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SASIST
\

Y ASSIST Vision

*Direct correlation of personal health and
personal environment

*Correlation of multimodal health sensing to
produce a systemic picture of wellness




Vital Connect

Metria Patch by Vancive

Proteus Digital Health
Sotera Wireless

FDA Approved

What are the gaps in these products?

BodyGuardian Placement
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Piix Heart
Monitor

The BodyGuardian monitor is worn in
one of three places

MC10 Hydration S
ydration Sensor .
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FitBit

Consumer Products
MISFIT
ASSIST technologies can provide disruptive advances

in existing wearable products and influence the
future generation of wearable systems



Effectiveness of Wearable Health
Products is lacking

Most wearable's are not being used by
65+ older citizens
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S Usage of sustained utilization drops
oo below 50% in less then 15 months
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A third of the users stop wearing the
wearable device within 6 months
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Endeavor Partners, May 2014



Why is Effectiveness Low?

Human and Social ﬁ Form

Factors/User Factor/Design/A
Feedback esthetics
Battery
Open Life/Hassle
Platforms 1
Actionable Quality/Robustness/
Information/Multiple Medically Validation

Sensori ’
Comfortable and

biocompatible
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| Potential Solutions?

* The right multimodal, unobtrusive sensors for health and environment
* The data backbone supporting these sensors
* Medically validated / reliable sensor data

AND

* Ultra Low Power Components to enable ultra long battery lifetime

AND

* Energy harvesting energy to realize infinite lifetimes
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Ultra Low Power Components

Computation

Communication

Towards

Nanotechnologies continuous
monitoring

Sensors

Power Management

Interfaces
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COTS Add-on

Biocompatibility

Health & Environmental

Sensing
”

Platform

Body Energy
Harvesting

Gas Sensor
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Health Sensors

Optimizing the Power for

Energy Storage Antenna
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Software [—

Power Management

Digital Control /

SoC Processing /
Management

Analog Front End

Computation and Communication

EEC 1160483

Data Aggregator

Software
.
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Signal Processing
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Battery—free

VBoost (on storage‘
cap)

Boost Corverter

-tu.r.n.s.on. ................
4 Channel ExG

ThermoElectricGenerator

MICS Radio
5 DC-DC converters
. time (s)
MCU + Dig Accelerators Source: Calhoun et al., ISSCC 2012

Integrated Power Management

MUCH more integration than any other wireless BSN SoC
Wireless RF pulse provides one-time kick-start

Runs indefinitely thereafter on thermal energy
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19uW total chip
power from 30
mV input supply

Source: Calhoun et al.,
ISSCC 2012

EKG < 20uW relying only on energy harvesting and storage capacitors

Boost converters < 10mV
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Highlight: Measured Radio
Performance

ASSIST Receivers ASSIST Ultra wideband (UWB)

* Best in class power vs Transmit
sensitivity  ULP TX for system level
* ~100nW Wakeup RX energy savings
<o
s . Toan - | - riee midc
g, S I A
E — - see | vale | umt
. | Power 7.44 uw
5 LomPower eccx @ we —X 187.5 Kkbps
T E EER— 20 3.8 GHz
Sensitivity [dBm] 490 MHz
15 dBm

Wentzloff, UMich



How low is ULTRA low when it comes to Power

ASSIST SoC / processc EnOcean STM 31xC IMEC ISSCC’14 Semtech $X1282

Supply voltage 0.5V 2.1V to 5.0V 1.2V 1.0V to 1.6V

Processor 16b MSP430 custom 32b ARM Cortex MO 8b CoolRISC

Processor perf. <1uW @ 200 kHz 5.1mA @3-5V Not reported 1.2uW @ 32 kHz, 600 pW
typical

Power harvesting Yes. RF, Solar, TEG Yes. No. No.

Supply voltage 0.5Vto 1.0V 2.1V to 5.0V 1.2V 1.0V to 1.6V

TX power consump. 6UW @200kbps 30mW @ 125 kbps 4.6 mW ~40mW

RX power consump. 200pW WBAN RX 40mWwW 3.8 mW ~12mW

120nW @12.5 kbps WU

State of the Art

ASSIST Antennas

Form factor ~50mm x 50mm ~ twice as big
Front to back ratio ~19 dB (3X — 4X more range) ~5dB
Signal suppression 3-5 dB (>50X less power) 20-30dB

Out of band rejection 30dB 5-10 dB



Requires a systems driven, nanotechnology enabled
approach to realize low-power wearable sensors for
environmental and physiological monitoring

SS15]]

Stress, cardiovascular health

Asthma Hydration, cardiovascular health 17



Metal-oxide nanowire based gas sensors are
amenable to integration with CMOS
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CMOS chip designed

for MOx nanosensor
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Sensors 2012, 12, 5517-5550



S35

/——— to integration with CMOS
MOx coated Si NWs self assembled on CMOS

Anatase TiO, chemiresistor [] Rutile SnO, chemiresistor []

20.0p

10.0p

-10.0p 1

Current (A)
o
i

-20.0p

Crystalline metal-oxide—coated Si nanowires were fabricated using ﬁR\TE
and ALD, and self-assembled on electrode arrays

