

Recent progress in microalgal biomass production coupled with

wastewater treatment for biofuel generation

Byong-Hun Jeon, Ph. D.

Department of Earth Resources and Environmental Engineering, Hanyang University, Korea

September 26, 2016

Introduction: Bioenergy & algal biofuels

Application of nanotechnology in the algal biofuel generation

Fermentation for bioalcohol production

Coupling of algal biomass production with wastewater treatment in real open ponds and photobioreactors

Biodegradation of emerging organic contaminants by algae

"Algal omics" approach and future direction

Conclusions

Introduction: Bioenergy and algal biofuels

ARTICLES

PUBLISHED: 11 JANUARY 2016 | ARTICLE NUMBER: 15005 | DOI: 10.1038/NENERGY.2015.5

Impacts of a 32-billion-gallon <mark>bioenergy</mark> landscape on land and fossil fuel use in the US

Tara W. Hudiburg¹, WeiWei Wang², Madhu Khanna², Stephen P. Long³, Puneet Dwivedi⁴, William J. Parton⁵, Melannie Hartman⁵ and Evan H. DeLucia^{3*}

Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by $7.0 \pm 2.5\%$ largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by $12.3 \pm 3.4\%$. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

REVIEW

doi:10.1038/nature11479

nature

energy

The area required for algae cultivation is estimated to be significantly less than that for any other biomass source.

Exploiting diversity and synthetic biology for the production of <mark>algal biofuels</mark>

D. Ryan Georgianna¹ & Stephen P. Mayfield¹

Modern life is intimately linked to the availability of **fossil fuels**, which continue to meet the world's growing energy needs even though their use drives **climate change**, exhausts finite reserves and contributes to global political strife. **Biofuels** made from **renewable resources could be a more sustainable alternative**, particularly if **sourced from organisms**, such as **algae**, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make **algal biofuels** practical and economically viable.

Introduction: Carbon foot-print from fossil fuel & Renewable energy

Renewable energy

Microalgae

Figure. The **carbon foot-print** from **fossil** and **renewable energy** (**A**). The raw materials for the microalgal photosynthesis are **solar energy**, **CO**₂ and **H**₂**O** and the products are **reduced carbon compounds** and **O**₂ (**B**).

The reduced carbon compounds serve as a source of microalgal biofuel

Introduction:

proaches for improvement of microalgal growth for biofuel production

Approaches for enhancement of microalgal biomass for biofuel generation

Source: Salama et al. (2016), in preparation Energy and Environmental Science

Introduction: Application of phytohormones

- Figure. Photographic image of *S. obiliquus* cultivated in BBM, in absence (control) and presence of 10⁻⁵ M Indole-3-acetic acid (IAA) and Diethyl aminoethyl hexanoate (DAH).
- IAA and DAH enhanced S. obliquus growth at all concentrations during the cultivation time.
- IAA and DAH enhanced the S. obliquus growth by 1.9- and 2.5-fold, respectively at 10⁻⁵ M.
- The maximum specific growth rates were estimated to be 2.03 and 2.35 1/day at 2 day with 10⁻⁵ M IAA and DAH, respectively.

Nanotechnology:

pplication of nanomaterials in the microalgal biofuel production

۲

Nanotechnology application in biodiesel production from microalgae mainly includes nanomaterial utilization on lipid accumulation, extraction and on the transesterification process as catalyst support or catalyst (Zhang et al., 2013).

Nanotechnology:

pplication of nanomaterials in the microalgal biofuel production

Table. Nanomaterial application in lipase immobilization (Zhang et al., 2013).

40					
Lipase source	Nanomaterials	Activity remaining (%)	Times of IRTA ^a of immobilized to free lipase	Times of TCR ^b of immobilized to free lipase	Reuse ability
4					
Candida rugosa	Carbon nanotubes	97	2.2-14	4.44	_
Candida rugosa	Nanogel	85	—	7.67	_
Candida rugosa	Fe ₃ O ₄ nanoparticles	80	110	20.5	4
Candida rugosa	ZrO ₂	214	—	3.3	8
Candida rugosa	γ-Fe ₃ O ₄	< 100	—	—	_
	nanoparticles				
Candida antarctica	Fe ₃ O ₄ nanoparticles	200	—	—	4
Candida antarctica	Polystyrene	204	—	—	—
	nanoparticles				
Pseudomonas	ZrO ₂		—	3.6	-
cepacia					
Thermomyces	Nanosized silica	93	—	—	—
lanuginosus					
Thermomyces	Fe ₃ O ₄ nanoparticles	70	—	1.05	4
lanuginosa	·				

^aInitial rates of transesterification activity. ^bTransesterification conversion rate.

