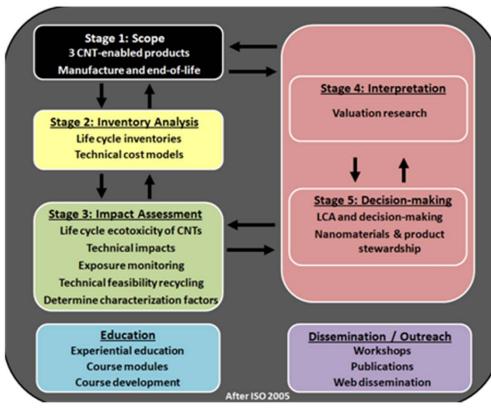
Life Cycle Issues for Scalable Nanomanufacturing of CNT-enabled Products

Jacqueline Isaacs
Associate Director, Center for High-rate Nanomanufacturing
Northeastern University, Boston MA

The 10th U.S.-Korea Forum on Nanotechnology Boston, MA USA October 15-16, 2013



How can we ensure nanomanufacturing processes and products remain safe for workers, consumers and the environment?

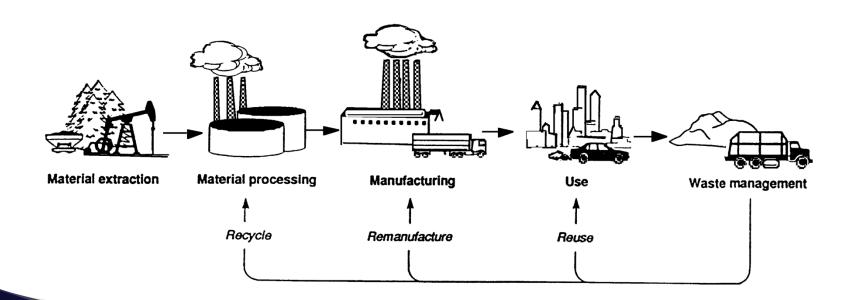
How can industry develop new technologies in a responsible, sustainable manner?

NSF SNM: Designing and Integrating LCA Methods for Nanomanufacturing Scale-up

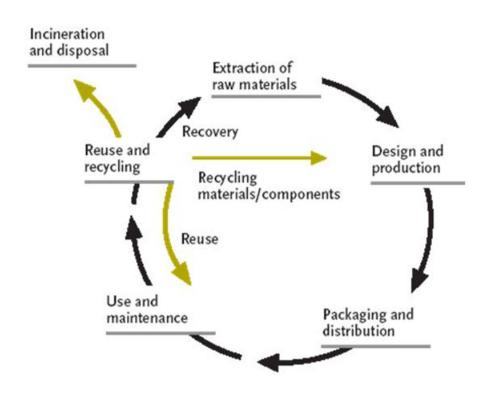
Isaacs, Bosso, Busnaina, Cullinane, Eckelman, Sandler: Northeastern

Mead, Bello: U Mass Lowell

Zimmerman: Yale


Nash: Harvard

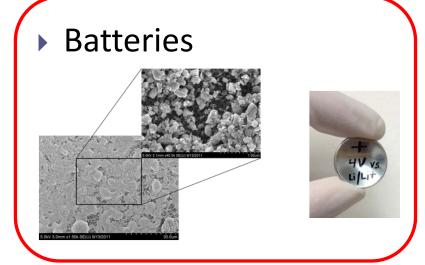
- NSF Scalable Nanomfg Award #1120329
- Lead Institution: NEU
- Collaborators at Yale,
 Harvard, UMass Lowell
- Project focuses on applications with CNTs
 - Composites (EMI shielding)
 - Batteries
 - Sensors



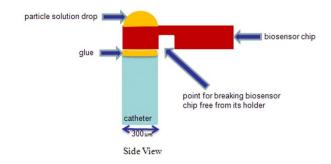
Utilizes Life Cycle Assessment

- Methodology to evaluate the environmental effects and potential impacts of...
 - Product
 - Process
 - Activity
- From raw materials acquisition through production, use and disposal

Nano-Enabled Product Lifecycle



- Where do nanoenabled products contact people?
- Where would nano products contact the environment?
- Any means for estimating quantities at points of contact?


