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Agenda

• Prevailing computing paradigm and its problems
• What is neuromorphic computing 

– Key differences between neuromorphic and classical computing 

• Current implementations  
– Electronic neuromorphic computing 
– Photonic neuromorphic computing 

• Opportunities and challenges
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Prevailing von Neumann computing paradigm 
• The von Neumann architecture of 

computing requires the shuttling of 
instructions (programs) and data back 
and forth between memory and 
processor;

• Most of the the time this is what a 
computing system is doing, thus 
creating the von Neumann bottleneck.

• Data shutting consumes  a lot of energy, 
making cloud data centers some of the 
most energy intensive operations.
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Neuromorphic Computing
• Neuromorphic computing takes inspiration from the brain, which we understand, is 

massively interconnected and processes information in parallel, and has:
– About  ~10!" neurons, and 
– Each neuron is connected to about ~ 10# synapse;

• Information processing is thought to take place in the synapses, which also store the 
information;

• Computing in the brain is therefore performed within the memory itself, unlike how it is
done in classical computing;

• While performing all its remarkable feats, the brain consumes only about 20W.
– No artificial processor is capable of this energy efficiency;

• The goal of neuromorphic computing is to develop systems inspired by the brain in the
way they process information and use energy efficiently.
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Dynamical electrical model of a neuronal cell

Neuronal cell in
saline environment 

gated ion channels

ion currents 𝑰𝒊

Capacitive membrane 
currents 𝑰𝒄

Total membrane current 𝑰

• Cell membrane is an electrically insulating dielectric;
• Can be represented by capacitor , 𝐶!;

• 𝑵𝒂", 𝑲", 𝑪𝒍# pumps in membrane keep its inside below outside potential; 
• Difference in potential is the resting potential, 𝐸 = 𝐸$% + 𝐸& + 𝐸'( ;

• Membrane is not fully insulating – it leaks some (𝑵𝒂", 𝑲", 𝑪𝒍#) ion currents;
• Can represent sum of leakages with conductance, 𝑔 = 𝑔$% + 𝑔& + 𝑔'(; 

• Cell membrane receives charge 𝒒 from external inputs or 
other external cells at  some rate: )*)+ = 𝐼,-+ + ∑ 𝐼.+/,0 1,((2 = 𝐼(𝑡)

• Cell membrane electrical characteristics and parameters can be modeled 
by the circuit shown at bottom left corner.

I

E
𝑪𝒎 𝑽𝒎(𝐭)

Node K Kirchhoff’s current conservation law at node K leads to:

𝑪 𝒅𝑽𝒎(𝒕)
𝒅𝒕

+ 𝒈 𝑽𝒎(𝒕) − 𝑬 − 𝑰(𝒕) = 𝟎 (1)

This is the dynamical neuronal cell membrane state equation.

𝒈



The biological neuron and the artificial model of it
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Key differences between classical and brain computing

7

B. Pakkenberg, D. Pelviga, L. Marner, M. J. Bundgaard, H. J. G. Gundersen, J. R. Nyengaard,  L. Regeur, “Aging and 
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Human Brain  Digital Computer 
Neurons and synapses are the basic building blocks.  Transistor logic blocks and memory are 

basic blocks. 
Asynchronous communication (low energy without 
a central clock). 

Synchronous communication (high 
energy with a single central clock) 

Has high plasticity for dynamic reconfigurability. Most digital circuits have limited 
reconfigurability. 

Neurons have ready access to synapses (memory); 
no need to waste energy shuttling information 
back and forth between memory and processor 
since processing is in-situ. 

Processor and memory are spatially 
separated, leading to lots of energy 
being consumed shutting data back 
and forth. 

Neurons in brains are massively interconnected; a 
single neuron is connected to ~10!	other neurons.   

We couldn’t do that using CMOS 
technology. 

The human neocortex is estimated to have about 
1.5 − 3.2 × 10"#	neurons and about 1.5 × 10"! 
synapses [Pakkenberg et al.]. 

1.2 × 10"$	transistors in a Cerebras 
chip; 2.1 × 10"#	transistors in Nvidia 
GV100 Volta card [Moore] 

 



Electronic implementation of synaptic devices
• Electronic synapses originate from Chua’s research on a ”missing”  

fundamental circuit element;  
– The well-known elements are the capacitor, inductor, and resistor;  they 

are related by the following relations

!𝑑𝑞 = 𝐶𝑑𝑣
𝑑𝜙 = 𝐿𝑑𝑖 and   ! 𝑑𝑣 = 𝑅𝑑𝑖

𝑑𝜙 = 𝑅!𝑑𝑞

• Chua insisted that because of symmetry, there should be a 
fourth element, 𝑅$, which he called the memory resistor, 
which today is called the memristor or the resistance switch;
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Memristor: the electronic synapse

• HP reported the first experimental two-terminal memristor device in 2008 fabricated from 
titanium dioxide.

