FERROELECTRIC SWITCHING KINETICS IN EPITAXIAL PMN-PT THIN FILMS

John Heron

Department of Materials Science and Engineering University of Michigan

Tony Chiang

Intel MESO

Targets: Sub 250 mV, Sub ns, 100 aJ per switch

Manipatruni, S. et al.. Nature 565, 35-42 (2019).

Iraei, R.M., S. Dutta, S. Manipatruni, D.E. Nikonov, I.A. Young, J.T. Heron, and A. Naeemi. *(DRC), 2017 75th Annual.* 2017. IEEE.

Table 2. A summary of challenges and opportunities both at the fundamental materials physics level as well as translation into technologies.

materials physics	translational
Discovery of new, room temperature multiferroics with robust coupling between magnetism and ferroelectricity, strong coupling and magnetic moment larger than 50 emu cc ⁻¹	Achieving thermal stability of ferroelectric and magnetic order parameters, as well as robust coupling between them, in 10 nm length-scales at room temperature. Thus, careful measurements of magnetoelectric and multiferroic phenomena at such length scales is critical
Developing new mechanisms for magnetoelectric coupling and understanding and approaching the limits of the strength of such phenomena	Reducing the voltage required for ferroelectric/ magnetoelectric switching to approximately 100 mV
Atomic-scale design and layer-by-layer growth as an attractive pathway to discover and synthesize new room temperature multiferroics	A second key requirement for ultra-low power electronics (e.g. an attojoule switch) would be designing proper ferroelectric multiferroics with small but stable spontaneous polarization of approximately 1–5 μ C cm ⁻²
Understanding the scaling limits, controlling and exploiting dynamics: magnetoelectric coupling at <20 nm length scale; <1 nsec time scale; <100 kT energy scale	Integration and scale-up of synthetic approaches to enable manufacturing would be valuable
From a longer timescale perspective, reaching the theoretical Landauer limit for switching (kT(ln2) would be desirable and will require significant effort	Convergence of memory and logic

The magnetoelectric effect

Heron, J. T. et al.. Nature 516, 370–373 (2014)

Hill (Spaldin), J. Phys. Chem. B 104, 6694 (2001).
Fiebig, J. Phys. D 38, R123 (2005).
W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 759 (2006).

Hill (Spaldin), J. Phys. Chem. B 104, 6694 (2001).
Fiebig, J. Phys. D 38, R123 (2005).
W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 759 (2006).

Magnetostriction in bulk FeGa alloys

Reduction due to A2 into D0₃

D0₃ to FCC peak due to lattice softening

Quenching suppresses DO₃ formation

Magnetostriction in bulk FeGa alloys

Reduction due to A2 into D0₃

D0₃ to FCC peak due to lattice softening

Quenching suppresses DO₃ formation

Low temperature thin film epitaxy?

Y. Du et al., Phys. Rev. B 81, 054432 (2010)

Stable A2 FeGa with above 19% Ga

Growth at 180 °C

No 001 reflection from $D0_3$ phase

Reversible magnetization switching at room temperature

 $10 \ \mu m \times 50 \ \mu m$ bar PMN-PT substrate

$$\rho(\varphi) = \rho_{\perp} + (\rho_{\parallel} - \rho_{\perp}) \cos^2 \varphi$$
$$|\alpha_{eff}| = \mu_0 |\frac{dM}{dE}| = \mu_0 M_S |\frac{d\cos\phi}{dE}|$$

Magnetoelectric coefficient

Multiferroic Composites

Perspective

 Table I. Converse magnetoelectric switching metrics

	FeRh/PMN-PT ²¹	FeGa/PMN-PT ⁵⁵	BiFeO ₃ ^{31–33}	La-BiFeO ₃ ³⁴	$Pt/Cr_2O_3^{40}$	$(Co-Pt)/Cr_2O_3^{53}$
Energy Dissipation (µJ <u>cm⁻²</u>)	1000	3	500	10	0.6	32
Voltage (V)	~350 V	~200 V	4	0.2–0.5	1.5	35
Thickness	500 µm	500 µm	100 nm	10–20 nm	200 nm	200 nm
Magnetoelectric Coefficient (s m ⁻¹)	1.6 × 10 ^{-5 56}	2×10^{-5}	~1 × 10 ⁻⁷	$\sim 3 \times 10^{-7}$	N.R.	N.R.
Pulse duration	1 s	DC	10 <u>ms</u>	10–100 µs	DC	100 ns
Size (µm ²)	Continuous film	500	8	30	~10_39	~ 35
Endurance	Fair	Fair	Fair	Fair	Fair	Fair
Environmental Robustness	Temperature- dependent phase transition	Good	Good	Good	Requires boosted T _N (B doping)	Requires boosted T _N (B doping)

Energy dissipation 2.9 μ J cm⁻² Magnetic device: 45 × 45 nm², switching energy dissipation is ~80 aJ,

From 500 μ m thick PMN-PT substrate to 10's nm thick film

Switching speed near 1 ns with lateral scaling

Switching still growth dominated at 3 micron diameter Out performed BFO and BTO

Table 2. A summary of challenges and opportunities both at the fundamental materials physics level as well as translation into technologies.

ECTRONICS Laboratory

ERROEL

Main challenges/pg	translational	materials physics
collaboration Larger magnetoelec	Achieving thermal stability of ferroelectric and magnetic order parameters, as well as robust coupling between them, in 10 nm length-scales at room temperature. Thus, careful measurements of magnetoelectric and multiferroic phenomena at such length scales is critical	Discovery of new, room temperature multiferroics with robust coupling between magnetism and ferroelectricity, strong coupling and magnetic moment larger than 50 emu cc ⁻¹
Lateral scaling (to	Reducing the voltage required for ferroelectric/ magnetoelectric switching to approximately 100 mV	Developing new mechanisms for magnetoelectric coupling and understanding and approaching the limits of the strength of such phenomena
Fast measurem	A second key requirement for ultra-low power electronics (e.g. an attojoule switch) would be designing proper ferroelectric multiferroics with small but stable spontaneous polarization of approximately 1–5 μ C cm ⁻²	Atomic-scale design and layer-by-layer growth as an attractive pathway to discover and synthesize new room temperature multiferroics
Wafer scaling – lar fabricatior	Integration and scale-up of synthetic approaches to enable manufacturing would be valuable	Understanding the scaling limits, controlling and exploiting dynamics: magnetoelectric coupling at <20 nm length scale; <1 nsec time scale; <100 kT energy scale
Prototypin	Convergence of memory and logic	From a longer timescale perspective, reaching the theoretical Landauer limit for switching (kT(In2) would be desirable and will require significant effort

ctric effect

10 nm)

nents

ge scale

g

