The 11th US-Korea Nanosymposium

Nanoimprint Transfer Technology in Optoelectronic Application

Choi, Jun-Hyuk

2014. 09. 29

Korea Institute of Machinery & Materials

Facilities/Infra.

For Nanoimprint at wafer scale

For Nanoimprint in Large area

Large area Mold fabrication

Etched master at 8" wafer

Metal patterning infrastructures

Outlines

Laboratory Introduction

- Members / Facility
- Researches for Nanoimprint

Fabrication strategies

Introduction of various in-house self technologies

Metal Imprint Transfer

- Application to Optoelectronic Devices
- Photoluminescence
- Transparent electrode in Hybrid Cell Photovoltatics

Closing remarks

Lift-off for well-round shaped Metal dots

Step 2: Bilayer Imprint

- 150nm, Pillar ਰੋ, 1:2 A.S.
- LOR 90nm / LV 300nm
- UV Imprint at 2 bar, 90s
 Transferred Height 250nm
- 잔류층 50~60nm

▪ 4,000 rpm, 30sec ▪ 150도에서 3분 어닐링

Step 5: Etch-down

Silspin Etch 20s, O2+CHF3
Imprint Resist & LOR Etch
50 sccm of O2, 90s

Step 7: Ag 중차는 Lift-off

Thermal Evap. 30nm
Developer 400K

Etching polymer (90nm~100nm)

Etching Al (80nm)

Etching polymer (90nm~100nm)

Etching Al (80nm)

Point of the embedded configuration on multilayer optoelectronics

- Non-uniform current flow (Leakage current) \Rightarrow Reduced efficiency
- Electric field/Electron injection enhancement \Rightarrow Electron transport effects
 - \Rightarrow Thermal decay, reduced life-time
- Charge recommbination in solar cells \Rightarrow Thermal decay, reduced efficiency

1. Bilayer Hybrid NIL and following Lift-off

- (a) Half pre-cure of the coated UV resist
- (c) Thermal Imprint, UV exposure while pressed
 - -> Complete cure of UV resist
- (d) Ag deposition by E-beam evaporation
- (e) Lift-off of thermal resist on top layer

2. Metal Imprint Transfer

- (a) E-beam evaporation of Ag on mold pattern
- (b) Half pre-cure of UV curable resist
- (c) Only Ag on the top surface of mold in contact with half-cured resist, and UV exposure
- (d) Mold release

US Patent: 14/194084 Small 2014, Published

Note: *Embedded Dot Arrays*

- 1) Half pre-cured UV-NIL resist
- 2) Limitedly Imprinted Depth via Pressure Control
- 3) Minimized Leakage Current at device depo.

Metal Meshes in Hybrid Cell

Process Scheme for Si-PEDOT Hybrid Photovoltaic cell

Tunable Plasmonic Nanostructures

- Confirmed Tunable plasmonic Properties
- Plasmonic peak shifts as annealing temperature increases.
- Green PL Intensity increased more than 400%, w.r.t. Ref.

Spectral Transmittance - Measured & Simulated

Photoluminescence Improvements

- A/B/C ; 150/200/265 nm in mold pattern dia.
- 20/40/60; 20/40/60 nm in Ag thickness
- 1/2/3/4; RT/150/200/250°C for annealing temp.

Sample	w.r.t Ref. glass	w.r.t. Ref-NOA
A-40-1	280%	317%
A-40-2	268%	303%
A-40-3	259%	293%
A-40-4	465%	518%

<Ag Thick.-dependence>

<Mold pattern size.-dependence>

> PL enhancement rate

PL peak intensity

Sample	w.r.t Ref. glass	w.r.t. Ref-NOA
A-20-4	243%	276%
A-40-4	465%	518%
A-60-4	399%	446%

> PL enhancement rate

Sample	w.r.t Ref. glass	w.r.t. Ref-NOA
A-40-4	465%	518%
B-40-4	371%	415%
C-40-4	174%	200%

Closing Remarks

- Research Infrastructures for Nanostructures/Patterning
- > Nanoimprint based nanopatterning and its application in Optoelectronics
- > Several approaches for metallic nanopattern fabrications in plasmonic fields

Global Collaborations

UC Berkeley-Micromechanical Analysis and Design (BMAD)

IMRE, Singapore

AMO GmbH Aachen

Industrial Collaborations

APNHutem Co.nanoLambda Korea Company

Samsung Electronics-Manufacturing Institute

Youngchang Chemical Co. Ltd

Members

➤ Nanoimprint

- Process, Tools, Functional mater.
- Appl.: R-RAM, Sensors, (O)LED
- > 3D Multiscale Architecturing
 - Nanowire structuring
 - Nanomaterials self-assembly
- Plasmonic sensors, Light emitting
 - Metal nanostructuring
 - Metal NP. Self-growth

Staffs

- Lee, Eung-sug: Ultrafind fabrication, Nanomechatronics
- Jeong, Jun-ho: Nanolithography, Nanoimprint
- Choi, Jun-hyuk: Metal nanopattering, Direct/Roll Imprint
- Choi, Dae-geun: Nanoimprint mater. Process chemistry
- Lee, Ji-hye: Nanowire, mask fabrication, biosensors
- Jeong, Joo-yeon: Electronics, Plasmonic optics

Research area

<Metal pattern, Lift-off>

<Optoelectronic Applications>

<Optics-based Sensors>

<Plasmonic Lithography>

Infrastructure of metallic nanopatterning

