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Thingprogress.org 
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Medtronic, IEEE Spectrum 2014 



ASSIST Vision 
 

•Direct correlation of personal health and 

personal environment 
 

•Correlation of multimodal health sensing to 

produce a systemic picture of wellness 
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The Wearable Health Market 
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Consumer Products 

Vital Connect 

What are the gaps in these products? 

Proteus Digital Health 

Metria Patch by Vancive MC10 Hydration Sensor 

Sotera Wireless FitBit 

Nike 
Fuel 

Piix Heart 
Monitor 

Valencell 

MISFIT 
ASSIST technologies can provide disruptive advances 
in existing wearable products and influence the 
future generation of wearable systems 



Effectiveness of Wearable Health 

Products is lacking 

Most wearable's are not being used by 
65+ older citizens 
 
Usage of sustained utilization drops 
below 50% in less then 15 months 
 
A third of the users stop wearing the 
wearable device within 6 months 
 

Endeavor Partners, May 2014 



Why is Effectiveness Low? 
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Potential Solutions? 

• The right multimodal, unobtrusive sensors for health and environment 

• The data backbone supporting these sensors 

• Medically validated / reliable sensor data 

 

AND 

 

• Ultra Low Power Components to enable ultra long battery lifetime  

 

AND 
 

• Energy harvesting energy to realize infinite lifetimes 
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Ultra Low Power Components 
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Optimizing the Power for  

Computation and Communication 
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Battery-free  

Energy Harvesting ExG with MICS-Band Radio 
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3.3 mm 

• 4 Channel ExG 
• MICS Radio 
• 5 DC-DC converters 
• MCU + Dig Accelerators 
• Integrated Power Management  
• MUCH more integration than any other wireless BSN SoC 
• Wireless RF pulse provides one-time kick-start  
• Runs indefinitely thereafter on thermal energy 

 

Source: Calhoun et al., ISSCC 2012 



Ultra Low Power SoC 
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EKG < 20mW relying only on energy harvesting and storage capacitors 
Boost converters < 10mV 
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Highlight: Measured Radio 

Performance 

Spec Value Unit 

Power 7.44 µW 

Data Rate 187.5 kbps 

Center Frequency 3.8 GHz 

Bandwidth 490 MHz 

Output power --- dBm 15 
Wentzloff, UMich 
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UWB Rx

Wake Up Rx

ASSIST 

ASSIST Receivers 

• Best in class power vs 
sensitivity 

• ~100nW Wakeup RX 

 

ASSIST Ultra wideband (UWB) 
Transmit 

• ULP TX for system level 
energy savings 
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How low is ULTRA low when it comes to Power 

ASSIST Antennas State of the Art 

Form factor ~50mm x 50mm ~ twice as big 

Front to back ratio ~19 dB (3X – 4X more range) ~ 5 dB 

Signal suppression 3-5 dB (>50X less power) 20-30 dB 

Out of band rejection 30 dB  5-10 dB 

ASSIST Radios EnOcean STM 31xC IMEC ISSCC’14 Semtech SX1282 

Supply voltage 0.5V to 1.0V 2.1V to 5.0V 1.2V 1.0V to 1.6V 

TX power consump. 6µW @200kbps 30mW @ 125 kbps 4.6 mW ~40mW  

RX power consump. 200µW WBAN RX 
120nW @12.5 kbps WU 

40mW  3.8 mW ~12mW 

ASSIST SoC / processor EnOcean STM 31xC IMEC ISSCC’14 Semtech SX1282 

Supply voltage 0.5V 2.1V to 5.0V 1.2V 1.0V to 1.6V 

Processor 16b MSP430 custom 32b ARM Cortex M0 8b CoolRISC 

Processor perf. <1µW @ 200 kHz 5.1mA @3-5V Not reported 1.2µW @ 32 kHz, 600 µW 
typical 

Power harvesting Yes. RF, Solar, TEG Yes. No. No. 
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Biochemical sensing 

Cortisol, epinephrine  

electrolytes/hydration 

Gas/particulate sensing 

Ozone, NOx, H2S,  VOCs, 

particulate matter   
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Physiological	
Sensor	

Requires a systems driven, nanotechnology enabled 

approach to realize low-power wearable sensors for 

environmental and physiological monitoring  

Asthma, cardiovascular health 

Cardiovascular health Asthma 

Stress, cardiovascular health 

Hydration, cardiovascular health 17 



Metal-oxide nanowire based gas sensors are 

amenable to integration with CMOS 

Sensors 2012, 12, 5517-5550 

CMOS chip designed 
for MOx nanosensor 

integration 
18 



Metal-oxide nanowire based gas sensors amenable 

to integration with CMOS 

Sensors 2012, 12, 5517-5550 

MOx coated Si NWs self assembled on CMOS  
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Anatase TiO2 chemiresistor 	 Rutile SnO2 chemiresistor 	

Crystalline metal-oxide-coated Si nanowires were fabricated using DRIE 
and ALD, and self-assembled on electrode arrays  
 
Self heating to 175°C with <20 μW power consumption is possible by 
thermal insulation 
 



