
9/10/17	

1	

1

���
	

Brain-like Computing – 	

Scalable Low-Power Chips for	

Learning & Optimal Control	

Prof. Pinaki Mazumder
University of Michigan
Ann Arbor, MI 48105

Acknowledgement: National Science

Foundation (CCF & ECCS)

Brain-like Computing
 Facets of Brain-like Computing:

 1. Self-Healing 2. Associative Memory
 3. Cognition 4. Learning & Plasticity

Adaptive Hardware Platform for Nonlinear Optimal Control, Swarm
Intelligence, Robot Control, and Markov Decision Process (MDP)

Transcribing Basal Ganglia on Silicon
for Optimal Control Algorithms

Unsupervised Learning
by Cerebral Cortex
(Statistical Input)

Supervised Learning
by Cerebellum
(Error Vector)

Reinforcement Learning
by Basal Ganglia
(Reward Scalar)

9/10/17	

2	

Self-Healing VLSI Design
 (1989-1996)

Mazumder Group’s Neuromorphic Research

•  IEEE Trans. on CAS, 1993
•  IEEE Trans. on CAS, 1993
•  IEEE Trans. on Computer, 1996

Hopfield Neural Net as Algorithmic
Hardware for Spare Allocation by
Node Cover over Bipartite Graph

Cognition Chips using
Cellular Neural Networks

(2008-2013)

•  IEEE Trans. on VLSI, 2009
•  IEEE Trans. on Nanotechnology, 2008
•  IEEE Trans. on Neural Nets, 2014
•  IEEE Trans. on Nanotechnology, 2013
•  ACM Journal on Emerging Technologies

 in Computing Systems, 2013

•  Color Image Processing
•  Velocity Tuned Filter
•  Memristor/RRAM based CNN
•  RTD+HEMT based CNN

Learning based VLSI Chips
 (2010- Now)

STDP Learning for Position Detector
STDP Learning for Virtual Bug Navigation
STDP Learning for XOR/Edge Detection
Deep Learning for Pattern recognition

Q-Learning for Maze Search Algorithm on
Memristor Array

•  Proceedings of the IEEE, 2012
•  Nano Letters Journal, 2010
•  IEEE Nanotechnology, 2011
•  IEEE Nanotechnology, 2014
•  IEEE Cellular Neural Networks, 2012
--
Reinforcement Learning/Actor-Critic NN

(2016 – Now)

•  IEEE Trans. on Computer, 2016
•  IEEE Trans. on Neural Nets, 2018
•  IEEE Trans. on Circuits & Systems, 2018

4	

Neural-Inspired CMOS Chips Designed by Mazumder Group

Self-Healing
Chip, 1991

Synaptic Plasticity
Chip, 2013

Deep Learning Chip, 2016

Actor-Critic Reinforcement
Learning Chip, 2016

Figure 4.4: The proposed ECG clustering SOM chip layout.

92

Self-Organizing Map Chip
for ECG Clustering

2016

S
R

A
M

Analog
Front-End

10 bit
SAR
ADC

PMU

DECAP

DECAP

DECAP

D
E

C
A

P

C
a

li
b

ra
ti

o
n

Other blocks & buffers

IIR
FILTER

RF
TRANSCEIVER

Figure 2.11: The proposed BSN SoC layout.

heat source (i.e. thermoelectric generator). The harvested power from the state of

the art is greater than 20 µW [38][39]. Therefore, the proposed SoC can perpetually

be operated by energy harvesting. As shown in Figure 2.11, the proposed SoC area

is 1920⇥1920 µm2 and designed in CMOS 65nm LP (1P9M6X1Z1U).

2.7 Acknowledgements

This work could not be done without my colleagues, Nan Zheng, Yalcin Yilmaz,

and Di Hu. Mr. Zheng designed AFE and RF blocks. Mr. Yilmaz helped coding

42

Body-Sensing Network
with Wireless Transceiver

© 2016 Prof. P. Mazumder of University of Michigan

9/10/17	

3	

LTP
(LTD=anti)

STDP

Differential	
Hebb-Rule	
(“fast”)

Hebb-Rule	Dynamic	Prog.	
(Bellman	Eq.)

Q-Learning

Actor/Critic
Technical	&	Basal	Ganglia

SARSA

δ-Rule	

Temporal	Difference

STDP-Models
Biophysical	&	network

Neuronal	Reward	Systems
(Basal	Ganglia)

Machine	Learning Classical	Conditioning Synaptic	Plasticity
Anticipatory	Control	of	Actions	and	Prediction	of	Values Correlation	of	Signals

REINFORCEMENT	LEARNING
example	based

UN-SUPERVISED	LEARNING
correlation	based

EVALUATIVE	FEEDBACK	(Rewards)

BiologicalComputational

[2]		

[1]		

[3]		

Gamut of Learning Models
Hodgkin-Huxley

Model for Biological
Neuronal Activities

Spike Timing Dependent Plasticity
(STDP) Learning Networks

15	

Synaptic Weight

Pre

Post

Biological Neuron Model
Ionic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Biological Neuron Model
Ionic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Biological Neuron Model
Ionic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Based	on	Woergoe6er	&	Porr’s	Taxonomy		
	

 Plasticity (STDP) Based Learning Chip
for Virtual Bug Navigation

Integration, VLSI Journal, 2015

between neurons can be arbitrary) as long as the overall structure
is kept. There needs to be an input layer, hidden layer and output
layer as demonstrated in Fig. 2.

The SNN resembles a feedforward network but is not by defi-
nition feedforward due to the connections within layers, which we
will dub the intra-layer connections. The parameters that describe
this connectivity are: neighborhood connectivity and special
treatment of neurons on the edge. The hardware implementation
of this SNN with the prescribed connectivity is highly dependent
on the resources available. In the case of a field programmable gate
array (FPGA) implementation, the number of logic elements will
limit the connection scheme and neighborhood. In the case of
CMOS implementation, the area it takes to implement a synapse
will limit the connectivity. The chosen connectivity for this work is
discussed in the CMOS implementation subsection.