Applications Using CNTs

SWNT Switch

Sensors

EMI-Shielding

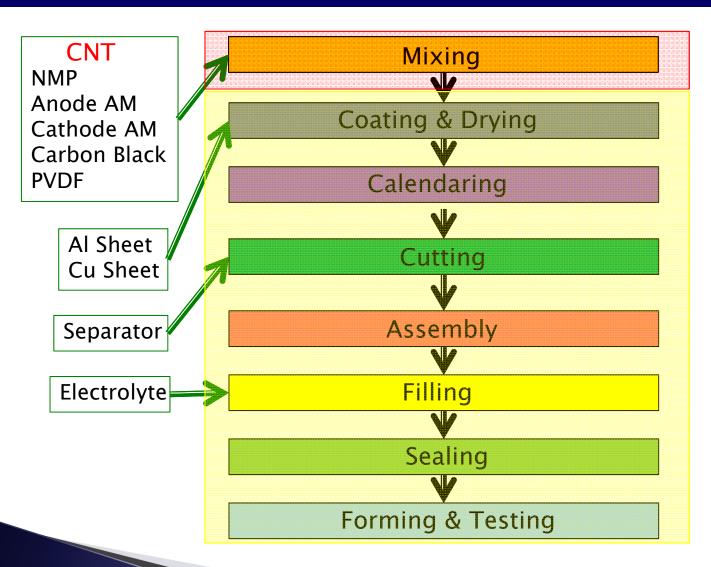
Batteries Background

1. Components of batteries

- Cathodes
- Anodes
- Separator and electrolyte

2. Batteries classification

- Primary or non-rechargeable
- Secondary or rechargeable



Process Flow Chart – CNT Enabled LiMnO Battery

High Protection Environment Desired

Clean Room Environment

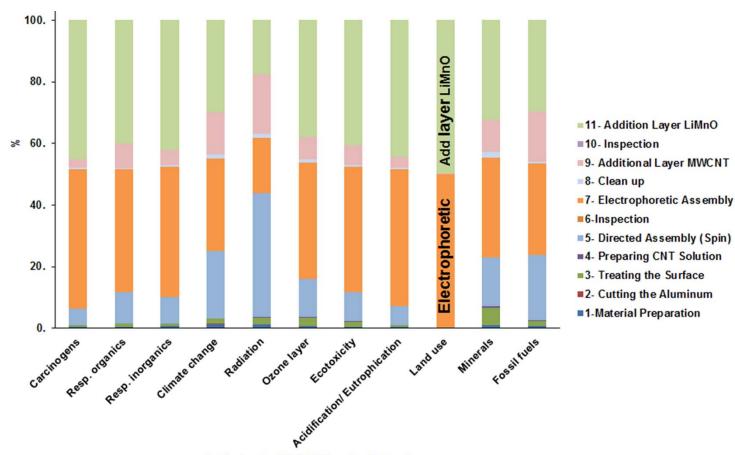
CHN Toolbox Connects Research to Applications

Templates	Nanoelements	Assembly Processes	Transfer Processes	Substrates	Applications
Microwires template	Nanoparticles	Electrophoretic 2-D and 3-D	Direct transfer (no functionalization)	Silicon	SWNT switch for memory devices
Nanowires templates	Carbon nanotubes (SWNTs and MWNTs)	Chemical Functionalization	Direct transfer with chemical functionalization	Polymer	Polymer-based Biosensors
Nanotrench template	Conductive polymers (PANi)	Electrophoretic and chemical functionalization	No transfer needed	Metal	Nanoparticle- based Biosensors
Template-free	Polymer blends	Dielectrophoretic 2-D and 3-D	Reel-to-reel transfer		SWNT Batteries
Damascene Template	Fullerenes	Convective	Switchable functionalization		Photovoltaics
	Acenes	Convective interfacial			SWNT Chem Sensors
	Graphene	Self assembly			EMI Shielding

