High Density Optoelectrical Neural Interfaces for Direct Stimulation and Recording of Neural Activity

Jay W. Reddy, Ibrahim Kimukin, Elias Towe, Maysam Chamanzar

ECE Department, Carnegie Mellon University

Maysam Chamanzar

Swirling Sandstone Paria Canyon Arizona

Maysam Chamanzar

Carnegie Mellon University

Nervous System Disorders

Economic Cost

Neural Prostheses

Brain-machine interfaces

University of Pittsburg-UPMC

Internet of things+ brains

Terra Swarm UCB

What is Needed, What is Missing

Optical Stimulation (Optogenetics)

- Study of CNS disorders
- Cracking neural codes
- Isolating circuit elements of the network

If we can stimulate patterns of activity...

- Understand the neural code
- Identify critical neural circuits and pathways
- Direct writing of high-acuity sensory percepts into the cortex!

R. Pashaei, et al, 2014.

Optical Stimulation (Optogenetics)

- Cracking neural codes
- Isolating circuit elements of the network

Evolution of light delivery mechanisms

Waveguides

(~20 µm waveguides)

R. Pashaei, et al, 2014.

Maysam Chamanzar	Carnegie Mellon University

Our Solution

• Flexible implantable μ -LEDs

Fabrication Process Design

Monolithic Process Design

Monolithic cable design → No need for postfab bonding!

Linear Array Design

Probe after connections to individual LEDs are realized

Bright Light Emission Possible!

Emission Spectrum

 λ = 453 nm FWHM ~ 14 nm

I-V and Optical Power Characterization

2D Array

Reducing the number of wires: Multiplexing

Architecture of the Probes (2D MUX)

Column Connections

High-density Flexible Probes

Flexible Cable

- Minimizing tethering force on the brain tissue
- High-density interconnects (280 nm!)
- Material: Parylene C
 - Biocompatible
 - Compliant
 - CVD at room temperature
 - Can be micromachined

Characterization

 λ = 453 nm FWHM ~ 14 nm

IV-Characteristic and Optical Power Measurement

Maysam Chamanzar

Carnegie Mellon University

Optogenetic Experiments

Maysam Chamanzar

Carnegie Mellon University

Bright-field Image of a Brain Slice

- A $\mu\text{-LED}$ on a brain slice

Architecture of the Probes