The neuron model adopted is a leaky-integrate and fire model
[17] expressed in (2):

τm
dVij tð Þ
dt

¼ $Vij tð ÞþRm
X

k;lð ÞANNr i;jð Þ

aij;klf Vkl tð Þð Þ

þRm

X

k;lð ÞAMMs i;jð Þ

bij;klf Vkl tð Þð Þþ Istim ð2Þ

where Vij tð Þ is the membrane potential or the internal state vari-
able of the ij neuron or processing element, and Rm and τm are
constants modeling membrane resistance and membrane passive
time constant, respectively. Istim is used to model direct stimula-
tion of the neuron; this is useful for training signal inputs. f Vkl tð Þð Þ
provides the firing state of neuron kl and takes on the value of
either 0 for a non-firing neuron or 1 for a firing neuron. aij;kl and
bij;kl represent synaptic conductance for intra-layer pre-neurons

and inter-layer pre-neurons, respectively. NNr i; jð Þ and MMs i; jð Þ
represent the intra-layer and inter-layer neighborhoods, respec-
tively, of neuron ði; jÞ. r ¼ 1 or s¼ 1 represents a neighborhood of
9 neurons. Fig. 3 provides a graphical depiction of the arrangement
in relation to this definition. When Vij tð Þ reaches a predefined
threshold due to its pre-synaptic neuron activity, neuron ði; jÞ fires
(Fig. 4).

Eq. (2) uses prescribed neighborhoods but the exact connec-
tions can actually differ randomly. For example, in [1], a prob-
ability density function was used to determine the connectivity.
This approach is conducive in software implementation and rapid
prototyping with FPGA but is not recommended for CMOS
implementation. The CMOS implementation in this work utilizes
different connection schemes to determine how the effect of
connectivity influences the integrity and training effort of the
solution. The synaptic conductances, aij;kl and bij;kl, can either be
fixed or varying. In this work, the synapses are modified using
asymmetric spike timing dependent plasticity (STDP) [18–20]. The
specific details of the implementation are divulged in the training
methodology of the paper, presented next.

3.2. SNN training algorithm

3.2.1. Flowchart
The training methodology chosen is limited and different from

other methods due to the following ratiocination: stimulate the
input and or probe the output. With this restriction, direct control
of synapses is prohibited and therefore unconducive to setting
conductances to specific values. STDP, therefore, is adopted to
allow indirect control and training of synapses. The indirect
training algorithm can be broken down into five steps. The dif-
ferent steps in the algorithm are further explicated:

Step 1.Generate sensor signals: Twelve sensor scenarios are
provided in Table 1. For parameter adjustment, the first step is to
generate terrain and sensor signals for the 12 possible cases.
Essentially, provide values for SterrainL, StargetL, SterrainR, and StargetR.
These essentially are the left terrain sensor input, the left target

Fig. 2. The structure of the SNN showing information flow and layers.

r

r

r=1

s=1

r=2

s=2

MM

NN

reference neur
NN layer contain
MM layer contain
 preceding ne
 r neighborhoo
 s neighborhoo
 that provide

ron (i,j)
ning neuron (i,j)
ning neurons
euron (i,j)
od around neuron (i,j
d defining neurons
inputs to neuron (i,j)

)

)

Fig. 3. Layer connection relaying the concept of neighborhoods for the large SNN
design.

Generate Sensor
Signals

START

Determine
Output Firing
Frequencies

Determine Error
Double the
number of

neurons to train

END

Is error low
enough?

Is error
increasing?

Half the number
of neurons to

train

Train Input
Layer Synapses

YES

NO

YES

NO

Fig. 4. Flowchart showing the different steps involved in the SNN training
algorithm.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 111

Time Difference between SNN Firing

consist of a training controller, a testing controller, a mux to select
between training signals and testing signals, a training signal
generator and the SNN.

Fig. 6 also shows the dataflow of each design. The biggest dif-
ference between Fig. 6a and b is peripheral circuitry needed to
handle the differing network sizes. Fig. 6a has a block for the SNN
which contains 7 neurons and 8 synapses while Fig. 6b needed to
be broken apart in order to handle the wire connectivity. The
floorplans correspond directly to the layouts so those are not
included in this article. In layout pictures, each major block is
circled and corresponds to a block shown in the corresponding
floor plan. Table 2 breaks down the layout area of each major
component defined Fig. 6. The full chip area without pads for each
design is provided as well. With pads included, the small design
has an area of 2.8 mm by 2.8 mm while the larger design has an
area of 6.5 mm by 4.8 mm.

Table 3 shows the power consumption of both designs.
Although, in term of the number of neurons, the large design is 58
times of the small design, its area is only 4 times of the small
design and its power consumption is only 9 times of the small
design. This implies that the area and power consumption of the
design do not increase linearly with respect to the size of the
design and thus allows us to increase the design’s size with lower
cost. The next section presents the results of both chips and pro-
vides a cross comparison between all platforms.

4. Results and discussion

The indirect training algorithm was implemented in MATLAB,
FPGA and CMOS to train the SNN presented in Section 2 to allow
the virtual insect to perform the terrain navigation task. The small
design has also been tested on an Altera Cyclone II EPC20F484C7
FPGA board to ensure that the implemented design works in real
hardware. To implement the small design 21,172 logic elements
and 1104 dedicated logic register were used.

The performance of the trained insect was first evaluated by
MATLAB simulations, as demonstrated in Fig. 7, in which the green
line and the blue line depict trails of the untrained state and the
trained state of the virtual insect, respectively. The results show
that after the SNN was fully trained, the virtual bug was capable of

Table 2
Layout area of both CMOS designs.

