Brain Inspired Semiconductor Device Technology

Byoung Hun Lee

Director, Center for Emerging Electronic Materials and Systems (CEEDS)
School of Material Science and Engineering,
Gwangju Institute of Science and Technology (GIST)
Gwangju Institute of Science and Technology

QS World University Rankings
(Citations per Faculty, 2015/16)

1st in the nation

SCI papers
(Papers per faculty / 18 years, 1995-2016)

2nd in the world

Patents, Research grant
(Oversea patent application)

1st in the nation

THE in 2015 (<50 years)

33rd in the world
Outline

• Motivation: End of roadmap and energy crisis
• Motivation: Inspirations from brain functions
• Bio inspired semiconductor device technology
• Summary
Information processing needs in future

- The number of PC, cellphone etc double in every 5 years
- IoT will increase this rate more than double (and market size too)
- IoT may not require a breakthrough in technology, but a real breakthrough in nanoelectronics will be necessary to sustain the IoT based society

Information processing requires HUGE power!

- In 2005, 27M server consumed 14GW (7B$), ~ 14 nuclear power plant
- In 2015, 28B$ will be spent with ~4% of total electricity worldwide
- In 2030, more than 100B$ (180 nuclear power plant) will be necessary for data center alone with the accelerated usage of data for IoT
- Including PC, cellphone and other wearable, portable ICT equipment, the energy consumption will not be sustainable with current technology
End of roadmap

Exploratory Hybrid Electronic Device Lab.

- CMOS technology was conceived in 1960.
- Do we have the new technology that can replace CMOS technology?

- Physical scaling to power scaling: power reduction at system level
- Novel technology is required for power reduction
Alternative target of research

- Conservative goal: Use semiconductor baseline technology, Solve the power problem
Short term solution: low power device technology

- Multi-\(V_{DD} \) scaling
 - Dynamic \(V_{DD} \) scaling using finFET, NWFET
 - Low \(V_{DD} \) channel (III-V, tFET)

- Multi-\(V_{th} \)
 - Dynamic \(V_{th} \) scaling
 - Low \(V_{th} \) channel (III-V, SiGe)

- Multi core
 - External cooling
 - Hot spot management

\[
P = \alpha C_{tot} V_{DD}^2 f + V_{DD} \cdot I_{leak} \left(e^{-V_{th}/(kT/q)} \right)
\]

- Low \(V_{DD} \)
 - Low leakage gate stack
 - Novel device (Underlapped SOI,..)
 - Hybrid device (NEMS-CMOS)

- Clock gating
 - Sleep transistors
 - Fine granularity clock gating
 - Architectural switching reduction

- So far, we are trying old technologies to save power: low VDD, Design optimization
Low power device technology

- Low power device technology: power savings <1/10 ~ 1/100
- Extreme low power technology: Power savings <1/100 -1/1000
Summary

1. Problem statement
 • Future computing/information processing needs far exceed the capacity of current energy supply
 • Key challenge is the total power consumption of system (performance might be a secondary issue with a parallel and cloud computing route)

2. Origin of problem
 • Power consumption in a semiconductor chip is reaching its limit
 • Rack of innovation: scaling for half century (no new device, architecture)

3. Constraints
 • There is not enough time to fix this problem and get back on track: implementation of new device and architecture may take more than 20 years easily
 • Need to solve the problems with existing tools and live with it till full solutions are available
Outline

• Motivation: End of roadmap and energy crisis
• Motivation: Inspirations from brain functions
• Bio inspired semiconductor device technology
• Summary
Physical structure of neuron and its functions

Adaptation, learning, STDP” 1sec- years

Temporal coding, Signal propagation: 10-100msec

Membrane dynamics, action potential generation: 1msec
Electronics device vs chemical device

- Deliver the concentration difference of K+, Na+

- Action potential ~ 80 mV → Extreme low voltage operation
 → Noise problem
 → **Multiple signal input/integration**

- Spatial and temporal multiplexing → Active sharing of the interconnect

- Chemical computing, extremely low operation voltage (<100mV)
Slow, but powerful signal processing

- Human: 10m/sec (0.2 sec from head to foot), multiple signal/parallel processing, distributed computing
- Semiconductor: 20nsec from head to foot, 1 signal at a time, central processing
- Stress time dependent plasticity (STDP): logic/memory function
Key Lessons from Axon Function

- Temporal/Spatial summation → Logic/memory operation at interconnect
- Time multiplexing → Dynamically reconfigurable interconnect
- Extreme fan out (order of 10^4 vs 10^1): Reconfigurable, multifunctional circuit
- Temporal/spatial synchronization: Noise/defect tolerant signal processing
- Plasticity and multiplexing: reconfigurable architecture
Vertically stacked architecture

