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Brain-like Computing
Facets of Brain-like Computing:

1. Self-Healing 2. Associative Memory
3. Cognition 4. Learning & Plasticity

Transcribing Basal Ganglia on Silicon
for Optimal Control Algorithms

Supervised Learning

Unsupervised Learning ) G {11 by Cerebellum
by Cerebral Cortex el (Error Vector)

(Statistical Input) “ b Ly
( Q ax 4 Reinforcement Learning

by Basal Ganglia
(Reward Scalar)

Adaptive Hardware Platform for Nonlinear Optimal Control, Swarm
Intelligence, Robot Control, and Markov Decision Process (MDP)




Self-Healing VLSI Design
(1989-1996)

Hopfield Neural Net as Algorithmic
Hardware for Spare Allocation by
Node Cover over Bipartite Graph

* |EEE Trans. on CAS, 1993
* |EEE Trans. on CAS, 1993
* |IEEE Trans. on Computer, 1996

ognition Chips using
Cellular Neural Networks
(2008-2013)
» Color Image Processing
» Velocity Tuned Filter
* Memristor/RRAM based CNN
* RTD+HEMT based CNN

IEEE Trans. on VLSI, 2009

IEEE Trans. on Nanotechnology, 2008

IEEE Trans. on Neural Nets, 2014

IEEE Trans. on Nanotechnology, 2013

ACM Journal on Emerging Technologies
in Computing Systems, 2013

Learning based VLSI Chips
(2010- Now)

STDP Learning for Position Detector
STDP Learning for Virtual Bug Navigation
STDP Learning for XOR/Edge Detection
Deep Learning for Pattern recognition

Q-Learning for Maze Search Algorithm on
Memristor Array

Proceedings of the IEEE, 2012

Nano Letters Journal, 2010

IEEE Nanotechnology, 2011

IEEE Nanotechnology, 2014

IEEE Cellular Neural Networks, 2012

Reinforcement Learning/Actor-Critic NN
(2016 — Now)
IEEE Trans. on Computer, 2016

IEEE Trans. on Neural Nets, 2018
IEEE Trans. on Circuits & Systems, 2018

Self -Healing
Chip, 1991

Actor-Critic Reinforcement
Learning Chip, 2016

Synaptic Plasticity
Chip, 2013

Self-Organizing Map Chip
for ECG Clustering .
Body-Sensing Network
2016 Body- r
with Wireless Transceiver
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Gamut of Learning Models

Machine Learning Classical Conditioning Synaptic Plasticity M : ; edlgft:-né?c:llzlgei{:al
Anticipatory Control of Actions and Prediction of Values Correlation of Signals Neuronal Activities
REINFORCEMENT LEARNING UN-SUPERVISED LEARNING action Potential
example based correlation based o
Dynamic Prog. i
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(LTD=anti) _— g
Differential Asynapie
Temporal Difference Hebb-Rule

(“fast”)

e
Actor/Critic
Technical & Basal Ganglia o)
: et
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mooptc
Neuronal Reward Systems S — h oo
[ ] / Aw | Synaptic Weight
Computational «— » Biological L

Based on Woergoetter & Porr’s Taxonomy
UNIVERSITY OF MICHIGAN

Plasticity (STDP) Based Learning Chip
for Virtual Bug Navigation

Integration, VLSI Journal, 2015
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Discretized STDP Based Deep Neural Net

Performance Summary
—Network size: 256-50-10
-Technology: TSMC 65 nm
-Bit width of synapse: 24 bits
—Clock frequency: ~100 MHz
—Power: ~100 mW

-Time needed for one learning iteration: 30 ps
-Speedup : ~700x v. digital computer
—Energy: ~500 pJ/spike @ VDD = 1.2

Gamut of Learning Models

Machine Learning Classical Conditioning
Anticipatory Control of Actions and Prediction of Values

REINFORCEMENT LEARNING

example based

Dynamic Prog.
(Bellman Eq.)

Temporal Difference

Google's Deep Mind or
Deep Q-Network (DQN)
Played Atari 2600
Better than a Human

Actor/Critic
Technical & Basal Ganglia

ARSA 7
7”7\

Q-Learning

Google's Go Program uses
SARSA and Monte Carlo /
Tree Search to beat - . /
World Champion (Kei Ji) Computational Z

in a Go contest.