SMALL LARGE
Block Area Block Area

SNN 800 μm!400 μm Input layer 4600 μm!1600 μm
Hidden layer 3750 μm!500 μm
Output layer 800 μm!200 μm!2

Training signal
generator

450 μm!20 μm Training signal
generator

710 μm!36 μm

Testing
controller

300 μm!980 μm Testing
controller

900 μm!400 μm

Training
controller

720 μm!160 μm Training
controller

4900 μm!200 μm

Control signal
mux

300 μm!300 μm Control signal
mux

950 μm!800 μm

Whole chip
without pads

1500 μm!1200 μm Whole chip
without pads

5200 μm!4000 μm

Table 3
Layout area of both CMOS designs

Total
power/
mW

Leakage/μW SNN's
power/
mW

Other
power/
mW

of
neurons

Large design 13.24 1.06 9.485 3.755 406
Small
design

1.468 0.0679 0.889 0.579 7

Large/small
ratio

9.019 15.61 10.669 6.485 58

Fig. 7. Trails of the virtual insect on a uniform, obstacle-free terrain and on a terrain with different roughness, populated by obstacles [1]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Untrained hardware virtual insect trajectory on a map of size 1000!1000.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117114

avoiding obstacles and obtaining the target position. The
untrained insect really stays in the same vicinity so the trajectory
captured by the green line is so small due to the random move-
ment of the insect around the same area.

The confirmation of Fig. 7 in MATLAB is realized with the
hardware versions of the virtual insect in Fig. 8. When the insect is
untrained its trajectory is unpredictable. In the case of the MATLAB
version (green line in Fig. 7), the insect remained in the same
surrounding area while that of Fig. 8 shows that the insect area is
actually a bit larger than expected. A zoomed in shot is provided in
order to show a visual explanation of what is happening. The map
size the insect is moving in is actually 1000!1000 map with a
target at (500, 220). The untrained virtual insect wandered ran-
domly within the 100 by 100 area, which is differs a bit from Fig. 7,
but provides the flavor of the same phenomenon. The larger space
shows that the structure inherent in an untrained hardware is
better than a randomized neural network structure in software.

The hardware should therefore take less number of training ses-
sions than the software implementation because of this.

Figs. 9 and 10 show the different trajectories under different
conditions for both the small and large designs. The testing phase
was executed with block obstacles as opposed to the type of map
utilized in the MATLAB verification. The reasoning behind the
choice stemmed from the fact that the verification hardware is
included in each design. Therefore, the complexity of the map had
to be reduced in order to achieve reasonable simulation times.
Another reasoning behind the choice of maps was the third
modification adopted for CMOS circuit simplification. Even if a
complex map were generated, the insect would be unable to dis-
tinguish a smooth terrain from a rough terrain. It would either see
an obstacle present or not present. The cloud map in Fig. 7 from
the hardware insect's perspective would just be a black and white
map instead of something in grayscale. With the short preamble
out of the way we will dive into the results of Fig. 9.

Fig. 9. (a) Trails of the small design on a plain map (b) Trails of the small design on a map with a square obstacle (c) Trails of the large design on a plain map (d) Trails of the
large design on a map with a square obstacle.

Fig. 10. (Left) Trails of the small design on a map with random obstacles (Right) Trails of the large design on a map with random obstacles.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 115

9/10/17	

4	

Discretized STDP Based Deep Neural Net

()()tx l1
()()tx l2 ()

() ()tx l lN

()()txl 11
+

()
() ()txl lN
1
1

+
+

()()tx o1 ()
() ()tx oN
o

Layer #1

Layer #3

Layer #2
Learning Controller

Performance Summary
‒ Network size: 256-50-10
‒ Technology: TSMC 65 nm
‒ Bit width of synapse: 24 bits
‒ Clock frequency: ~100 MHz
‒ Power: ~100 mW
‒ Time needed for one learning iteration: 30 µs
‒ Speedup : ~700x v. digital computer
‒ Energy: ~500 pJ/spike @ VDD = 1.2

© 2016 Prof. P. Mazumder of University of Michigan

7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Original MNIST images
(28 by 28)

Down-sampled MNIST
images (16 by 16)

Figure 3. Comparison of the original MNIST images and the down-sampled MNIST images.

observed that the down-sampled images preserve most important information included in the
original dataset. Real values from the MINIST data set is injected as incremental membrane
potential for input neurons. Ten output neurons are used to represent corresponding ten digits.
The objective of the learning is to infer the correct digit when an image is applied to the neural
network. The output neuron corresponding to the shown digit should fire with a high density of
⇢H , where as all other neurons fire with a lower density of ⇢L. To test the trained neural network,
a digit is presented to the network, after an inference duration of DI , the output neuron with the
highest firing density is chosen as the winning neuron, and its corresponding digit is picked as
the inferred result.

The first issue needs to be addressed is the computation of division, as shown in (2.8). The term
1� xli can be neglected without introducing significant error, considering sparsity of spike trains
outputted by each neuron. In a purely digital implementation, The divide-by-weight operation in
(2.8) can be easily realized, as the weights are stored in the memory in a digital form. It is, however,
not straightforward to conduct this division in a memristor crossbar implementation, as the
weights are stored as analog values in memristors. Power-consuming readout and quantization
would be needed if a similar division operation in a digital implementation were employed.
Fortunately, it was shown in [50] and [37] that division with only one-bit precision (i.e. with only
the sign information) can still result in a successful learning. That is, we can use stdplij/sgn

⇣
wl
ij

⌘

to approximate the gradient in the learning process. To illustrate this, simulations are conducted.
Learning results obtained with three different configurations are compared in figure 4. For all
results reported in this paper, learning is conducted on the down-sampled MNIST images, and
the first 500 images in the training set are used for learning. For testing, all 10000 images in the
testing set are used. For each result, 10 runs of learning are carried out. A run is a complete
learning process including several learning iterations, where one iteration is a process of going
through all 500 training images. Error bar in the figure corresponds to the 95% confidence
interval. The first configuration is the baseline that employs (2.8) for weight updates. The second
configuration use the same learning rule except the term 1� xli in (2.7) and (2.8) is ignored.
The third configuration is the division-free configuration, where the term stdplij/sgn

⇣
wl
ij

⌘
is

employed for a weight update. That is, a STDP-like rule is applied to the excitatory synapse,
whereas an anti-STDP-like rule is applied to the inhibitory synapse. Good learning results are
achieved with all three cases. Results obtained with the baseline algorithm is slightly better than

LTP
(LTD=anti)

STDP

Differential	
Hebb-Rule	
(“fast”)

Hebb-Rule	Dynamic	Prog.	
(Bellman	Eq.)