• Memristors can be made from oxide materials such  Al$O%/TiO$, HfAl&O'/TaO' and 
Ta/HfO$, which are all compatible with silicon microfabrication technology.

• Common mechanism of operation of the memristor is the metal-insulator phase 
transition (there are other mechanisms: Mott-insulator, Ag-doped insulator for diffusive 
transport in memristor, 

• In electronic neuromorphic computing, the memristor is  typically used in a crossbar 
configuration designed to  perform  vector-matrix operation  - one of the basic 
operations in deep learning algorithms.

•
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Crossbar configuration of electronic memristors
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REVIEW ARTICLE NATURE ELECTRONICS

The on/off ratio (Fig. 3c), which is defined as the dynamic range in 
the analogue switching regime, determines the capability of map-
ping the weights in the algorithms to the device conductance. In 
contrast to binary switching, most NVM devices only have on/off 
ratios of less than 10 in the analogue switching regime. The linearity 
(Fig. 3d) in conductance tuning refers to the linearity of the curve 
relating the device conductance to the number of programming 
pulses. Generally, a programming scheme using identical pulses is 
preferred; otherwise, the cost of the pulse determination process 
would incur extra circuit overhead. The trajectory of the weight 

increase process usually differs from that of the weight decrease 
process, also resulting in asymmetry (Fig. 3e).

The overall requirements for SNN are similar to those for ANN, 
but the specific requirements for SNN might be different in terms 
of some device metrics, such as linearity or symmetry. In addition, 
additional requirements should be introduced for SNN, such as 
timing-related plasticity.

Different types of NVM devices have been proposed and fab-
ricated for neuro-inspired computing applications. Based on the 
relation between the weight tuning path and the weight read path, 
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Fig. 4 | Analogue computing with NVM. a–c, Two-terminal NVM devices for synaptic weights: RRAM (a), PCM (b) and MRAM (c). The two-terminal 
synaptic devices exhibit both of the weight tuning and synaptic inference operation in the TE-BE path. d–f, Three-terminal NVM devices for synaptic 
weights: flash memory (d), FeFET (e) and ECRAM (f). The three-terminal synaptic devices exhibit weight tuning and read operation based on the 
gate-channel and drain-source paths, respectively. The FeFET device (e) utilizes the partial polarization switching within the ferroelectric gate oxide to 
change conductance. The conductance tuning of an ECRAM device (f) is based on the motion of Li ions between the solid-state electrolyte and tungsten 
oxide. g–l, NVM-based computing unit cell configurations: 1R (g), 1T1R (h), 2T1R (i), 2T2R+3T1C (j), 1T+1TriR (k) and 2T+1TriR (l). The blue arrows 
and red arrows indicate inputs and outputs, respectively. m–p, Array structures for computing: passive crossbar (m), parallel pseudo-crossbar (n), 
row-by-row pseudo-crossbar (o) and memory-like array (p). In the computing phase, the pulses with V1, V2 and V3 amplitudes are applied in parallel or in 
sequence to row terminals of the array. q, NVM-based computing core. r, Generic architecture of NVM-based neuro-inspired computing chips. s, Mapped 
memory-centric intermediate representation. t, A typical neural network application. TE, top electrode; BE, bottom electrode; G, gate terminal; D, drain 
terminal; S, source terminal; SFU, special function units.
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The on/off ratio (Fig. 3c), which is defined as the dynamic range in 
the analogue switching regime, determines the capability of map-
ping the weights in the algorithms to the device conductance. In 
contrast to binary switching, most NVM devices only have on/off 
ratios of less than 10 in the analogue switching regime. The linearity 
(Fig. 3d) in conductance tuning refers to the linearity of the curve 
relating the device conductance to the number of programming 
pulses. Generally, a programming scheme using identical pulses is 
preferred; otherwise, the cost of the pulse determination process 
would incur extra circuit overhead. The trajectory of the weight 

increase process usually differs from that of the weight decrease 
process, also resulting in asymmetry (Fig. 3e).

The overall requirements for SNN are similar to those for ANN, 
but the specific requirements for SNN might be different in terms 
of some device metrics, such as linearity or symmetry. In addition, 
additional requirements should be introduced for SNN, such as 
timing-related plasticity.

Different types of NVM devices have been proposed and fab-
ricated for neuro-inspired computing applications. Based on the 
relation between the weight tuning path and the weight read path, 
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• Crossbar configuration requires input and 
output circuits for managing digital to 
analog input and analog to digital out;

• Some local buffer memory is also 
required; 

Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired computing,” Nature Mat. 18 309-312  (2019).



Milestones in electronic neuromorphic computing

REVIEW ARTICLE NATURE ELECTRONICS

However, with the optimization of the architecture and an increas-
ing computing density, the read energy of the synaptic memory will 
become dominant. Therefore, the energy per operation is another 
key factor for neuro-inspired computing chips to estimate the 
energy efficiency. Figure 2c shows the energy efficiency of recent 
neuro-inspired computing chips in inference phases. Figure 2d 
illustrates that the neuro-inspired computing chips demonstrates 
superior energy efficiency compared to a CPU- or GPU-based 
implementation in learning phases.

