11th Korea-US Forum on Nanotechnology

Fabrication of Novel Stretchable Devices

Jeong Sook Ha Department of Chemical and Biological Engineering Korea University

Outline

- **1. Introduction**
- 2. Design concept of novel stretchable devices
- 3. Fabrication
- 4. Stretchable nano-material based devices
- 5. Summary

Stretchable electronics?

Electronics on curved surfaces

Stretchable devices

Stretchable batteries with self-similar serpentine interconnects

Rogers et al. Nat. Comm. 4, 1543 (2013)

Digital cameras with designs inspired by the arthropod eye

Rogers et al., Nature 497, 95 (2013)

Epithermal electronics & integrated circuits

Epidermal Electronics

Rogers et al. Science 333, 838 (2011)

► Thin, conformable device softly laminating onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode

Rogers et al. Science 344, 70 (2014)

Our recent work on stretchable nanowire devices

- "Stretchable Field-Effect-Transistor Array of Suspended SnO₂ Nanowire", Small 7, 1181 (2011).
- "SnO₂ Nanowire Logic Devices on Deformable Nonplanar Substrates", ACS Nano 5, 10009 (2011).
- "Fabrication of a Stretchable Solid-State Micro-Supercapacitor Array", ACS Nano 7, 7975 (2013).
- "Fabrication of Stretchable Single-Walled Carbon Nanotube Logic Devices", Small 10, 2910 (2014).
- "Design and Fabrication of Novel Stretchable Device Arrays on a Deformable Polymer Substrate with Embedded Liquid-Metal Interconnections", Adv. Mater., in press (2014).
 DOI: 10.1002/adma.201402588 (2014).
- 6. "High-Density, Stretchable, All-Solid-State Microsupercapacitor Arrays", ACS Nano, in press (2014). DOI: 10.1021/nn503799j

Stretchable SnO₂ nanowire inverter array

SEM images after deformation

No deterioration of electrical performance upon deformation

Stretchable micro-supercapacitor array

micro-supercapacitor with SWNT electrodes and ionic-gel electrolyte

Kim et al. ACS Nano 7, 7975 (2013).

▶ No noticeable deterioration in electrochemical performance with stretching

2. Design concept of novel stretchable devices

Main concept of our novel stretchable device

3. Fabrication

Schematics of fabrication process

Yoon et al. Adv. Mater. In press (2014)

4. Stretchable nano-material based devices

Stretchable array of LEDs & strain distribution

- → Stable performance upon deformations of stretching, bending, and twisting
- → Minimized strain on island (<1%) with concentrated strain on thin film (>100%) upon 30% stretching

I-V characteristics of LED arrays upon deformation

→ Stable performance upon bending, twisting, and stretching
→ Mechanically stable upon repeated stretching cycles of 16,000 under external strain of 60%

Stretchable SnO₂ nanowire UV sensor & SWCNT FET

Stretchable electronics with integrated energy generation and storage devices

Fabrication of micro-supercapacitor with LbL assembled MWNT/MnO_x electrodes

Stretchable micro-supercapacitor array

а

40

3000

 \rightarrow Stable electrochemical performance upon repeated stretching **up-to 40%**

Single Array ┥┥┥┥┥┥┥ E_{cell} (mWh/cm³) 2.6 2.4 \mathbf{P}_{cell} 23 8 (Wh/cm³)

Hong et al. ACS Nano, In press (2014)

Integrated energy storage devices

Powering various μ-LEDs with different operating voltages by integrated circuit of MSCs
Stable illumination of μ-LEDs under applied strain of 40%

Summary

► We present the fabrication of stretchable electronic devices on newly designed deformable substrates.

► Integrated devices, such as µ-LEDs, SnO₂-NW UV sensors, SWCNT FETs, and planar all-solid-state micro-supercapacitors exhibit mechanically stable device performance after bending, twisting, and uniaxial stretching, which corresponds with the FEM analysis of the distribution of strains.

► This study demonstrates the successful performance of our newly designed deformable device and the potential for its application in the field of wearable nano-electronics.

Acknowledgments

► This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grant No. NRF-2013R1A2A1A01016165).

► This work was done with

Dr. Jangyeol Yoon Ms. Soo Yeoung Hong Ms. Yein Lim Prof. Goangseup Zi Dr. Seung-Jung Lee

Comparison with previous design

Conducting properties of EGaIn upon stretching

→ Stable
conduction upon
uniaxial strain up to 70%
(conductivity of
EGaln : 3.4 x 10⁴
S/cm)

→ No noticeable volume change of EGaln

Conduction through Ag nannowire sticker upon stretching

→ Electrical conduction comparable to Au thin film

→ No change in conductivity upon uniaxial stretching up-to 100%