Q-Learning

Actor/Critic
Technical	&	Basal	Ganglia

SARSA

δ-Rule	

Temporal	Difference

STDP-Models
Biophysical	&	network

Neuronal	Reward	Systems
(Basal	Ganglia)

Machine	Learning Classical	Conditioning Synaptic	Plasticity
Anticipatory	Control	of	Actions	and	Prediction	of	Values Correlation	of	Signals

REINFORCEMENT	LEARNING
example	based

UN-SUPERVISED	LEARNING
correlation	based

EVALUATIVE	FEEDBACK	(Rewards)

BiologicalComputational[2]		

[1]		

[3]		

Gamut of Learning Models

Google’s Deep Mind or
Deep Q-Network (DQN)
Played Atari 2600
Better than a Human

Google’s Go Program uses
SARSA and Monte Carlo
Tree Search to beat
World Champion (Kei Ji)
in a Go contest.

Based	on	Woergoe6er	&	Porr’s	Taxonomy		
	

9/10/17	

5	

where is the reward observed after performing in , and where is the learning rate ().

An episode of the algorithm ends when state is a final state (or, "absorbing state"). However, Q-learning can
also learn in non-episodic tasks. If the discount factor is lower than 1, the action values are finite even if the
problem can contain infinite loops.

Note that for all final states , is never updated but is set to the reward value . In most cases,
can be taken to be equal to zero.

Influence of variables on the algorithm

Learning rate

The learning rate or step size determines to what extent the newly acquired information will override the old
information. A factor of 0 will make the agent not learn anything, while a factor of 1 would make the agent consider
only the most recent information. In fully deterministic environments, a learning rate of is optimal. When
the problem is stochastic, the algorithm still converges under some technical conditions on the learning rate that
require it to decrease to zero. In practice, often a constant learning rate is used, such as for all .[1]

Discount factor

The discount factor determines the importance of future rewards. A factor of 0 will make the agent "myopic" (or
short-sighted) by only considering current rewards, while a factor approaching 1 will make it strive for a long-term
high reward. If the discount factor meets or exceeds 1, the action values may diverge. For , without a terminal
state, or if the agent never reaches one, all environment histories will be infinitely long, and utilities with additive,
undiscounted rewards will generally be infinite.[2] Even with a discount factor only slightly lower than 1, the
Q-function learning leads to propagation of errors and instabilities when the value function is approximated with an
artificial neural network.[3] In that case, it is known that starting with a lower discount factor and increasing it
towards its final value yields accelerated learning.[4]

Initial conditions (Q0)

Since Q-learning is an iterative algorithm, it implicitly assumes an initial condition before the first update occurs.
High initial values, also known as "optimistic initial conditions",[5] can encourage exploration: no matter what
action is selected, the update rule will cause it to have lower values than the other alternative, thus increasing their
choice probability. Recently, it was suggested that the first reward could be used to reset the initial conditions.
According to this idea, the first time an action is taken the reward is used to set the value of . This will allow
immediate learning in case of fixed deterministic rewards. Surprisingly, this resetting-of-initial-conditions (RIC)
approach seems to be consistent with human behaviour in repeated binary choice experiments.[6]

Implementation
Q-learning at its simplest uses tables to store data. This very quickly loses viability with increasing sizes of
state/action space of the system it is monitoring/controlling. One answer to this problem is to use an (adapted)
artificial neural network as a function approximator, as demonstrated by Tesauro in his Backgammon playing

Q-learning - Wikipedia https://en.wikipedia.org/wiki/Q-learning

2 of 5 1/10/17, 1:14 AM

Fig. 1. Maze example showing starting position (green square) and ending
position (red square)

(3) can be discretized into n different applications of Vapp

for tspec. In addition, we have shown through [12] that
this discretization leads to memristors behaving as (4). In
(4), a = 1 � �Vapptspecn, b = �Vapptspec, � is defined
as (2⌘�R)/(Q0R2

0), and n is an integer. For the intended
application, Hebbian learning is envisioned. Therefore (4)
is valid if updating the memristor in one direction ensuring
the resistance is always increasing with increasing n. The
hardware that uses this memristor is described next.

MT
⇠
=

(
R0 n = 0

R0 +
P

n R0
p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i
n > 0

(4)

III. MAZE APPLICATION AND HARDWARE
ARCHITECTURE

Given the maze in Fig. 1, we would like to train through
value iteration, the generation of optimal actions to reach the
target (RED) from the start position (GREEN). The 16⇥16
maze shows admissible states in white and inadmissible
states in black. Our approach to solving this maze using
memristors is to store the value of each state (admissible or
inadmissible) in a memristor crossbar. A 16⇥16 memristor
crossbar array is therefore needed to store all values. The
maze pattern can be preprogrammed to the crossbar array
whereby inadmissible states are programmed to ROFF and
the admissible states are programmed to values around an
initial resistance R0. The search space is discretized into time
periods where one move is made per unit time. Each move
made in must either progress to adjacent states or stay at
the current state. For example, if at time period p=1 and the
current state is the green square, then the three valid states
for transition are the two adjacent white squares and the
green square. Decisions regarding state transition are made
by obtaining the stored values of valid states in reference to
the present state. The drawback to this one-step lookahead
approach is its limited depth search that takes longer for
training to converge to an approximation of the optimal path
from start to end.