Silver nanowire electrodes on soft materials for 

bioelectrical sensing 
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pH <4.4 pH > 6.2 4.4<pH<6.2 

PAAm Sweat 
Methyl Red  

Color Spectrum 

Peach pH Sensor 

Used pH-color indicators to visually monitor diffusion 

of acidic fluids (sweat mimics) through hydrogels 

Hydrophilic Channels – Capillary Action 

Superporous Hydrogel – Capillary 

and Osmotic Sweat Intake 
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Evaporation 
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Hydrated (Body) 

Gel 

Time lapse 

over 

roughly 12 

hours 

Fluid transfer from superporous hydrogel to a capillary 

Future Work:  Create a Capillary-

Osmotic Pump for continual-

passive sweat intake 

Sweat Diffusion   

Establish a skin mimic for 

interfacing and sensor testing 
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Sweat 

Solution 

Usually used for drug 

penetration; we will use for 

sweat collection with various 

skin (membrane) materials 
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Hydrogel-based noninvasive passive skin interfaces 

for sweat sampling 
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Building the basic building blocks for a skin-coupled 

biochemical sensor to monitor cortisol levels in 

sweat 
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Intake rates via 

osmotic uptake were 

measured as  ~15 

nL/cm2min, much 

greater than human 

sweat rates (0.01 – 

1 nL/cm2min)  

sdAb-antigen 
stability at 400C 
for 7 days was 
demonstrated. 
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Looking at both sides of the power equation  
Towards Self-Powered Operation 



One harvester does not fit all? 

24 iMEC 

Energy Harvesting 



This is a Very Difficult Problem to 

Address for Human Worn Devices! 

• Thermal: Small DT from human to ambient 

• Mechanical: Weak base excitations at low frequencies for human 

motion 

• Indoor solar:  1 – 10 mW/cm2 available 

• RF scavenging:  << 1 mW from ambient rf.  Much higher powers can 

be achieved if directed rf is utilized.  

• Inductive coupling:  Tens mW available at close proximity 



State of the Art Flexible 

Thermoelectric Generators 
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Glatz et al., J MEMS 18, 763 (2009)  Leonov, J. Micromech. Microeng. 21 (2011) 125013  

Insulation area/(active material area) 

Needs for flexible thermoelectric 
generators 
• Good materials (higher ZT) 
• Longer length (100 – 300 mm) than 

typical film thickness for Bi2Te3 

• Nanostructuring to decrease 
thermal conductivity 

• Thermal resistance of harvester 
should be on order hundreds cm2 K 
/ W 

18.8 mW/cm2 K2 



Flexible Thermoelectric Harvesters 

Barrier:  Parasitics  (esp. skin 
resistance) have a huge impact 

on TEG performance; output 
voltages  ~ 5 – 30 mV 
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NCSU	TEG	System	Model	

Area	=	1.5	cm	x	1.5	cm	
50	legs	

w/o	spreader	

• Flexible, open-platform TEG package 
enabling integration of thermoelectrics 
with excellent performance from many 
sources 

• Flexible, high performance heat sinks  
• New material & process approaches 

Approach: To Increase Power 

High ZT 

Reduced Parasitics 

Heat 
Collection 

Heat 
Rejection 2

7 



Thermoelectrics 

• ~10 – 20 mW on a flexible hand-built package 
with COTS components 

• Better Flexible package 

• Reducing skin resistance is essential 

• “Nano” in PbTe/PeTe1-xSex heterostructures, 
CNT-loaded polymers, ECD Bi2Te3 in alumina 
templates, hierarchical wicking structures 
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ZT=0.8	

ZT	=	1	

ZT=1.2	

ZT=1.5	

TEG: 1.5 x 1.5 cm 
50 legs 

K = 0.8 – 1.5 W/mK 

Approach	zT	
of	bulk	PbTe	

zT of PbTe/PbSe0.2Te0.8  

High	zT	
in	short-period	SLs	



Non-Resonant Human Worn 

Harvesters 
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Rotor 

Magnets 

Piezoelectric 
Plate 

Housing 

Measured prototype:  57 μW/cm2 
peak power exceeds that of end-
loaded cantilever on Si by > 35 times 

Activity Walking Jogging Running 

Power Available 95 mW 360 mW 700 mW 

Power Density 10 mW/gram 37 mW/gram 74 mW/gram 

Shad Roundy 



Future Areas of Collaboration to Enable 

Self-Powered Miniaturized Sensors  

30 

• Ultra low power electronics can change the sensing paradigm by 
enabling long term and continuous sensing 

• Sensors innovation lies in lowering the power consumption and 
biochemical sensing 

• Energy harvesting from the body is hard but is a worthwhile game 
changing technology 
• Thermoelectrics: Higher ZT, Flexible packaging, larger areas 
• Mechanical: need new designs including novel form factors (shoes, knees, 

chest straps) 

• Nano is creating advancements in sensor system components 

• Samsung and KAIST (low power electronics, energy harvesting, 
sensors, flexible materials, manufacturing) 

 



Thank you 
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