Applications of 2D Materials in Future CMOS Nodes

Steven J. Koester

April 3, 2023

Electrical and Computer Engineering Department University of Minnesota

University of Minnesota

- The University of Minnesota Twin Cities is public research university located in Minneapolis and Saint Paul, MN.
- It has the 9th largest main campus student body in the United States, with over 52,000 students at the start of the 2021–22 academic year.

Minnesota Nano Center

 The Minnesota Nano Center (MNC) is a state-of-the-art, openaccess facility for advanced research and education in microand nano-scale technology:

- MNC is open to any qualified user, with significant use from industry and other institutions.
- Annually serves ~400 total users, ~140 external and ~60 industry.

NNCI

• MNC is part of one node of the National Nanotechnology Coordinated Infrastructure (NNCI), a network of university nanofabrication and characterization facilities across the US:

UNIVERSITY OF MINNESOTA

Driven to Discover

5

2D Materials

 2D materials are crystalline solids where the in-plane bonding is <u>much stronger</u> than in the out-of-plane direction. Can exist as single monolayers. Span a range of band gaps from 0 to 6 eV.

• TMDCs have emerged as front-runners for use in future CMOS.

Advantages of TMDCs

- TMDCs meet the necessary criteria for being a candidate for end-of-roadmap CMOS:
 - Scalable to monolayer thickness (where μ can beat Si).
 - Electron and hole effective mass and mobilities are similar.
 - Capable of meeting IRDS off-current targets (due to $E_G \sim 1-2 \text{ eV}$).
 - Stable in atmosphere and under high processing temperatures.
 - Capable of large-area (up to 300-mm) growth with high-degree of uniformity over an entire wafer.

TMDCs for Dynamic Memories

• TMDCs are ideal for embedded DRAM due to the extremely-low leakage currents possible:

Device simulations show sub-fA leakage currents possible for MoS₂.
When used in a 3T "gain cell", can achieve retention times > 1 sec.

RBL

NR

RWL-

TMDCs for Dynamic Memories

• Demonstrated 2T DRAM using few-layer MoS₂:

C. Kshirsagar...S. J. Koester, et al., ACS Nano 10, 8457 (2016).

- Extracted characteristic retention time as a function of gate voltage on access transistor (V_{hold}).
- Retention time can then be converted into an equivalent leakage current, to understand leakage limitations of MoS₂.

TMDCs for Dynamic Memories

• Demonstrated 2T DRAM using few-layer MoS₂:

- Demonstrated 2T memories with equivalent leakage currents approaching 1 fA/μm.
- Several orders of magnitude improvement possible using single-layer MoS₂ and optimizing design.

Future DRAM Applications

 2D semiconductors have potential for use in 3D DRAM or ultra-scaled embedded DRAMs:

Source: SemiconductorEngineering

2D Nano-Sheet MOSFETs

• 2D materials are being considered for sub-1-nm node CMOS. These devices will be nanosheet FETs:

• One key challenge is need for low contact resistance to meet IRDS targets for on-current ($R_c \sim 60 \Omega$ -µm needed).

Semi-Metallic Contacts to 2D Semiconductors

 Breakthrough reported in 2021 → semi-metallic contacts to MoS₂ can overcome Fermi-level pinning that limits contact resistance:

Our Work on Semi-Metallic Contacts to WS₂

 We have been investigating semi-metallic contacts to WS₂, which is more promising for CMOS:

• Demonstrated contact resistance as low as of $R_c = 220 \Omega$ -µm, consistent with results of Shen, et al. on MoS₂.

Work funded by Intel.

WS₂ MOSFETs with Bi Contacts

• Fabricated WS₂ MOSFETs with semi-metallic Bi contacts:

• Devices used a dual-gate geometry to better study contacts.

Work funded by Intel.

WS₂ MOSFETs with Bi Contacts

• Dual-gated results for devices with $L_{EFF} = 0.32 \ \mu m$:

L. Jin and S. J. Koester, IEEE EDL 43, 639-642 (2022).

 Devices have large (10¹⁰) ON/OFF ratio and high drive current of 245 μA/μm (for relatively long gate length).

Work funded by Intel.

2D Contact Resistance Progress

 Semi-metallic contacts have greatly improved prospects for TMDCs to meet IRDS targets:

S. J. Koester, April 3, 2023

2D Contact Resistance Progress

 Semi-metallic contacts have greatly improved prospects for TMDCs to meet IRDS targets:

S. J. Koester, April 3, 2023

Future Logic Outlook

- Ultimate goal is stacked nanosheet CMOS.
- Recent work has started to address outstanding challenges for PFETs and 3D device structures.

Y.-Y. Chung, et al., IEDM, 2022.

2D Integrated Optoelectronics

• 2D materials have a wide range of optoelectronic applications:

M. Liu, et al., Nature, 2021.

N. Youngblood...S. J. Koester, et al., Nat. Photon. 9, 247, 2015.

Detectors

 Could be used BEOLcompatible optical interconnects with high speed and large spectral bandwidth.

Phase Engineering in 2D Materials

• TMDCs have the interesting property that can exist in either a semiconducting or metallic phase:

Phase Engineering in 2D Materials

 Ability to control TMDC phase could open the door to a multitude of applications:

R. Ma...S. J. Koester, et al., ACS Nano 13, 8035-8046 (2019).

High-performance MOSFETs

Reconfigurable optics

Conclusions / Interactions

- 2D semiconductors have significant potential 3D / embedded memories and sub-1-nm-node CMOS applications.
- 2D materials also have potential for many emerging applications such as integrated optoelectronics and memristors.
- US / Korea research interactions could help to enhance technology development in 2D materials. Current interactions:
 - UNIST Collaboration on novel 2D optoelectronic devices.
 - Organized Quantum Phenomena winter school at UMN in 2023, with support from Kyunghee University, Korean Science Foundation and NSF Global Quantum Leap program.
 - President Joan Gabel of the UMN signed with Hanyang University and KIST, working to expand these interactions Seoul National University as well.

Thank you for your attention!