Synaptic Plasticity

Correlation of Signals

UN-SUPERVISED LEARNING

correlation based

Hebb-Rule |
|
LTP
| (LTD=anti)

Differential
Hebb-Rule

(“fast”)

STDP-Models STDP
Biophysical & netwo;b

—
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/Neuronal Reward Systems

(Basal Ganglia)

Biological

Based on Woergoetter & Porr’s Taxonomy
UNIVERSITY OF MICHIGAN
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Q-Learning Hardware - Reinforcement Learning

SARSA: State-Action-Reward-State-Action
NewEstimate € OldEstimate + StepSize * (Target - OldEstimate)

learned value \l, \
Pl + ¥ . mng(8t+1,a) - Q(3t7at)
old value

Q(8:,0:) — Q(8t,0) + o
~~

learning rate d  discount fact S ——
old value € rewan scoun or estimate of optimal future value

maxg, [Q (5t+1,at+1)] = Q(st,a¢) + 0.
Q(Shat) & Q (st,0¢) + 0 (1, 0¢) X (¢ +6¢)
valuative Feedback (Rewards)

~
/“&lrrem
Controller

state
N -
LU L] LU LT
Network Network
1

Environment ,Y,
—~ <fnte>:
state

curreng )

7 action
\

Q(st,at) — Q(st,at) X (1= ay(sg,ar)) + ayg (se,ae) X rtr

+ o (¢, a1) % max [Q (5t+17at+1>}
at
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H output
Registers
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Memristor Model Used in
V' EVELETTEV

ol
n v 800 Synapse States after
7 0 600 (26/45) 1st:and 2" Iterations
* 400 15 28) 2400 ‘ ,
200 200 ” I
]Th”hvhvvvv ]””ﬂh]iﬂv]?ﬂvhvw
0 20 0 10 20 30

|terat|on iteration
Ebong & Mazumder, IEEE Nano 2014

Superior Application of Q Learning by Google, UK
Played Atari 2600

Human-level control through deep reinforcement learning
Nature, v. 518, pp. 529-533, Feb 2015. Better than a Human
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Gamut of Learning Models
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Machine Learning

Classical Conditioning

Anticipatory Control of Actions and Prediction of Values

example based

Dynamic Prog.
(Bellman Eq.)

Temporal Difference

Hebb-Rule

Synaptic Plasticity
Correlation of Signals

UN-SUPERVISED LEARNING
correlation based
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LTP
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Differential
Hebb-Rule
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Actor/Critic
Technical & Basal Ganglia
AT
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L4
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Based on Woergoetter & Porr’s Taxonomy

UNIVERSITY OF MICHIGAN

Actor-Critic NN CMOS Chip

= Post-Layout Metrics

Technology: 65 nm
Area: 550 pym x 550 ym

Arithmetic precision: 24-bit fixed-point

Supply voltage: 1.2 V
Clock frequency: 175 MHz

- Power Consumption: 25 mW
- 270x speed up over software ADP

Controlling balance,
rotation, movement of
microrobots that
operate on batteries

Provide smart
sensing strategies
for energy-
constrained sensors

550 pm

~ Arithmetic Unit

On-Chip Memory

Al

550 pm

UNIVERSITY OF MICHIGAN
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Benchmark Results

Benchmark Tests

Cart-Pole Balancing

Beam Balancing

Triple-link Inverted Pendulum

- Results obtained from the accelerator are normalized w.r.t software results
- Hardware solution consumes 25 mW and is faster than software by 225 times

Cart-Pole BalancingI

Mount join\t‘ :

Triple-link
Control force Inverted !
" Pendulum ~ T\ )

Control force

cart-pole beam triple-link

Motor

UNIVERSITY OF MICHIGAN

Problem Statement

Optimal Control/Decision-Making Problem
- Looking for the optimal policy/strategy
Target is fo maximize reward &minimize cost

Solve using Bellman equation: The optimal equality.