Process Flow for CNT Cathode/Anode

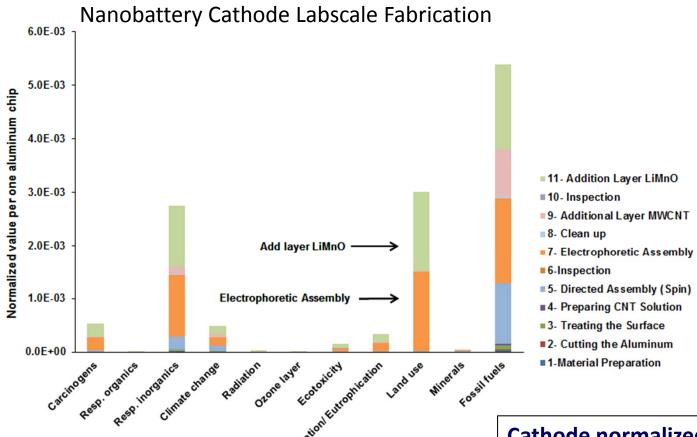
Templates	Nanoelements	Assembly Processes	Transfer Processes	Substrates	Applications
Microwires template	Nanoparticles	Electrophoretic	Direct transfer (no functionalization)	Silicon	SWNT switch for memory devices
Nanowires templates	Carbon nanotubes (SWNTs and MWNTs)	Chemical Functionalization	Direct transfer with chemical functionalization	Polymer	Polymer-based Biosensors
Nanotrench template	Conductive polymers (PANi)	Electrophoretic and chemical functionalization	No transfer needed	Metal	Nanoparticle- based Biosensors
Template-free	Polymer blends	Dielectrophoretic	Reel-to-reel transfer		CNT Batteries
Damascene Templates	Fullerenes	Convective	Switchable functionalization		Photovoltaics
	Acenes	Convective interfacial			SWNT Chem Sensors
	Graphene	Self assembly			EMI Shielding

Life Cycle Inventories for CNT Cathodes


ENERGY	kWh
	1.073657
INPUT MATERIAL	g/chip
ethanol (200 proof)	15.78
Lithium Manganese Oxide Powder	0.1
Gold Chip	0.5576
N2 Gas	10.324
ethylene glycol	0.446
deionized water	5163.95
disposable lab materials (plastic and paper	10.48
MWCNT	0.00112
INPUT TOTAL	5201.639

OUTPUT MATERIAL	g/chip	
mixed wastewater to treatment	5174.364	
hazardous waste	16.276	
emissions to air	10.324	
MWCNT	0.00112	
OUTPUT TOTAL	5200.964	

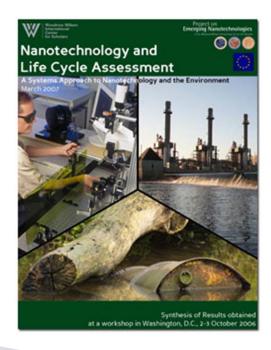
Nanobattery Cathode Characterization Results

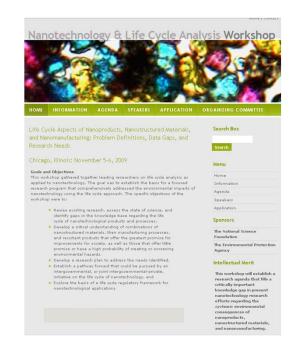

SimaPro Software: Nanobattery Cathode Labscale Fabrication

Analyzing 1 p 'CNT Lithium-ion Battery'; Method: Eco-indicator 99 (H) V2.06 / Europe El 99 H/H / Characterization

Nanobattery Cathode Normalized Results

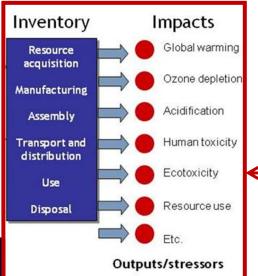
Analyzing 1 p 'CNT Lithium-ion Battery'; Method: Eco-indicator 99 (H) V2.06 / Europe El 99 H/H / Normalization


Cathode normalized result indicate three greatest contributors:


- Respiratory inorganics
- Land use
- Fossil fuels

Results do not indicate effect of CNTs due to limited toxicological information...

Same issues as in 2007, 2009...



