Multifunctional Electronics

Flexible and transparent smart phone, flexible computer, Flexible electronic newspaper (Wearable Electronics)

Devices require mechanically flexible, functional, and high performance energy storage systems

Electrode Materials
- 3D Nanostructures
- Electro-Mechanical Stability
- Optical Transparency etc.
SP² Carbon Nanostructured Materials

- **Mechanical Properties**
 - Strong sp² Carbon-Carbon covalent bonding
 - High elastic modulus (1 TPa) and High strength

- **Electrical and Optical Properties**
 - High Mobility
 - Highly conductive w/wo mechanical deformation
 - High current density (10^9 A/cm²)
 - Optically Transparent

- **In-plane Properties of Graphitic Carbon**
 - Good thermal conductivity (<3000W/mK)
 - Good chemical stability
Engineering SP2 Nanostructure

Limitation of current CNT/graphene based networks

- Built on weak van der Waals interactions between CNTs, CNTs-Graphene
- Lower mechanical strength, electrical and thermal conductivities due to a lower pulling resistance, electron and phonon scatterings at these “unconnected” junctions

Transforming physical Junctions into covalently bonded sp² Chemical Junctions

Terrones, Ajayan et al., PRL, 2002

J. Tour et al., Nature Communications, 2012
Restructuring sp^2 Lattice and Network Structure

A voltage-induced electrical fusion of SWCNTs

H. Jung et al, Nature Communications, 2014
Restructuring \(sp^2 \) Lattice Structure

Engineering SP2 Nanostructure

(a) Graph showing resistance (kΩ) vs. cycles with data points at 0.4V_b, 0.6V_b, and 0.8V_b.

(b) Graph showing V_A/V_A^0 vs. V_a (V_b units) for pristine samples and after 3000 cycles.

(c) Graph showing resistance drop (%R) vs. source on time (msec.) with data points at 0.8V_b.

(d) Graph showing normalized resistance change vs. V_a (V_b units) with data points at 0.4V_b, 0.6V_b, and 0.8V_b.

(e) Graph showing thermal conductivity (W/mK) vs. energy loss (eV) with data points labeled σ*(C-C) and π*(C=C) and intensity (a.u.) vs. energy loss (eV) with an arrow indicating a peak.
Engineering Nanostructure and Morphology

Pristine CNT fiber
Thermal Conductivity 15W/mK

Fused CNT fiber
Thermal Conductivity 110-130W/mK

Supported by
NSF-DMREF Program
(Materials Genome Initiative)

J. Hao et al, Unpublished

Jung's Research Group
Northeastern University
Engineering Nanostructure and Morphology
Engineering Nanostructure and Morphology

[Images of nanostructures and graphs showing intensity vs. 2θ (degree) for original fiber and fused fiber in different conditions.]
Carbon Nanocups

Graphitic nanostructures having smaller length/diameter (L/D) aspect ratio, *nanoscale cup morphology*, can effectively contain other nanomaterials and polymers, leading to multi-component hybrid nanostructures.

Multifunctional Nanosystems

- Energy Storage
- Nanogram Quantity Container
- Multifunctional Sensors
Engineering 3D Nanoscale Architecture

Fabrication Process

The length of nanochannels are controlled by second anodizing time.

- Thermal CVD of Carbon

H. Jung et al. Scientific Reports (2011)
3D Carbon Nanostructured Film for Supercapacitor Electrodes

- Electrically Conductive: Surface Conductivity: 117 S/m
- High surface area and highly disordered graphitic layers provides the effective permeation of the polymer electrolyte and their conformal packaging with electrodes.
- Unique nanoscale cup feature enables the easy access and faster transport of ions at the electrode/electrolyte interface resulting in higher power capability.
- High current carrying capability, substantial mechanical strength, and small effective electrode thickness (5-10 nm: \textit{80-85\% Transmittance at 550nm wavelength}) allow us to build \textit{optically transparent} and \textit{mechanically flexible} reliable thin-film (solid state) energy storage devices.
Flexible and Transparent Supercapacitors

- CNC films: Outer graphene layers are acting as current collectors and the innermost layer exposed electrolyte is acting as an electrode.
- Polymer electrolyte (PVA-H₃PO₄) is acting as both electrolyte and separator.

(a) concave and (b, c) convex and (d-f) branched nanocup films (H. Jung et al. Scientific Reports 2012)
Flexible and Transparent Supercapacitors

(a) Cyclic voltammetry (CV) measured with 10 – 500 mVs\(^{-1}\) scan rates. (b) Galvanostatic charge/discharge (CD) results measured at a constant current density of 5 µAcm\(^{-2}\). The capacitances by the geometrical area calculated from CD curves are 409 µF cm\(^{-2}\). (c) The capacitance change as a function of temperature.
Flexible and Transparent Supercapacitors

Normalized capacitance as a function of cycle-number (10,000) and w/wo the mechanical deformation (45° bending).

(Jung, Ajayan et al. Scientific Reports 2012)

Normalized capacitance as a function of cycle-number (10,000) and w/wo the mechanical deformation (45° bending).

Acknowledgement

- NSF-Designing Materials to Revolutionize and Engineer our Future (DMREF 1434824-Materials Genome Initiative)
- NSF ECCS-1202376
- NSF CHN-Center for Highrate Nanomanufacturing, NEU
- US Army under grant W911NF-10-2-0098, subaward 15-215456-03-00.
- Ministry of Energy, Industry, and Trade (MOEIT) Republic of Korea
Acknowledgement

Contributions from Our Group Members

Prof. Hyunyoung Jung (KNUST, Korea)
Prof. MyungGwan Hahm (Inha University, Korea)
Dr. Younglae Kim (Intel, Portland)
Prof. Bo Li (Villanova Univ. PA.)
Prof. Rodrigo Lavall (Federal Univ. of Minas Gerais, Brazil)

Sanghyun Hong (PhD), Ji Hao (PhD), Heyhee Kim (PhD),
Sen Gao (PhD), Jeonghoon Nam (PhD)
Zane Gavin (UG), Alexander Keklak (UG)

Collaborators

Prof. S. Kar (NEU), Prof. P. Ajayan (Rice Univ.),
Prof. A. Busnaina (NEU), Prof. Y. Homma (Tokyo Univ. Science)

Dr. C. Ahn (KAIST-NanoFab), Dr. Ann Chiramonti (NIST), Prof. G.H. Gilmer (CSM)
Prof. Dongsik Kim (POSTECH), Prof. M. Upmanyu (NEU), Prof. C. Livermore (NEU)
Prof. Jonghwan Suhr (SKKU), Dr. Sung Lee (KRICT), Prof. Y. Kwon (KyungHee Univ.), Dr. Jeremy Robinson (Naval Research Lab.) Prof. David Luzzi (NEU)