# High-Throughput, Scalable Nanomanufacturing of Nanocomposites via Micellular Electrospray

Jessica O. Winter

William G. Lowrie Dept. of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH







## Nanocomposite Particles

Quantum Dots Broad Excitation Narrow Emission Bandwidths Low photobleaching High Quantum Yield



Magnetic Nanoparticles Reduce T2 relaxation (MRI) Biocompatible Biodegradable Exert force in magnetic field





## Self-Assembled Micellar Nanocomposites





Ruan et al., Nano Letters, 2010, 2220; Ruan et al. J Nanoeng Nanosys, 2010, 81 Ruan, Winter, Nano Letters. 2011, 941.

## Interfacial Instability





1 batch ~ 0.1 mg



Zhu JT, Hayward RC. Journal of the American Chemical Society. 2008;130:7496-502. Granek R, Ball RC, Cates ME. Journal De Physique Ii. 1993;3:829-49. Animation by A. Duong

## Introduction to Electrospray

Collaboration with Barbara Wyslouzil, ChBE, OSU



Manuscript in Preparation

# **Process Optimization**



## **Wormlike Micelles**



## Yield and Size Distribution



30 fold increase in yield 15% size distribution

### **Particles Produced and Uses**



# Conclusions

- Micellar nanocomposites can be synthesized by interfacial instability.
- Nanocomposites can be synthesized by electrospray increasing yield and with potential for continuous fabrication.





- Synthesis is robust, with little change in particles produced over a wide range of process parameters.
- Alternative structures can be created by altering polymer characteristics.
- Several types of particles can be produced using this approach.
- Particles have applications in several fields.





Collaborators: Jeff Chalmers (ChBE, OSU), Barbara Wyslouzil (ChBE, OSU), R. Sooryakumar (Physics, OSU), Maryam Lustberg (Med. Oncol., OSU), George Bachand (Sandia), Peter Kner (University of Georgia)

#### Funding

NSF Awards: CBET-0854015 , CMMI-0900377, CBET-0707969, MCB-1052623, EEC-0914790 (NSEC), DMR-0820414 (MRSEC), CMMI-1344567 NIH: 1RC2AG036559 – 01

DOE: Center for Integrated Nanotechnologies (CINT)

The Ohio State University: Institute for Materials Research, Department of Chemical and Biomolecular Engineering, Women in Philanthropy, H.C. "Slip" Slider Professorship

# The Winter Lab at

# OHIO SIATE

### Imaging



### **Drug Delivery**



### Nano-toolbox



### **Biomimetics**



### Manipulation



#### NANO http://nano4neuro.com NEURO