Figure. Nano-particles harvesting oil from algae without harming the organism

Figure. An extended schematic model for a new biomass-energy conversion pathway in which all biochemical content of microalgal biomass can be transformed to biofuel for improving the economic feasibility of microalgae biofuel industry.

Fermentation: Pretreatment of microalgal biomass (SHE)

- Figure. TEM images showing the destruction of *C. vulgaris* and filamentous *U. belkae*. (**A**, **C**) Non-treated algal cell while (**B**, **D**) combined pretreated (sonication + enzyme + heat) algal cell.
- The nucleus materials in the nucleus membrane were clearly visible and well defined in both nonpretreated cyclotella and filamentous algae (Fig. A and C).
- The cytoplasm and nucleus materials of both cyclotella and filamentous algae after the SHE treatment (Fig. B and D). presumably spread outside the cell due to complete cell lysis, which coincides with a significant increase in the dissolved fraction of carbohydrates under the same conditions.

Fermentation: Ethanol production during 7-cycles (Immobilized cells)

Figure. Cumulative bioethanol production from *Chlamydomonas mexicana* through **7-cycles** of repeated fermentation using **immobilized** yeast cells. **RG:** regenerated; **NRG:** non-regenerated beads

Note: The fermentation was performed using immobilized yeast cells.

- Immobilized yeast cells enabled repetitive production of ethanol for 7 cycles displaying a fermentation efficiency up to ~80% for five consecutive cycles.
- The ethanol concentration was equal for both RG and NRG beads in the 1st cycle (8.73 g/L), while in the 2nd and 3rd cycles, RG beads showed higher bioethanol production (9.6 and 9.64 g/L, respectively) compared to NRG beads (8.23 and 8.1 g/L, respectively).
- Being supplied with the nutrients in this period, the yeast cells in RG beads regained their cell integrity and catalytic efficiency in terms of cell multiplication, production of enzymes, and metabolic activities.

Fermentation:

Effect of pH and pretreatment condition on ethanol production

Figure. Effect of pH and pretreatment condition on continuous ethanol production. (A) Fermenting bacteria (B) Yeast (Phase I: Stabilization stage, II: Sonication, III: SE, IV: SHE).

- Ethanol production by fermentative bacteria increased from 0.05 to 0.13 g g⁻¹ with a decrease in pH from 7.5 to 5.4 for SE pretreated biomass.
- A decrease in ethanol production from 0.14 to 0.06 g g⁻¹ was observed in both phases III and IV with increase in pH from 5.4 to 7.5.
- Higher amount of ethanol was observed in yeast fermentor compared to dark bacterial fermentor, which might be due to higher bioactivity of alcohol fermentation by Dekkera bruxellensis.

Fermentation: Bioethanol production from microalgae

Table. Comparison of bioethanol production from microalgae and other feedstocks.

Substrate	Immobilization carrier	Number of cycles	Fermentation strategy	Bioethanol yield (g/g)	References	
Corn meal	Ca-alginate	1	*SHF	0.430	Nikolić et al. (2009)	
			'SSF	0.510		
Cassava hydrolysate	Fibrous matrix	7	SSF	0.136	Liu et al. (2015)	
Sweet sorghum juice	Corncobs	8	-	0.480	Ariyajaroenwong et al. (2012)	
Glucose	Ca-alginate	6	-	0.460	Sree et al. (2000)	
Glucose	Ca-alginate	8	-	0.640	Duarte et al. (2013)	
	Chitosan-covered calcium alginate beads	8		0.610		
Sugarcane bagasse	Sugarcane bagasse stalks	10	SHF	0.440	Singh et al. (2013)	
	Ca-alginate	4	SHF	0.380		
	Agar-agar	4	SHF	0.330		
C. mexicana	Ca-alginate	7	SSF	0.500	El-Dalatony et al. (2016)	
Corn meal	Ca-alginate	2	SHF	0.574	Rakin et al. (2009)	
	Polyvinyl alcohol	5		0.396		
Sugar beet molasses	Alginate-maize stem ground tissue matrix	1	-	0. 493	Razmovski & Vucurovic, (2011)	
Inverse sugar from cane	alginate-loofa matrix	3	-	0.440	Phisalaphong et al. (2007)	
molasses	Ca-alginate	3		0.460		
Cashew apple juice	Cashew apple bagasse	10	-	0.490	Pacheco et al. (2010)	
Blackstrap molasses	A thin-shell silk cocoon	5	-	0.470	Rattanapan et al. (2011)	
Glucose	Lyophilized hydroxyl- ethyl-cellulose gels	3	-	0.400	Winkelhausen et al. (2010)	
S. obliquus YSW15	-	-	-	0.164	Lee et al. (2010)	
Mixed algae (<i>C. vulgaris</i> YSL001 and <i>U. belkae</i> YSL010)	-	-	-	0.180	Hwang et al. (2016)	