The memristor crossbar is used to store state values.
Therefore, to reduce hardware complexity with respect to
accessing the crossbar, two crossbars are used: whereby
one stores values in order (Network 1 in Fig. 2) while the

Network
1

Environment

Actor

Controller

Network
2

C C

current
state

current
action

next
state

1st layer neurons

2nd layer
neurons

VREAD

X1 X2 X14 X15 X16

RLOAD

N21

N11 N12 N114 N115 N116

N22

N214

N215

N216

Y1

Y2

Y14

Y15

Y16

Output
Registers

Fig. 2. (Top)System top level (Bottom)Schematic of the Network Compo-
nents

other crossbar stores values of Network 1 mirrored about the
diagonal from the top left corner to the bottom right corner
(Network 2 in Fig. 2). The top level system in Fig. 2 shows
an agent acting on the environment. The components of
the system are: controller, memristor network, comparators
(C blocks), and actor. The actor performs chosen actions,
the comparators compare two values within the memristor
crossbar, the memristor network performs the MAX function
and generates next state information, and the controller
coordinates communication between all components. The
two memristor networks have the same components and a
detailed network schematic is also provided in Fig. 2.

The network blocks have two sets of neurons (1st and
2nd layer), allowing access to the value of each state on the
memristor crossbar array. This architecture approximates a
recurrent neural network. Network 1 is the forward path and
Network 2 is the feedback path. For example, in the maze
application, neurons correspond to horizontal and vertical
coordinates. At any given time the admissible actions are:
stay at current state, move one space in any diagonal,
horizontal, or vertical direction. Network 1 determines the
next Y position, while Network 2 determines the next X
position. The controller coordinates actions of the networks
using four control phases: Start, Run, Check, and Train.

The Start phase is a wait phase whereby the crossbar
network is not accessed. All the switches in Fig. 2 are open,
all input and output neurons disabled, and output registers are

968

Fig. 1. Maze example showing starting position (green square) and ending
position (red square)

(3) can be discretized into n different applications of Vapp

for tspec. In addition, we have shown through [12] that
this discretization leads to memristors behaving as (4). In
(4), a = 1 � �Vapptspecn, b = �Vapptspec, � is defined
as (2⌘�R)/(Q0R2

0), and n is an integer. For the intended
application, Hebbian learning is envisioned. Therefore (4)
is valid if updating the memristor in one direction ensuring
the resistance is always increasing with increasing n. The
hardware that uses this memristor is described next.

MT
⇠
=

(
R0 n = 0

R0 +
P

n R0
p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i
n > 0

(4)

III. MAZE APPLICATION AND HARDWARE
ARCHITECTURE

Given the maze in Fig. 1, we would like to train through
value iteration, the generation of optimal actions to reach the
target (RED) from the start position (GREEN). The 16⇥16
maze shows admissible states in white and inadmissible
states in black. Our approach to solving this maze using
memristors is to store the value of each state (admissible or
inadmissible) in a memristor crossbar. A 16⇥16 memristor
crossbar array is therefore needed to store all values. The
maze pattern can be preprogrammed to the crossbar array
whereby inadmissible states are programmed to ROFF and
the admissible states are programmed to values around an
initial resistance R0. The search space is discretized into time
periods where one move is made per unit time. Each move
made in must either progress to adjacent states or stay at
the current state. For example, if at time period p=1 and the
current state is the green square, then the three valid states
for transition are the two adjacent white squares and the
green square. Decisions regarding state transition are made
by obtaining the stored values of valid states in reference to
the present state. The drawback to this one-step lookahead
approach is its limited depth search that takes longer for
training to converge to an approximation of the optimal path
from start to end.

The memristor crossbar is used to store state values.
Therefore, to reduce hardware complexity with respect to
accessing the crossbar, two crossbars are used: whereby
one stores values in order (Network 1 in Fig. 2) while the

Network
1

Environment

Actor

Controller

Network
2

C C

current
state

current
action

next
state

1st layer neurons

2nd layer
neurons

VREAD

X1 X2 X14 X15 X16

RLOAD

N21

N11 N12 N114 N115 N116

N22

N214

N215

N216

Y1

Y2

Y14

Y15

Y16

Output
Registers

Fig. 2. (Top)System top level (Bottom)Schematic of the Network Compo-
nents

other crossbar stores values of Network 1 mirrored about the
diagonal from the top left corner to the bottom right corner
(Network 2 in Fig. 2). The top level system in Fig. 2 shows
an agent acting on the environment. The components of
the system are: controller, memristor network, comparators
(C blocks), and actor. The actor performs chosen actions,
the comparators compare two values within the memristor
crossbar, the memristor network performs the MAX function
and generates next state information, and the controller
coordinates communication between all components. The
two memristor networks have the same components and a
detailed network schematic is also provided in Fig. 2.

The network blocks have two sets of neurons (1st and
2nd layer), allowing access to the value of each state on the
memristor crossbar array. This architecture approximates a
recurrent neural network. Network 1 is the forward path and
Network 2 is the feedback path. For example, in the maze
application, neurons correspond to horizontal and vertical
coordinates. At any given time the admissible actions are:
stay at current state, move one space in any diagonal,
horizontal, or vertical direction. Network 1 determines the
next Y position, while Network 2 determines the next X
position. The controller coordinates actions of the networks
using four control phases: Start, Run, Check, and Train.

The Start phase is a wait phase whereby the crossbar
network is not accessed. All the switches in Fig. 2 are open,
all input and output neurons disabled, and output registers are

968

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Q-Learning Hardware – Reinforcement Learning	

Evaluative Feedback (Rewards)

SARSA: State-Action-Reward-State-Action
NewEstimate ß OldEstimate + StepSize * (Target – OldEstimate)

© 2016 Prof. P. Mazumder of University of Michigan

vn

N1i-1 N1i N1i+1

N2j-1

N2j

N2j+1

Output
Registers

M i,
j-1

M
i,j+1

Cint

Cint

vn

Mi,j
Cint

RLOAD

Mi,j

Mi,j+1

Mi,j-1

Fig. 3. (Left) Activation of neurons (Right) Equivalent circuit of activated
devices

zeros. In the Run phase the network obtains the next position;
the first neuron to spike will have its corresponding output
register latch a “1” while the others are “0,” and will provide
a signal to the controller that this phase is complete. In the
Check phase the digital network asserts VREAD and connects
RLOAD to decipher the values stored at two locations (the
value of current state vs. that of the next state). If the current
state’s sampled voltage is equal to or greater than the next
state’s voltage, then a punish signal is generated. In the Train

phase, the punish signal is used to reduce the weight of
the current state. The neural network approach is used to
translate the time to spike to approximate the environment.
The architecture is a hybrid architecture that combines both
analog processing with digital controls. This architecture
is used to approximate value iteration and is tested in the
context of a simple maze problem.

