field Emission SEM w/ E0beam Lithography System, Ultra High Vacuum Wafer Bonding System, Diamond coating CVD system

UT D

Sub-µm Metallic Structures

E-beam lithography

- Positive PR (e.g., PMMA)
 - Ideal for lift off.
- Negative PR (SU-8, UVN-30)
 - Very small exposure dose (~1 μC/cm²), a factor 100 times smaller dose (exp. time)!

500 nm width/spacing and 500 nm thick gold comb-drive MiNDs (Micro/Nano Devices and Systems) Laboratory

mems.utdallas.edu

UTD

Sub- µm Thermal Actuator

- Process
 - Electron beam exposure for PMMA
 - Electroplate nickel ~1 hr for 1 μ m
 - Removal of PMMA by oxygen RIE
- Sub-micron thermal actuator
 - Reproducible displacement results
 - Type "A": 370 nm by 146 mV

Hot arm w = 350 nm

3:1 aspect ratio 1 μm thick **PMMA** mold

UT D

Sub- μ m Gripper

UTD NEMS-Enabled Tunable Photonic Crystal

What is photonic crystal?

- Dielectric materials with a periodically varying index of refraction
- Photons behaves similar to electrons in a semiconductor crystal; their behavior can be described by a photonic band structure
- Ability to control/manipulate the flow of electromagnetic waves.

Tunable Photonic Crystal: conventional approaches

- Tuning by electro-optic materials (e.g. liquid crystal)
- Tunability is very limited due to small attainable changes in refractive index ($\Delta n/n < 15\%$).

Our approach

- A radically different approach Mechanical tuning
- Photonic bands are extremely sensitive to physical changes in the photonic crystal structure.
- Wide tunability by mechanical force
 - → Mechanically Controlled Photonic Crystal (McPC)

UTD Mechanically Controlled Photonic Crystal

McPC structure is

- Composed of Si rods embedded in flexible polymer such as Polyimide
- Mechanical tuning by stretching/releasing McPC with NEMS/MEMS actuators
- The new material structure is compatible with the conventional semiconductor technology
 - In terms of both fabrication process and materials

Widely Tunable Beam Steering Device

Switching between positive & negative refraction regimes

UT D

Sub-wavelength resolution, tunability allows

- changing focal lengths for adjustable working distance and
- dynamically selecting the desired wavelength or scanning over a range of frequencies.

Can adjust focal length MiNDs (Micro/Nano Devices and Systems) Laboratory

Can also maintain identical focusing characteristics over wide frequency Range with $\Delta \omega / \omega_o$ up to 30%.

McPC Structures

Negative Refraction Observed in McPC

Sub-µm Comb Drive Actuator

mems.utdallas.edu

3D FPCs

 Multispectral sensing and detection over extremely wide range of frequency.

Operating Frequency	Feature size	Fabrication
Visible & Near-IR	200 ~ 500 nm	e-beam lithography, reactive ion etch (RIE)
Mid & Far-IR	0.5 ~ 10 μm	UV lithography, RIE
Terahertz	10 ~ 50 μm	UV lithography, Si Deep RIE

Wide range beam steering device

 Electronically tunable giant negative refraction in 2D slab PC

Tunable sub-wavelength focusing lens

- NIM can enable sub-wavelength focusing
- But the focusing property is strongly wavelength-dependent.
- Tunability allows dynamically selecting the desired wavelength or scanning over a range of frequencies.

Unstretched FPC

Acknowledgments

Funding

- National Science Foundation CAREER AWARD
- National Science Foundation Nanoscale Exploratory Research Program
- NIST ATP Program
- Contributions
 - UTD MiNDs former/current Lab members
 - J-S. Lee, M. Tinker, D. Park, A. Nallani,
- Material donation, characterization supports
 - Zyvex, TePla America, MicroChem
- Other supports
 - UTD Clean room staffs