* SHF = Separate hydrolysis and fermentation process

**SSF = Simultaneous saccharification and fermentation

Microalgae & wastewater:

Items required for algal cultivation with wastewater treatment

Figure. Schematic presentation of simulations on wastewater treatment with microalgal biomass cultivation for biofuel generation.

Appropriately selecting the wastewater, robust microalgal species, and pretreatment method is critical to using advanced wastewater treatment with microalgae cultivation to produce biomass for microalgae-based biofuel.

Table. Comparison between the physical-chemical characteristics of various wastewaters and a commonly used synthetic

medium (Barsanti & Gualtieri, 2014; Ji et al., 2014a; Salama et al., 2014; Tan et al., 2016).

Properties	Unit	Municipal	Municipal	Concentrated municipal	Anaerobic digestion	Piggery	Bold's basal
2		wastewater	wastewater	wastewater	wastewater	wastewater	medium
pН	-	8.0	8.10	7.28	7.30-7.50	7.97	6.80
Alkalinity (total	mg CO ₃ /L	-	272	-	-	-	-
CO ₃)							
Salinity	g/L	-	1.03	-	-	-	-
TSS	mg/L	-	50	-	59.35-85.26	-	-
Conductivity	mS/cm	-	2.29	-	-	-	-
COD	mg/L	63	31	-	1572.45-2265.37	37,643	-
TOC	mg/L	-	9	180.6	-	-	-
TIC	mg/L	33.4	-	80.9	-	-	-
TN	mg/L	18	27	56	537.26-702.73	2055	41.01
ТР	mg/L	1.4	5.04	15.8	72.62-111.58	620	53
Microbes			,		-	-	-
E. coli	cfu/100 mL	-	5.4×10^{6}	-	-	-	-
P. aeruginosa	cfu/100 mL	-	0.2×10 ⁶	-	-	-	-
Fecal coliforms	cfu/100 mL	-	6.2×10 ⁶	-	-	-	-
Total coliforms	cfu/100 mL	-	75.0×10 ⁶	-	-	-	-
Metals							-
Magnesium	mg/L	4.0	0.088	16.5	23.83-58.26	213	7
Manganese	mg/L	-	0.09	0.4	0.96-1.91	4.1	0.23
Zinc	mg/L	≤ 0.04	0.009	-	-	28.9	3.93
Copper	mg/L	≤ 0.04	-	-	0.31-0.92	10.6	0.63
Calcium	mg/L	29	29	65.6		437	7
Cobalt	mg/L	-	-	-	0.02-0.06	3.8	
Iron	mg/L	≤ 0.1	0.12	0.05	6.83-15.35	169.2	4.2
Aluminum	mg/L	≤ 0.04	0.04	0.02	-	-	-
Sulfate	mg/L	30	-	40.4	-	-	43.2
Sodium	mg/L	23	-	39.5	-	772	68
Potassium	mg/L	8.8	20	45.7	22.38-68.15	2524	34
Chloride	mg/L	68	-	-	-	-	12
Barium	mg/L	0.4	-	-	0.74-1.67	-	2.0

> The presence of essential nutrients (including C, N, P, and trace elements) in wastewater enables the large-scale use of

wastewater as a culture medium for growth of microalgae.

Microalgae & wastewater: Real open ponds supplemented with wastewater

Table. Biomass production, nutrient removal and CO₂ utilization during cultivation of microalgae in real open ponds

supplemented with wastewater as a culturing medium in several countries during the past five years.

