Searching Novel Higher-κ Dielectric Materials Through High-throughput *Ab Initio* Approach

Kanghoon Yim, Yong Youn, Joohee Lee, Kyuhyun Lee, and Seungwu Han

Materials Theory and Computation Group Dept. of Materials Science and Engineering Seoul National University

High throughput for new high-k materials

III. Result: Materials map for high-k dieletrics

Property Map of ~1,800 oxides

(metallic and unstable data are excluded on the map)

Figure of merits of leakage current : $f = E_g \cdot \kappa$ (approximated)

III. Result: New high-k candidate materials

- c-BeO (rocksalt, high pressure)
 - Be

Two common features for ternary higher-k candidates

① Cations in edge-shared octahedra cage

- ✓ Edge-shared anion octahedra form loose cages.
- ✓ Cations in the cages vibrate with soft phonon frequency.
- **②** Channeled structure by strong covalent oxide unit
 - ✓ Strong covalent oxide unit + loosely bound cation
 - ✓ Channeled structure : ions easily vibrate along the channel that is not blocked by other ions.

