Nano-Injection Molding Technology for Ultra-High-Density Patterned Magnetic Media

N. Lee¹, J. Shim², J. Hong² and S. Kang¹

¹Mechanical Engineering ²Advanced Materials Engineering Yonsei University, Seoul, Korea

Demand for Ultra-High-Density Magnetic Media

Motivation for Patterned Media

Various Technologies for Patterned Media

resist **Direct Patterning** magnetic layer A. E-beam Lithography Si **B.** Defining Magnetic Islands by **1. Focused Ion Beam (FIB)** 2. Reactive Ion Etching (RIE) 3. Ion-Beam Milling Nano-Imprinting Technology magnetic layer Si Those technologies are fine BUT Not appropriate for mass-production due to low throughput, low yield and high cost!

Processes for Nano-Injection Molding Technology

(e) Fabrication of metallic nano-stamper by electroforming

(f) Nano-injection molding

(g) Polymeric pillar patterns

Polymeric patterns

(h) Deposition of magnetic materials

Fabrication of Polymeric Nano-Master

Si Master

(CD: 40nm, pitch: 80 nm)

Polymeric Nano-Master by UV Molding

Fabrication of Metallic Nano-Stamper

Nano-Injection Molding Technology

Deposition of Magnetic Materials

Polymeric Patterns

Magnetic Islands on 3.5 inch Media (CD: 40 nm, pitch 80 nm)

10.0kV X50.0k 600mm

[Pd/Co]₁₀

Perpendicular Magnetic Media

Previous Studies and Acknowledgment

(1) CD: 200 nm, pitch 500 nm

Nanotechnology, 15 (8), 901-906, 2004

(2) CD: 100 nm, pitch 250 nm

Single magnetic domain state

 Financial support:
Ministry of Science and Technology, KOREA through Center for Nanoscale Mechatronics & Manufacturing (21st Century Frontier Research Program)