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Next generation battery 1 Requirements
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Charge rate of 1C or greater; i.e. 1 hour or less.

Energy density of > 300 Wh/kg.

Cycle life of > 20,000 cycles.

Thermal cycle survivability of -40°C to +75°C.

Storage life of 5 years.

Significant reduction or elimination of thermal runaway.
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What is the State of the Art
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U 40-60% of atypicalb at t emeight is its enclosures and protective
covers. (Dead weight)

U To have high power output several cells need to work in tandem
(connected parallel).

For high power applications dead
weight has to be reduce to achieve goals.
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Current Li-ion Drawback- Cannot be used for high

power / high energy applications
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conventional methods their performance degrades with increase in thickness. i.e.
long charging times and low power output.

i Faster charging can lead to thermal runaway C Batteries bursting

U Performance degrades after ~1000 cycles

High power requirements IMPEDES high energy.
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Battery Performance
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Factors influencing commercial

viability of batteries

U Performance
U Cost

U Size/Weight
U Safety

U Sustainability



Working Principle
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Governing Equations

Power Output
of a Battery:

) I To maximize
Oh mo s —t-a ") — Power, minimize
Y

Internal
resistance



Internal Resistance
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R,.: Electrical
resistance of bulk
material

R.,: Resistance in
electrolyte
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Internal Resistance

"0 — ] : resistivity
Y — t: thickness
O A: area
L: distance between electrodes
0 3. Ionic conductivity of electrolyte
Y _ 9.5 effective ionic conductivity of electrode
| o R: gas constant
T: temperature
n: number of electrons
F: Faraday constant
| 0 I, exchange current

o __ Internal resistance depends
Y'Y _

0 on both material used and

€ — geometry of the battery




Cathode Materials

U Typically transition metal oxides

Lithium metal oxide crvstal structures:
a) b C)

LiCo0, : layered structure LiMn,0, : spinel structure LiFeP0,: olivine structure

) |NCreasing rate
capability and safety

Increasing  (u———

energy density

Figure source: Thackeray, Nature Materials, 2002
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Anode Materials

U Graphitic carbon - r Lilayer

v

U Silicon

carbon layer

One of a number of high-capacity
anode materials, silicon has the
highest known theoretical capacity.

Figure source: Bianco, ed.
2011
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Nanomaterials
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Figure sources: (nanowires) Bourzac, MIT Tech. Rev., 2009, (hollow
nanospheres) Ding et al. J. Mat. Chem., 2011, (graph) Chen et al. J. of
Power Sources, 2011
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Nanomaterials

Advantages:

A Shorter ion diffusion lengths lead
to faster ion insertion and
extraction

A Novel lithium ion storage
mechanisms

A More ion storage sites accessible
within charging time due to
decreased diffusion length

A High surface area increases
electrolyte wetting, making more
surface storage sites accessible

A Structural integrity

Disadvantages:
A Low packing density

A High surface area increases
unwanted reactions with

electrolyte

To o

synthesis
A Nanomaterials often
hazardous

Consumption of lithium ions
Complicated and/or costly
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Electrode Architectures

1D: parallel plate design (can 2D: parallel plate design but using a
l ncorporate fA3DO layered scaffolding; allows for more
active material per footprint area
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3D: Cathode and anode
materials integrated together
within the cell to keep transport
time small while maximizing
amount of active material
present
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Figure source: Long et al. Chem Rev., 2004
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Our Approach

0

CNT based scaffolding
electrode architecture.

Enhanced electronic &
lon transport.

Reduced footprint &
battery dead weight.

Reduced thermal
runaway.

Unique manufacturing
process.

Breakthrough Technology

Higher Energy

Existing

Faster Charging Time



Specific Project Tasks

Layer-by-Layer
CNT/nanoparticle
architecture for
lithium ion battery
performance
enhancement using a
high-rate scalable
fabrication procedure

Developthe layered architecture in order to enhance the ionic
and electronic conductivities of the electrode.

Compare the electrodes with thosmade using standard
fabrication methods.

Investigate the effects ofelectrode thickness and composition,
number of layers, and fabricatiomethods on cell
performance.

Examinephysical properties of electrodes before and after
cycling to enhance understanding of internal changes within
the cell due to cycling and assess durability of electrode
architecture.

Explore various fabrication techniques and develop a process

which is lowcost, highrate, and scalable
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