- Brain has roughly 8 device layers while semiconductor has only one
- Only 3-4% of devices are operating while 96-97% of ~1B devices are idle

New York (8.3M, 105 ppl/km²)
LA (9.8M, 9.3 ppl/km²)

C. Dong et al., TCS, 2007
Nature’s way of power management

\[\text{Power} \propto \alpha C_{\text{tot}} V_{DD}^2 f + V_{DD} \cdot I_{\text{leak}} \left(e^{-V_{th}/(kT/q)} \right) \]

- Slow operation \((f) \)
- Vertical stacking \((C_{\text{tot}}) \)
- Chemical computing (analog computing, \(I_{\text{leak}}, V_{DD} \))
- Multi valued logic \((V_{DD}, C_{\text{tot}}) \)
- Logic and memory functions are mixed
- Distributed memory (local memory): multicore

- **Calculator vs information processor**
Outline

• Motivation: End of roadmap and energy crisis
• Motivation: Inspirations from brain functions
• Bio inspired semiconductor device technology
• Summary
Inspirations to semiconductor technology

- **Low C_{tot}**
 - Device count reduction: CMOS-hybrid devices
 - Dynamically reconfigurable 3D integrated logic
 - Interconnect length reduction: Vertical Integration, multi value, multiband, multi-flexing, reconfigurable interconnect
 - Non capacitive coupling: Optical interconnect and I/O, Magnetic quantum cellular automata, Molecular wire

- **Low Frequency**: multicore, neuromorphic architecture, spatial multiplexing,

- **Low V_{DD}**: Noise / fault tolerant computing device/architecture

Bio inspired architecture is more than enough to take us for next a few decades of new electronics!!
Midterm: Bioinspired Extreme Low Power Technology

Neuromorphic

Multi-valued logic

Reconfigurable logic

Monolithic 3D integration

- Same functionality with smaller number of device
- Reduction of interconnect length with higher information density
Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device
Neuromorphic Hardware System for Visual Pattern Recognition With Memristor Array and CMOS Neuron

• Recognition of brain wave pattern responding to certain vowel
Ternary logic device

- Ternary logic device using graphene FET with PNP or NPN channel

- Graphene FET with high on-off ratio

- Complimentary ternary barristor

- Project to demonstrate mid-scale ALU has been launched in 2016

Examples of 3D stacking of 2D devices

- The first demonstration of 2D layer stacking

Device info.
- **WxL = 5μm x 6μm**
- **Upper level device**
- **Vd = 0.5V**

Field effect mobility

- **Hole mobility**
 - Before 3D integration: 199%
 - After 3D integration: 163%

- **Electron mobility**
 - Before 3D integration: 0%
 - After 3D integration: 163%

** PET substrate**
Gate
S
Al₂O₃
D
Graphene
S/D, top gate (Ni/Au)

** Polyimide (PI)**
Top gate
Au

** Channel (graphene)**
PET substrate
Graphene

Device area stacking

Before 3D integration

After 3D integration

Exploratory Hybrid Electronic Device Lab.
Outline

• Motivation: End of roadmap and energy crisis
• Motivation: Inspirations from brain functions
• Bio inspired semiconductor device technology
• Summary
Summary

• New approach to adapt the novel devices into silicon fab is proposed
• Principles inspired by brain functions will be applied to minimize the power consumption of silicon chip
• To minimize the performance loss, new technology is better to be used in BEOL structure with a goal of:
 – Simple circuit
 – Low leakage path
 – Shorter information travel
 – Replace some of FEOL block with power efficient circuits
• Key elements of this technology are being developed
 – Dynamically reconfigurable system
 – Ternary logic devices and circuits
 – Neuromorphic circuit
<table>
<thead>
<tr>
<th>Platform program</th>
<th>goals</th>
<th>Power savings</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power saving (product)</td>
<td>1/500</td>
<td>1/100</td>
<td>1/500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power saving (prototype)</td>
<td>1/1000</td>
<td>1/10</td>
<td>1/100</td>
<td>1/500</td>
<td>1/1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extreme low V_{DD}</td>
<td>1/20</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monolithic 3D</td>
<td>1/2</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconfigurable</td>
<td>1/100</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-value logic</td>
<td>1/100</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logic in memory</td>
<td>1/10</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optical interconnect</td>
<td>1/10</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuromorphic</td>
<td>1/20</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process/Integration</td>
<td>-</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platform</td>
<td>-</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>International collaboration</td>
<td>-</td>
<td>R&D network</td>
<td>R&D consortium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System program</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAD Infra</td>
<td>-</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novel architecture</td>
<td>-</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extreme low VDD</td>
<td>1/10</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neuromorphic</td>
<td>1/100</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mW processor</td>
<td>1/1000</td>
<td>phase I</td>
<td>phase II</td>
<td>phase III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>