Production system	Algal open pond reactors operated at the Lawrence WWTP, Lawrence, KS, USA (Sturm & Lamer, 2011)	Outdoor MaB-floc SBRs treating aquaculture wastewater, Belgium (Van den Hende et al., 2014)	A high-rate algal pond for real-scale domestic wastewater treatment operated at Monserrato, CA, Italy (Drira et al., 2016)	Outdoor raceway pond operated at Chilgok-gun, Gyeongsangbukdo, South Korea (Hong et al., 2016)	Raceway pond built and operated at Florence, Italy (Chiaramonti et al., 2013)
Algal strain	Natural microalgae	Microalgae and bacteria	Chlorella sp.	Mixed culture (Chlorella, Coelastrella, Acutodesmus, and Pseudopediastrum)	Mixed culture (Nannochloropsis sp. and Tetraselmis suecica)
Type of wastewater	Municipal wastewater	Aquaculture wastewater	Domestic wastewater	Wastewater	Cultivation media
Amount of wastewater	25,800 million gallons/day	11.959 m ³	-	> 236,000 kiloliters	200-300 L/m ²
Temperature	-	20 °C	20.2 °C	19.8 °C	20.54 °C
^a HRT	10 days	8 days	-	-	-
Biomass yield	31,800 tons/day	25 g/m²/day	_	2612.7 kg biomass	-
Initial nutrients	Total nitrogen = 19.5 mg/L Total phosphorus = 3.2 mg/L	Total nitrogen = 40 mg/L Total phosphorus =2.0 mg/L	Total nitrogen= 155 mg/L Total phosphor= 3.6 mg/L	^b Total nitrogen =15-30 mg/L ^b Total phosphorus =3-6 mg/L	-
Nutrient	Total nitrogen = 61.4 %	Total nitrogen = >50 %	-	^b Total nitrogen = 13.1 mg/ kg	-
removal	Total phosphorus = 90.6 %	Total phosphorus = >50 %	-	biomass ^b Total phosphorus =2.5 mg/ kg biomass	-
CO2 utilized	6800	89 g-CO ₂ /Newton meter	-	b4781.2/kg biomass	-

^aHydraulic residence time

^bConsumption of nutrient/kg algal biomass

Microalgae & wastewater: PBRs supplemented with wastewater

Table. Biomass production, nutrient removal and CO₂ utilization during cultivation of microalgae in photobioreactors (BPRs) supplemented with wastewater as a culturing medium in several countries during the past five years.

	PBRs using artificial wastewater in summer in southern China (Zhu et al., 2016)	PBR system for wastewater-based algae cultivation in Jiangxi, China (Xin et al., 2016)	Coupling of wastewater treatment with microalgae cultivation in PBR for nutrient removal and biomass production in Seoul, South Korea (Yang et al., 2016)
Algal strain	C. zofingiensis	Chlorella sp.	Chlorella vulgaris and Scenedesmus obliquus
Type of wastewater	Artificial wastewater	Municipal wastewater	Municipal wastewater
Amount of wastewater	819 m ³	1200 L	160 L
Temperature	20.6-33.8 °C	-	25 °C
Biomass yield	1.221 g/L	1.5-2.5 g/L	0.5-0.6 g/L
Initial nutrients	-	- Total nitrogen = 12.25 mg/L Total phosphorus = 1.80 mg/L	
Nutrient	-	^b 0.058 kg TN/kg dry algae	Total nitrogen = 100 %

3.58 kg CO₂

GUNI

Industrial-scale PR, Brazil

NPDEAS at UFPR in Curitiba, (Silva et al., 2015) -

Wastewater

-

F		
1200 L	160 L	9.380 m ³
-	25 °C	
1.5-2.5 g/L	0.5-0.6 g/L	1.5 kg m ⁻³ day ⁻¹
-	Total nitrogen = 12.25 mg/L Total phosphorus = 1.80 mg/L	-
^b 0.058 kg TN/kg dry algae ^b 0.130 kg TP/kg dry algae	Total nitrogen = 100 % Total phosphorus = 100 %	-

-

^bConsumption of nutrient/kg algal biomass

8

Production system

removal CO2 utilized

Microalgae & wastewater:

Emerging organic contaminants (EOCs)

Figure. Proposed biodegradation pathway of CBZ by C. mexicana and UPLC-MS chromatographs of microalgal culture without CBZ (a), with microalgae and CBZ (b), and CBZ without microalgae (c).

