High-Throughput, Scalable Nanomanufacturing of Nanocomposites via Micellular Electrospray

Jessica O. Winter
William G. Lowrie Dept. of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH

http://nano4neuro.com/
Nanocomposite Particles

Quantum Dots
- Broad Excitation
- Narrow Emission Bandwidths
- Low photobleaching
- High Quantum Yield

Magnetic Nanoparticles
- Reduce T2 relaxation (MRI)
- Biocompatible
- Biodegradable
- Exert force in magnetic field

Core-Shell
Gu et al., JACS, 2004, 5664

Interfacial Doping
Deng et al., Nanotech., 2010, 145605.
Self-Assembled Micellar Nanocomposites

Interfacial Instability

Animation by A. Duong
Introduction to Electrospray
Collaboration with Barbara Wyslouzil, ChBE, OSU

Organic Solvent, Polymer, Nanoparticles

High Positive Voltage Applied

Aqueous Solution: Water, Surfactant

Ground

Collection Dish (Water)

Manuscript in Preparation
Process Optimization

Q = 3, Q/o/Q(i) = 14

Q = 3.5, Q/o/Q(i) = 2.5

Collection Temperature (°C)
PS-PEO Concentration in Organic (mg/ml)

Spheres
Mix Worms & Spheres
Not Viable
Spheres Batch 2
Mix Worms & Spheres
Batch 2

40°C
30°C
2°C
5mg/ml
10mg/ml
Wormlike Micelles

Worms with QDs concentrated in globular regions

Spherical micelles
Yield and Size Distribution

30 fold increase in yield
15% size distribution
Particles Produced and Uses

MultiDot: QDs
- QDs
- Amphilphilic polymer
- Imaging
- 25 nm

MagDot: Magnetic QDs
- QDs
- SPION
- Amphiphilic Block Copolymer
- Micelle
- Nanocrystal
- Separations
- 50 nm

PolyDot: Polymer NPs
- Polymer NPs
- Drug Delivery
- 47 nm
- 48 nm
- 100 nm

Drug Delivery
- 10% loading (Conventional)
- 10% DEX loading (Polydot)
Conclusions

• Micellar nanocomposites can be synthesized by interfacial instability.
• Nanocomposites can be synthesized by electrospray increasing yield and with potential for continuous fabrication.

• Synthesis is robust, with little change in particles produced over a wide range of process parameters.
• Alternative structures can be created by altering polymer characteristics.

• Several types of particles can be produced using this approach.
• Particles have applications in several fields.
The Winter Group

Funding

NSF Awards: CBET-0854015, CMMI-0900377, CBET-0707969, MCB-1052623, EEC-0914790 (NSEC), DMR-0820414 (MRSEC), CMMI-1344567

NIH: 1RC2AG036559 – 01

DOE: Center for Integrated Nanotechnologies (CINT)

The Ohio State University: Institute for Materials Research, Department of Chemical and Biomolecular Engineering, Women in Philanthropy, H.C. “Slip” Slider Professorship

Collaborators: Jeff Chalmers (ChBE, OSU), Barbara Wyslouzil (ChBE, OSU), R. Sooryakumar (Physics, OSU), Maryam Lustberg (Med. Oncol., OSU), George Bachand (Sandia), Peter Kner (University of Georgia)