- Continuous-space problem is handled by Hamilton-
Jacobi-Bellman equation

System Model: x(t+1) = flx(t).a(®)] x(t)-state of the systemat time £

= a(t)-action performed at time ¢
Reward to be JIx(t)] = Zyk'lr[x(H- 1]
k=1

maximiT J[x(t)]-state value function at state timex(t)

J¥[x(t)]-optimal state value function
Bellman Jx(®)] = 1;1(@))((r[x(t + D]+ x(t+ D)

5 r[x(t + 1)]-reward received at time t
equation:

y-discount factor used to encourage near-term reward

UNIVERSITY OF MICHIGAN
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Traditional Applications of ADP in Software

Power Systems

Autopilot

-

Used to control flight of a plane Used as static compensators to

Cope with unexpected conditions regulate voltage in power systems

Autonomous Robot

Self-learning call
admission control
scheme that can
adapt for new
communication
environment

Navigation in unknown environmen|

ontrol of a moving robotic arm
UNIVERSITY OF MICHIGAN

Action-Dependent Heuristic
Dynamic Programming

= Essentials

- Model-free learning . "

- Learning by minimizing temporal 8(6) =JIx(t - D] - v/x(®] - rix(®)]
difference error

- Critic: estimate the reward-to-go alx(t)] = iir{r}{%\t))(](r[x(t + )] +y/x(t+1)])

Actor: pick the right action to maximize
future reward

0
SR —
/. 4
A
/ Ly
Actor Critic
as
X X
Environment L

UNIVERSITY OF MICHIGAN
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New Type of Updating Scheme

FFMSCAl  BP,wU [ CC " STALL I W

c 300 wio VU
g
T 2
g Scheduler-ALU Controller
7 2 30 -l Memory Others
2 ) 1.11x
g* X 74 1.00x )
8 £ 17/ AL
o T 20
5 S
* -
€ 15wio V! wio VU wio VU
461,561 4101, 5121 8-20-1,9-20-1 2
Network Configurations 3 104
5 WU W/ VU
]
@ Throughput is increased i
451,561 104,521 820,920
. Network Configurations
Fewer operations are
needed when the
virtual update @ Power consumption is reduced

algorithm is employed
Costly memory

operations are greatly

reduced

4-6-1,56-1 4-10-1,5-12-1 8-20-1,9-20-1
Network Configuration

@Energy efficiency is improved

Consequence of improved
throughput and power
consumption

UNIVERSITY OF MICHIGAN

Triple-Link Inverted
. Cone Pendulum Benchmark

- Stabilize the system

- 8 state variables as input: x,6;,6,,65, %, 91, 92, 93C0ntrol
— 8 to be within [-20,20']

- Control x to be within [-1m, 1m]

- Magnitude of the control voltage has to be less than 30V

Control force
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Triple-Link Inverted
Pendulum Benchmark

Before
Training
1
Trial #1
08t Time:5ms
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Trial #260
08 Time:5ms
06
04
02
0 1
-0.5 0
X (m)
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UNIVERSITY OF MICHIGAN

CMOS Implementation

= Post-Layout Metrics
- Technology: 65 nm

Area: 550 ym x 550 ym

Number of datalanes: 4

- Arithmetic precision: 24-bit fixed-point

Supply voltage: 1.2 V
- Clock frequency: 175 MHz
- Power Consumption: 25 mW

— 270x speed up compared to the

software approach

550 pm

_Controller

~ ArithmeticUnit

0On-Chip Memory

Synapse Weight SRAM

550 pm

UNIVERSITY OF MICHIGAN
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EVOLUTION OF -
NEUROMORPHIC Exm;?ﬁﬁ;:e Neural Network History
COMPUTING: ermedia /*\
Perceptron ('60) /xt\N Gartner Hype Cycle
(10 E2 n.unm) = S Peak of Inflated Expectations
Neural Net (‘so) ............................
(10 E 3 Neurons) _
Neuromporphic -
Hardware ('00) '\ Memristor
(10 E s I'I.Ill'om) % Trough of Disillusionment ° 5Pi“Tf‘°ﬂiCS

/ MQW Devices
Multi-level ' /’ Technology Trigger * Nanoscale CMOS
Nanocrossbar 1950-76 1980 1900|2000 2006 2009
(10 E 8 neurons) Dhe (gzgs"y)

Designed by Mazumder Over 1 Million Neurons
Research Group 1992 o

Neural-Inspired CMOS Chips Designed by Mazumder Group
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T for ECG Clustering —
Actor-Critic Reinforcement

Learning Chip

Body-Sensing Network
with Wireless Transceiver
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