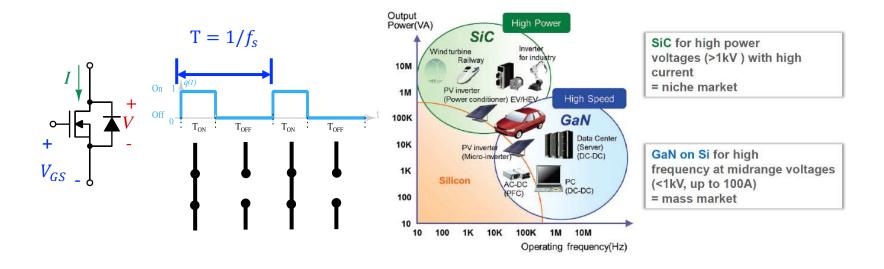


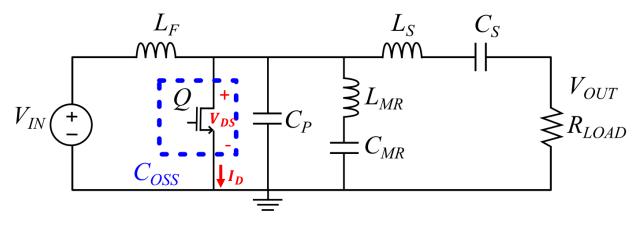
Wide bandgap devices in Power Electronics

Jungwon Choi


Assistant Professor

Department of Electrical and Computer Engineering

University of Minnesota, Twin Cities



Wide bandgap device in Power Electronics

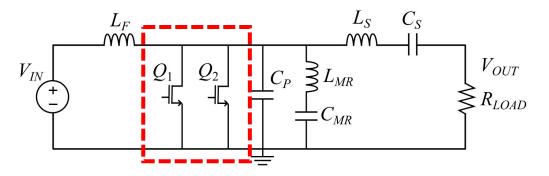
- Wide band gap devices such as eGaN FETs or SiC MOSFETs have a lot of potential to improve performance of high-frequency, high-power converters.
- GaN FET
 - Lower C_{iss} and R_{DS,ON}
 - Higher V_{DS,MAX}
 - Higher switching frequency

Challenges in High-power, High-frequency Operation

However, the GaN device is limited by its uniquely small packaging and structure in high-frequency, high-power applications (10's MHz, >1kW).

Assuming Zero Voltage Switching (ZVS) during turn-on transition is a chieved in the resonant inverter, the switching losses mainly consist of

- Losses due to *R*_{DS,ON}
- Losses due to charging and discharging of device output capacitance, Coss

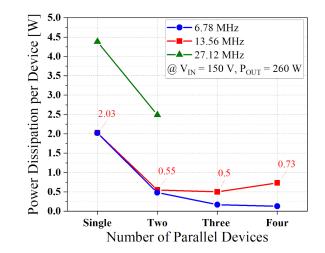

Solution

Parallel GaN Devices to reduce conduction loss, increase power capability and increase device reliability.

Keerti Palanisamy, Kamlesh Sawant, Jungwon Choi, "Paralleling GaN Devices in a 13.56 MHz Class Φ^2 Inverter for High-Power Applications," IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2021.

ECE Department

Resonant Inverter Design with Multiple devices

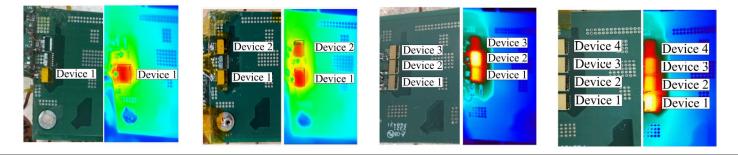


Initial Parameters

• Same as single device inverter

Tuning circuit

• Change C_p for every additional device added. Modify L_F if required to absorb capacitance.



Ratio of non-linear capacitance to externally added C_p affects turn-off losses

Prototype of Resonant Inverter with Multiple Devices

8 cm	CIN VOUT VIN CMR CMR CP CS CS CS CS CS CS CS CS CS CS CS CS CS
¥	< <u>8 cm</u> →

Parameter	Value	Туре			
V _{IN}	150 V-240 V	DC Power Supply			
Frequency	13.56 MHz	Pulse Generator			
L_F	240 nH	Custom inductor with Air-Core			
C_P	210 pF	Ceramic C0G			
$\begin{array}{c} L_{MR} \\ C_{MR} \end{array}$	605 nH 57 pF	Custom inductor with Air-Core Ceramic COG			
$L_S \\ C_S$	305 nH 4.4 nF	Custom inductor with Air-Core Ceramic COG			
R_{LOAD}	50 Ω	MFJ-264 Dummy Load			
Gate Driver Gate Resistor	ISL55110 2 Ω	Intersil Chip Resistor			
Switching Device	GS66508T	GaN Systems			

	Steady-State Case Temperature One-Device Three-Device Four-Device Device 1 Device 2 Device 2 Device 3 Device 1 Device 3 Device 4										
V _{IN} One-Device Two-Device			Three-Device			Four-Device					
	Device 1	Device 1	Device 2	Device 1	Device 2	Device 3	Device 1	Device 2	Device 3	Device 4	
150 V	82.1°C	57.1°C	54.5°C	51.4°C	54.9°C	45.6°C	54°C	49.5°C	48.8°C	45.2°C	
170 V	>110°C	67°C	63.1°C	60.1°C	63.3°C	51.1°C	64.8°C	57.7°C	56.4°C	51.5°C	

ECE Department

University of Minnesota

Thank you!

Q & A? jwchoi@umn.edu

ECE Department

University of Minnesota