Self heating to 175°C with <20 yW power consumption is possible by
thermal jnsylation

T v I I \J T
-2 2

Metal-oxide nanowire based gas sensors amenable
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Silver nanowire electrodes on soft materials for
bioelectrical sensing

(a)

Si Substrate

Cast NW solution ﬂ AgNWs

and dry it / A : > : S
Si Substrate LT INER

Coat liquid PDMS D AgNW/PDMS  §eg

quuld PDMS
Si Substrate

Cure PDMS and AgNW/PDMS
peel off the substrate

T T e
T e e e Y,

Cured PDMS
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Hydrogel-based noninvasive passive skin interfaces
for sweat sampling

SS15]]

Establish a skin mimic for

. Fluid transfer from superporous hydrogel to a capillary interfacing and sensor testing
m
rum Dnnml‘.‘ampaund—i'
Capillary Tube
SPH Gel
pH <4.4 44<pH<62 pH >6.2 L Donor Chamber .
Used pH-color indicators to visually monitor diffusion Hydrat(eac(ial(Body) e Ffﬂ;fm“d
of acidic fluids (sweat mimics) through hydrogels
Membrang —j
Sweat Diffusion Peach pH Sensor ”""R Q Sampling Port
Circulator 5 4 l
Superporous _ Chamber
Hydrogel — Water Jachet—p [ L= 455— Stirhar
Hydrophilic Channels — CaplllaryActlon Evaporatlon
Membrane
Sweat
Solution
Future Work: Create a C_Zaplllary- Superporous Hydrogel — Capillary Usually used for drug
Osm_otlc Pump for continual- and Osmotic Sweat Intake penetration; we will use for
passive sweat intake sweat collection with various
skin (membrane) materials
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Liquid metal electrode

Intake rates via
osmotic uptake were
measured as ~15
nL/cm2min, much
greater than human
sweat rates (0.01 —
1 nL/cm?min)
Microfluidic channel

interfaced to sensor
sites

lonic hydrogel

—
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Encapsulation of antibody with polymer/trehalose enables time

delayed dissolution of coating to expose one sensor at a time for

long term use

Hydrogel for sweat
collection

sdAb-antigen
stability at 40°C
for 7 days was
demonstrated.

Building the basic building blocks for a skin-coupled
biochemical sensor to monitor cortisol levels In
sweat

Optional evaporation opening

Potentiodynamic | 5%
electrochemical
measurements
using
functionalized
NW-enhanced
IDTs

sdAb

6.0x10° - sdAb+antigen @ RT
—— sdAb+antigen @ 40C_7 Days
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Looking at both sides of the power equation 2
Towards Self-Powered Operation




/f Energy Harvesting
One harvester does not fit all?

Smart package Smart buildings

; g \/
2 — Predictive Maintenance
Intelligent Tire Body Area Network

IMEC
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'\Jb This is a Very Difficult Problem to
/, Address for Human Worn Devices!

e Thermal: Small AT from human to ambient

* Mechanical: Weak base excitations at low frequencies for human
motion

* Indoor solar: 1 - 10 uW/cm? available

* RF scavenging: <<1 uW from ambient rf. Much higher powers can
be achieved if directed rf is utilized.

* Inductive coupling: Tens mW available at close proximity



State of the Art Flexible
Thermoelectric Generators

18.8 uW/cm? K?
Design tvpe: . .
V.ETH xpol o ekt Needs for flexible thermoelectric

~o*10° k'| ¥ B verticaliateral generators
" VG variclveriica Good materials (higher ZT)
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should be on order hundreds cm? K
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Glatz et al., ) MEMS 18, 763 (2009) Leonov, J. Micromech. Microeng. 21 (2011) 125013
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heat sink 200
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0
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Barrier: Parasitics (esp. skin
resistance) have a huge impact

on TEG performance; output
voltages ~5-30 mV

Approach:

 Flexible, open-platform TEG package
enabling integration of thermoelectrics
with excellent performance from many

sources
 Flexible, high performance heat sinks

* New material & process approaches Heat Heat
Collection Rejection




Thermoelectrics

* ~10 — 20 uW on a flexible hand-built package o S
with COTS components S 00 T e zman
. =4 2500 K=0.8-1.5W/mK ZT=1.21
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Non-Resonant Human Worn
Harvesters

Measured prototype: 57 pW/cm?

peak power exceeds that of end-
loaded cantilever on Si by > 35 times

Shad Roundy

Activity Walking Jogging Running
Power Available 95 uw 360 uW 700 uW
Power Density 10 uW/gram 37 uW/gram 74 uW/gram
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Future Areas of Collaboration to Enable
Self-Powered Miniaturized Sensors

!/\SSJST

* Ultra low power electronics can change the sensing paradigm by
enabling long term and continuous sensing

* Sensors innovation lies in lowering the power consumption and
biochemical sensing

* Energy harvesting from the body is hard but is a worthwhile game
changing technology
* Thermoelectrics: Higher ZT, Flexible packaging, larger areas

* Mechanical: need new designs including novel form factors (shoes, knees,
chest straps)

* Nano is creating advancements in sensor system components

* Samsung and KAIST (low power electronics, energy harvesting,
sensors, tlexible materials, manufacturing)

30



Thank you