Figure. Proposed the role of sodium acetate to promote CIP biodegradation in C. mexicana

Source: Xiong et al. (2016), published in Journal of Hazardous Materials

Source: Xiong et al. (2016), published in Bioresource Technology

C. mexicana achieved a maximum of 35% biodegradation of CBZ.

- Two metabolites (10,11-dihydro-10,11-expoxycarbamazepine and n-hydroxy-CBZ) were identified by UPLC-**MS**, as a result of **CBZ biodegradation** by *C. mexicana*.
- > Addition of **sodium acetate** as an electron donor significantly increased the removal efficiency of CIP to 56% after 11 days of cultivation.

Future direction: "Algal omics" research

Figure. Conceptual illustration of integrative "**omics**" research with systems biology and genetic engineering approach for optimization of microalgae for bioenergy production.

Recent progress in microalgal genomics, in conjunction with other "omic" strategies, has speeded the capability to recognize genes and metabolic pathways which are potential objectives in the expansion of genetically engineered algal strains with optimum biochemical contents for biofuel production.

- Pretreatment algal biomass reduced substrate recalcitrance and enhanced accessibility of starch to fermentative microorganisms for bioethanol production.
- Immobilized yeast cells were found to be superior over free yeast cells, since immobilized cells are more tolerant to ethanol and exhibit a lower degree of substrate inhibition.
- The conversion efficiency (22.26-27.56%) of C. mexicana biomass into biofuel revealed that approximately one third of the biomass has been converted into energy in the form of bioethanol.
- Wastewater supported the microalgal growth in real open ponds and photobioreactors with removal of inorganic nutrients (such as TN, TP and TIC).
- Phytohormones accelerated the microalgal growth and induced the quality and quantity of fatty acid content for biodiesel production.
- Microalgae were capable to biodegrade the emerging organic contaminants (EOCs) including carbamazepine and ciprofloxacin.

THANK YOU!

Acknowledgments

Acknowledgments:

This work was supported by **National Research Foundation** of Korea (NRF) grant funded by the South Korean government (MSIP) (No. NRF-2013R1A2A2A07069183) and **BK21 plus program** through the NRF funded by the Ministry of Education of Korea (No. NRF-22A20153413355).

References

- Parton, W.J., Hartman, M., DeLucia, E.H. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US. PUBLISHED: Nature Energy. 11 JANUARY 2016 | Article number: 15005 | DOI: 10.1038/NENERGY.2015.5.
- 2. Georgianna, D.R., Mayfield, S.P. 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329-35.
- 3. Salama, E.-S, Mayur B Kurade, Reda A.I. Abou-Shanab, Marwa M El-Dalatony, Il-Seung Yang, **Jeon, B.-H**, 2016. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable & Sustainable Energy Reviews, submitted.
- 4. Salama, E.-S, Jae-Hoon Hwang, Marwa M. Eldalatony, Mayur B. Kurade, Reda A.I. Abou-Shanab, Ki-Hyun Kim, Il-Seung Yang, **Jeon, B.-H**. 2016. A review on recent progress in microalgal biofuel and omics approaches: A new biomass-energy conversion pathway for economically feasible biofuel generation. Energy and Environmental Science, in preparation.
- 5. Zhang, X., Yan, S., Tyagi, R., Surampalli, R. 2013. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renewable and Sustainable Energy Reviews, 26, 216-223.
- 6. Hwang, J.-H., Kabra, A.N., Ji, M.-K., Choi, J., El-Dalatony, M.M., **Jeon, B.-H**. 2016. Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Research, 17, 14-20.
- 7. El-Dalatony, M.M., Kurade, M.B., Abou-Shanab, R.A.I., Kim, H., Salama, E.-S., **Jeon, B.-H**. 2016. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98-105.
- 8. Xiong, J.-Q., Kurade, M.B., Kim, J.R., Roh, H.-S., **Jeon, B.-H**. 2016. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga *Chlamydomonas mexicana*. Journal of hazardous materials.
- 9. Xiong, J.-Q., Kurade, M.B., Abou-Shanab, R.A., Ji, M.-K., Choi, J., Kim, J.O., **Jeon, B.-H**. 2016. Biodegradation of carbamazepine using freshwater microalgae *Chlamydomonas mexicana and Scenedesmus obliquus* and the determination of its metabolic fate. Bioresource Technology.
- Salama, E.-S, Kabra, A.N., Ji, M.K., Kim, J.R., Min, B., Jeon, B.-H. 2014. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol, 172, 97-103.