For the maze application, value iteration updates based on
(2), but the exact nature of the update term, ↵t(st, at) ⇥
(rt+ �t), has not clearly been defined. In the maze problem,
↵t(st, at) will be limited to take on a value of either 1 or 0
and the sum of rt and �t can be cast to take on the value of
�MT which corresponds to the R0

p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i

term in (4). This proposed matching works in this application
because the envisioned system has memristors initialized
around R0 and any memristor updates will adjust resistance
by �MT . ↵t(st, at) is 1 if ˜Q(st, at) is greater than or
equal to ˜Qmax(st+1, at+1), otherwise ↵t(st, at) is 0. The
punish signal generated in the Check phase determines which
value ↵t(st, at) takes. This restriction on ↵t(st, at) ensures
˜Qmax(st+1, at+1) is always decreased when updated since
rt + �t is always a positive number.

The value for ↵t(st, at) depends on ˜Qmax(st+1, at+1),
and ˜Qmax(st+1, at+1) is obtained from the neuromorphic
side of the circuit. A simple leaky integrate and fire neuron
should work for this purpose. The left schematic in Fig. 3 is
used to explain the nearest neighbor concept. From a current
X position and a current Y position, switch corresponding
to Xj is activated and Yi�1, Yi, and Yi+1 are enabled. Using
RC integrators to model neuron internal state, the equivalent
circuit for these activated devices is shown (Fig. 3 right).

The first order RC circuit shows that the internal state

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

(sekips noruen erofeb e
mit

μs
)

n

 Vthresh=0.9
 Vthresh=0.2

Fig. 4. Effect of vthresh on the charging time to spike

of the neurons take on the form vn(1 � e�t/MijCint
). By

choosing a spiking threshold vthresh for the neurons less than
vn, neuron j can spike whenever vn(1�e�t/MijCint

) reaches
vthresh. The difference between the activated neurons lies in
tjspike, how long it takes for neuron j to spike:

tjspike > �Mij · Cint · ln
✓
1� vthresh

vn

◆
(5)

Figure 4b shows the graph of (5) and how the choice of
vthresh can affect circuit operation. Since the MAX function
depends on the comparison of spike times of different
neurons, separation of these spike times for different n values
is critical for correct circuit operation. By increasing vthresh,
while other parameters are kept at their previous levels, there
is a wider change in spike time. The quoted times are in µs,
and if transistors used for implementation are sensitive to the
hundreds of nanosecond range, then there should be minimal
problem detecting the larger of n=50 and n=51.

0 10 20

200

400

600

800

1000

(15,28)

iteration iteration

st

ep
s

0 10 20 30

200
400
600
800

1000
1200

st

ep
s

(26,45)

(a)

(d)(c)

(b)

Fig. 5. (a,b) Near optimal paths for two mazes from start to finish
(c,d) Number of steps till convergence for each maze

969

Memristor Model Used in
Matlab Simulation

Performance of Memristor Q-Learning Hardware

IV. RESULTS AND DISCUSSION

The current simulation results for the models derived
were obtained through MATLAB. The parameters used for
simulation were vthresh/vn = 0.75, Vapp=1.2 V, Cint=1 pF,
tspec=2 ms, �=-199.8 V�1·s�1, R0=2 M⌦, RON=20 k⌦,
and ROFF =20 M⌦. Fig. 5a and Fig. 5b provide path from
start to finish when using the architecture of Fig. 2. Fig. 5c
and Fig. 5d, respectively, provide the relationship for number
of steps to reaching the target vs. number of training stages
for convergence. The hardware prefers exploration in the first
iteration. During the second iteration, the number of steps is
drastically reduced. The maze in Fig. 5a has two paths to
target, but the shorter route is chosen. Fig. 5b has a longer
path to target, hence, it takes longer to converge.

The paths shown in the solutions are near-optimal, with
the suboptimal moves circled. After convergence, memristor
updates cease on their own, therefore, ensuring the hardware
will monitor its own performance. This quality allows for
this application to be extended to key generation using
memristive neural hardware. This approach can generate
multiple keys due to the nature of the architecture. Fig. 6
plots relative values of the memristor on the Z axis vs.
the position on a 2D grid. From one iteration to the next,
the entire crossbar could look very different, so if multiple
random keys were to be generated using the fabric on the
left, it would be very hard to reconstruct that key using the
fabric on the right.

The current hardware is very specific to the maze search
application but is useful in neural processing systems as a
whole. Neural systems rely on the updating of synapses be-
tween neurons based on network activity as time progresses.
The Q-Learning inspired approach traverses a network of
synapses in particular orders therefore one very good use
of this method would be the adjusting of synapse values
relative to one another without actually preprogramming the
sequence of updates. With the uncertainties in memristors,
effectively programming the devices to specific resistances
are out of the question. By using a method like this that
allows synaptic devices to be adjusted, one after another in
order to meet overall processing requirements may be the
breakthrough necessary to finally utilizing these devices as
synapses. In neuromorphic applications, the absolute synap-
tic weight value does not matter as long as the relative weight
relationship of the weight matrix are maintained. This Q-

0
5

10
15

20

0

5

10

15

20
−40

−30

−20

−10

0

10

0
5

10
15

20

0

5

10

15

20
−40

−30

−20

−10

0

X Y X Y

Fig. 6. (Left) Memristor Fabric with relative values after one iteration
(Right) Memristor Fabric with relative weights after two iterations

Learning method would provide a way to adjust weights in
order while avoiding the hardware cost of having outside
cache memories to keep track of which synaptic elements
need to be adjusted.