Computing accuracy. High computing accuracy is necessary 
throughout the lifetime of a chip. The computing accuracy of 
neuro-inspired computing chips will be influenced by device 
non-ideal factors and circuit noises, such as thermal noises and 
reliability issues. As a result, compared to defect-free simulation, 
the hardware implementation would show a lower computing 
accuracy38. For AI applications, the computing accuracy can be 

suitably represented by the final output accuracy when process-
ing a specific task. In particular, when benchmarking a chip, one 
should evaluate the accuracy by running widely used models on 
standard datasets, such as the ImageNet39 for object classification 
or Microsoft COCO40 for object detection, and so on. In addition, 
any neuro-inspired DNN hardware realization is supposed to reach 
similar accuracy as the software results. Since the SNNs currently 
lack appropriate bio-plausible benchmark models and datasets, the 
computing accuracy of SNN chip is generally evaluated by running 
a DNN-based transformed spiking neural model and using the tra-
ditional datasets.

Learning capability. In most prior works, the learning phase has 
been implemented in the cloud using public datasets, and the 
learned parameters have then been downloaded to edge devices to 
perform inference tasks. However, for future edge workloads, the 
capability of local on-chip learning is necessary for personalization 
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Fig. 2 | Benchmarks. a, Benchmarking computing density. The computing densities of representative neuro-inspired ANN and SNN chips based on CMOS 
and NVM technologies are evaluated. The computing density is defined as the number of on-chip synaptic elements per synapse–neuron core divided by 
the area of synapse–neuron core. The line is an approximation to indicate the trend of computing density. Data are from refs. 16,19,20,25,32,33,90–96. b, The typical 
performance densities for learning phase of various chips. The bar indicates the average value and the error bars indicate the highest and lowest values. 
c, Benchmarking synaptic operation energy. The amount of synaptic energy consumed per operation in inference phase for an SNN or ANN chip is the 
energy dissipation per spike event or MAC operation, respectively. The red square shows the synaptic operation energy in learning phase. The line is an 
approximation to indicate the trend of energy per operation. Data are from refs. 16,19,20,32,33,93,94,96–102. d, The typical power efficiency values for learning phase 
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computing chips in learning phase is generated from literature-reported results23,24,33,95.
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W. Zhang et al, “Neuro-inspired chips computing chips,” Nature Eletronics, 3 371-382 (2020) 

• Number of digital and analog 
electronic neurochips have 
been reported;

• The TrueNorth (IBM) and
Loihi (Intel) chips are 
commercially available;



Phase change material: building block of the optical synapse
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Chalcogenides materials:
1. GeSbTe (GST)
2. GeSbSeTe (GSST)



Basic Architecture of an Optical Crossbar Multiplier
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• Optical phase change arcs are fabricated at 
intersections of each crossbar waveguide. 
Each arc represents a synapse

• Horizontal waveguides fed with modulated 
light inputs from sources driven by digital-
to-analog signal converters.

• Each vertical waveguide is  an output, 
which is a sum of the horizontal inputs.

• Crossbar array performs the basic matrix-
vector multiplication function of an 
artificial neuron.



Potential Scaling of Optical Crossbar Multiplier
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• The optical crossbar multiplier can 
be scaled by 3D layering.

• Waveguide made with SiN, whose 
index of refraction is 𝑛 = 1.99. 
interlayer cladding is SiO" with 
index 𝑛 = 1.44.

• The 3D integration will require 
heterogenous integration processes 
for inclusion of DAC/ADC and 
optoelectronic sources and detectors.



Key Fabrication Process Steps 
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• Basic building block is a 
silicon substrate, which 
serves as an optical bench 
for assembling the crossbar 
multiplier.

• Other materials compatible 
with silicon include silicon 
nitride, and silicon dioxide.

• Heterogeneous components 
include III-V lasers, 
detectors, and Si-based 
DACs/ADCs.



Opportunities 
• New collaborations that bring together expertise in (i) materials science, 

(ii) electrical and computer engineering, (iii) computer science, and (iv) 
neuroscience;

• Neurochips offer potential to develop fast, low power application-specific 
accelerators for machine learning algorithms;

• Neuromorphic computing presents a new computing paradigm that
leverages classical computing architectures and existing silicon 
microfabrication infrastructure;
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Challenge of the incumbent computing framework 
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• To overcome the drag of the 
incumbent computing framework (for 
a toolchain stack),  neuromorphic  
computing  requires its own clear 
definition of a layered abstraction that 
defines how the hardware and the 
software shoukd to interact.

• Framework will facilitate effective 
design and  collaborations among the 
diverse teams needed to develop the 
field.



Summary

• Reviewed neuromorphic computing
– Discussed how it is currently implemented 

• Discussed some of the opportunities and challenges
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