V. CONCLUSION

We have shown the concept of value iteration being
applied to the memristor crossbar in a way that is realizable
with the aid of CMOS hardware. We have shown how
maze learning can be implemented using the crossbar along
the same lines as value iteration with Q-values. We have
dissected the memristor modeling equation to show that the
neural network model whereby state information can be
translated to delayed spike timing is shown. Overall, the
target of the proposed implementation is a mixed signal
design that combines the benefits of analog circuits, digital
domain spike representations, and the use of memristors as
synapses.

The next step is to verify this use of memristor crossbar
in hardware and to apply the concept to various other appli-
cations. As this method deals with the process of adjusting
memristor values on the crossbar in a non-programmable
manner, the applications that would benefit from it would
need to be neuromorphic ones where the memristor crossbar
array needs to be adjusted in its entirety. Providing a method
for this to happen algorithmically without preprogramming
would be the best course of action.

REFERENCES

[1] L. O. Chua, “Memristor - missing circuit element,” IEEE Transactions

on Circuit Theory, vol. CT18, no. 5, pp. 507–519, 1971.
[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The

missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83,
2008.

[3] G. Snider, “Instar and outstar learning with memristive nanodevices,”
Nanotechnology, vol. 22, no. 1, p. 015201, 2011. [Online]. Available:
http://stacks.iop.org/0957-4484/22/i=1/a=015201

[4] P. Mazumder, S. M. Kang, and R. Waser, “Memristors: Devices,
models, and applications [scanning the issue],” Proceedings of the

IEEE, vol. 100, no. 6, pp. 1911 –1919, june 2012.
[5] P. J. Werbos, “Memristors for more than just memory: How to

use learning to expand applications,” in Advances in Neuromorphic

Memristor Science and Applications, ser. Springer Series in Cognitive
and Neural Systems, R. Kozma, R. E. Pino, G. E. Pazienza, J. G.
Taylor, and V. Cutsuridis, Eds., vol. 4. Springer Netherlands, 2012,
pp. 63–73.

[6] I. E. Ebong and P. Mazumder, “Self-controlled writing and erasing in
a memristor crossbar memory,” Nanotechnology, IEEE Transactions

on, vol. 10, no. 6, pp. 1454–1463, 2011.
[7] F. Merrikh-Bayat and S. Bagheri Shouraki, “Memristive neuro-fuzzy

system,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. PP, no. 99, pp. 1–17, 2012.
[8] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disser-

tation, Cambridge University, 1989.
[9] B. Balleine, N. Daw, and J. O’Doherty, “Multiple Forms of Value

Learning and the Function of Dopamine,” in Neuroeconomics: decision

making and the brain, P. W. Glimcher, Ed. Academic Press, 2009,
pp. 367–385.

[10] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions
in optimization problems,” Biological Cybernetics, vol. 52, no. 3, pp.
141–152, 1985.

[11] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of
basic electrical circuits,” European Journal of Physics, vol. 30, no. 4,
pp. 661–675, 2009.

[12] I. E. Ebong, “Training memristors for reliable computing,” Ph.D.
dissertation, The University of Michigan, 2013.

970

Synapse States after
1st and 2nd Iterations

Ebong & Mazumder, IEEE Nano 2014

Human-level control through deep reinforcement learning
Nature, v. 518, pp. 529-533, Feb 2015.

Played Atari 2600
Better than a Human

Superior Application of Q Learning by Google, UK

9/10/17	

6	

LTP
(LTD=anti)

STDP

Differential	
Hebb-Rule	
(“fast”)

Hebb-Rule	Dynamic	Prog.	
(Bellman	Eq.)

Q-Learning

Actor/Critic
Technical	&	Basal	Ganglia

SARSA

δ-Rule	

Temporal	Difference

STDP-Models
Biophysical	&	network

Neuronal	Reward	Systems
(Basal	Ganglia)

Machine	Learning Classical	Conditioning Synaptic	Plasticity
Anticipatory	Control	of	Actions	and	Prediction	of	Values Correlation	of	Signals

REINFORCEMENT	LEARNING
example	based

UN-SUPERVISED	LEARNING
correlation	based

EVALUATIVE	FEEDBACK	(Rewards)

BiologicalComputational

[2]		

[1]		

[3]		

Gamut of Learning Models

EnvironmentActor
(Controller)

Critic

Actions

(Control Signals)

X0

Context

Reinforcement Signal

Disturbance

Feedback

Based	on	Woergoe6er	&	Porr’s	Taxonomy		
	

Actor-Critic NN CMOS Chip
§  Post-Layout Metrics
‒  Technology: 65 nm
‒  Area: 550 µm × 550 µm
‒  Arithmetic precision: 24-bit fixed-point
‒  Supply voltage: 1.2 V
‒  Clock frequency: 175 MHz
‒  Power Consumption: 25 mW
‒  270x speed up over software ADP

On-Chip	Memory

Synapse	Weight	SRAM

Arithmetic	Unit

Controller Scheduler

550 µm

550 µm

Controlling balance,
rotation, movement of
microrobots that
operate on batteries

Provide smart
sensing strategies
for energy-
constrained sensors

9/10/17	

7	

Benchmark Results
§  Benchmark Tests
‒  Cart-Pole Balancing
‒  Beam Balancing
‒  Triple-link Inverted Pendulum
‒  Results obtained from the accelerator are normalized w.r.t software results
‒  Hardware solution consumes 25 mW and is faster than software by 225 times

cart-pole beam triple-link
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

Control force

θ

x

Mount joint

Control force

θ1

θ2

θ3

x

Mount joint

1st joint

2nd joint

Motor

θ

x

Cart-Pole	Balancing	

Beam	Balancing	

Triple-link	
Inverted	
Pendulum	

Problem Statement
§  Optimal Control/Decision-Making Problem
‒  Looking for the optimal policy/strategy
‒  Target is to maximize reward &minimize cost
‒  Solve using Bellman equation: The optimal equality.
‒  Continuous-space problem is handled by Hamilton–

Jacobi–Bellman equation

System Model:

Reward to be
maximized:

Bellman
equation:

		

9/10/17	

8	

Traditional Applications of ADP in Software
Autopilot Power Systems

Autonomous Robot Communication Systems

•  Used as static compensators to
regulate voltage in power systems

•  Navigation in unknown environment
•  Control of a moving robotic arm

•  Self-learning call
admission control
scheme that can
adapt for new
communication
environment

•  Used to control flight of a plane
•  Cope with unexpected conditions

Action-Dependent Heuristic
Dynamic Programming

§  Essentials
‒  Model-free learning
‒  Learning by minimizing temporal

difference error
‒  Critic: estimate the reward-to-go
‒  Actor: pick the right action to maximize

future reward

Actor Critic

Environment r

a

δ

x x

a
J(t) ^ J(t-1)^x1

x2

xn

a1

am

h1

hNa
wa1 wa2

a

a

x1

x2

am-1

Ĵ

wc1 wc2

c

hNc

h1

am

9/10/17	

9	

New Type of Updating Scheme

Throughput	is	increased	

Power	consumpOon	is	reduced	

Energy	efficiency	is	improved	

Fewer operations are
needed when the
virtual update
algorithm is employed

Costly memory
operations are greatly
reduced Consequence of improved

throughput and power
consumption

4-6-1, 5-6-1 4-10-1, 5-12-1 8-20-1, 9-20-1
0

50

100

150

200

250

300

350

w/o VU

w/o VU
w/o VU

 Network Configurations

#
 o

f
C

lo
c
k
 C

y
c
le

s
/I
te

ra
tio

n

w/ VUw/ VUw/ VU

1.47x

1.27x

 FF SCA BP, WU CC STALL VU

1.25x

4-6-1, 5-6-1 4-10-1, 5-12-1 8-20-1, 9-20-1
0

5

10

15

20

25

30

w/ VUw/ VUw/ VU

w/o VUw/o VUw/o VU

 Network Configurations

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

m
W

)

1.11x
1.09x

1.11x

 Scheduler ALU Controller
 Memory Others

4-6-1, 5-6-1 4-10-1, 5-12-1 8-20-1, 9-20-1
0
5

10
15
20
25
30
35
40
45
50
55
60

1.64x

1.39x
1.39xE

n
e

rg
y
 /
 I
te

ra
tio

n
 (

n
J
)

Network Configuration

 w/o VU
 w/ VU

Triple-Link Inverted
Pendulum Benchmark

Control force

θ1

θ2

θ3

x

Mount joint

1st joint

2nd joint

-0.0054

0.0000

0.0054

0 5000 10000

-0.77

0.00

0.77

-0.23

0.00

0.23

-0.54

0.00

0.54

-0.35

0.00

0.35

-92

0

92

-62

0

62

-17

0

17

0 5000 10000

0.0

3.8

x

θ
1

θ
2

θ
3

x
'

θ
1
'

θ
2
'

θ
3
'

u

Time Step

9/10/17	

10	

Triple-Link Inverted
Pendulum Benchmark

Before	
Training	

A0er		
Training		

CMOS Implementation
§  Post-Layout Metrics

‒  Technology: 65 nm

‒  Area: 550 µm × 550 µm

‒  Number of datalanes: 4

‒  Arithmetic precision: 24-bit fixed-point

‒  Supply voltage: 1.2 V

‒  Clock frequency: 175 MHz

‒  Power Consumption: 25 mW

‒  270x speed up compared to the

software approach

On-Chip	Memory

Synapse	Weight	SRAM

Arithmetic	Unit

Controller Scheduler

550 µm

550 µm

9/10/17	

11	

EVOLUTION OF
NEUROMORPHIC
COMPUTING:

Perceptron (’60)
(10 E 2 neurons)

Neural Net (’90)
(10 E 3 Neurons)

Neuromporphic
Hardware (’00)
(10 E 5 neurons)

Multi-level
Nanocrossbar
(10 E 8 neurons)

Perceptron Mark 1 Hopfield Net Chip TrueNorth (IBM 2015)

•  Memristor
•  Spintronics
•  MQW Devices
•  Nanoscale CMOS

Gartner Hype Cycle

Designed by Mazumder
Research Group 1992

Over 1 Million Neurons

22	

Neural-Inspired CMOS Chips Designed by Mazumder Group

Self-Healing Chip Synaptic Plasticity Chip Deep Learning Chip

Actor-Critic Reinforcement
Learning Chip

Figure 4.4: The proposed ECG clustering SOM chip layout.

92

Self-Organizing Map Chip
for ECG Clustering

S
R

A
M

Analog
Front-End

10 bit
SAR
ADC

PMU

DECAP

DECAP

DECAP

D
E

C
A

P

C
a

li
b

ra
ti

o
n

Other blocks & buffers

IIR
FILTER

RF
TRANSCEIVER

Figure 2.11: The proposed BSN SoC layout.

heat source (i.e. thermoelectric generator). The harvested power from the state of

the art is greater than 20 µW [38][39]. Therefore, the proposed SoC can perpetually

be operated by energy harvesting. As shown in Figure 2.11, the proposed SoC area

is 1920⇥1920 µm2 and designed in CMOS 65nm LP (1P9M6X1Z1U).

2.7 Acknowledgements

This work could not be done without my colleagues, Nan Zheng, Yalcin Yilmaz,

and Di Hu. Mr. Zheng designed AFE and RF blocks. Mr. Yilmaz helped coding

42

Body-Sensing Network
with Wireless Transceiver

© 2016 Prof. P. Mazumder of University of Michigan