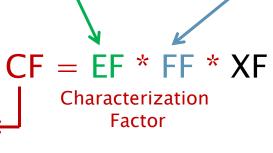

CNT Ecotoxicity Characterization Factors Predicted

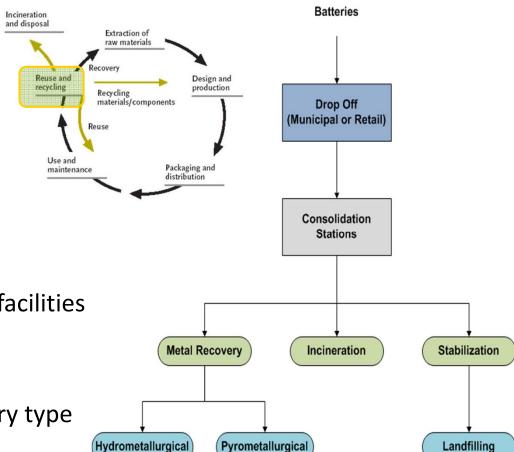
Table 1. Past Studies of CNT Aquatic Toxicity for Selected Organisms

type	genus species	test type	test details
bacteria	E.coli, P. aeruginosa, S. aureus, B.subtilis	membrane integrity	reported as 5–100 mg/L
protozoa	Stylonychia mytilus	uptake and growth inhibition	
algae	Pseudokircheriella subcapita	growth inhibition	sublethal, IC-25 value
copepods	Amphiascus tenuiremis	mortality	concentration of 10 mg/L gives 35% mortality SWNT; 20% for purified
	Amphiascus tenuiremis	fertilization/molting	concentration of 1 mg/L gives No Observed SWNT
daphnia	Daphnia magna	LC50	reported as 2.4-15 mg/L
hydra	Hydra attenuata	sublethal morphological change	reported as 1-10 mg/L
fish	Oncorhynchus mykiss	respiratory toxicant	reported as 0.1-0.5 mg/L
	Danio rerio	hatching delay	240 mg/L for MWNT

Center for High-rate Nanomanufacturing

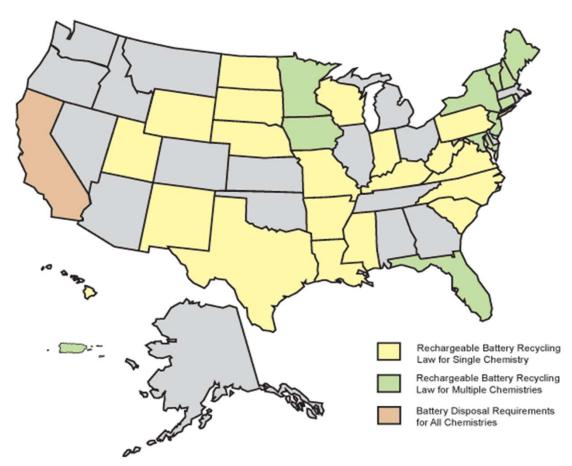
Effect, Fate, Exposure

Table 2. CNT Fate and Transport Parameters for LCA Scenarios


parameter	unit	worst case	realistic	ref	
raction of CNTs released to environment		1.0	0.002	1,42	
nolecular weight ^a	g mol ⁻¹	1×10^{5}	1×10^{5}	53	
octanol—water partition coeff. K_{OW}		1×10^{5}	1×10^{0}	21,54	
rganic carbon—water partition coeff. K_{OC}	L kg ⁻¹	1×10^{-20}	1×10^7	55	
Henry's law coeff. 25 °C, K_H	Pa kg mol ⁻¹	1×10^{-20}	1×10^{-20}	46	
olubility in deionized water (25 °C)	mg L ⁻¹	2×10^{4}	1×10^{1}	56,57	
lissolved carbon—water partition coeff., K _{DOC}	L kg ⁻¹	1×10^{-20}	1×10^3	52	
uspended solids—water partition coeff., Kpss	L kg ⁻¹	1×10^{-20}	1×10^{3}	52	
ediment—water partition coeff., <i>Kp_{Sd}</i>	L kg ⁻¹	1×10^{-20}	1×10^{3}	52	
oil—water partitioning coeff., Kp_{SI}	L kg ⁻¹	1×10^{-20}	1×10^{3}	52	
eggregation and settling	%	0	90	42	
legradation rate in air	s^{-1}	1×10^{-20}	1×10^{-20}	6	
legradation rate in water	s^{-1}	1×10^{-20}	1×10^{-20}	6	
legradation rate in sediment	s^{-1}	1×10^{-20}	1×10^{-20}	6	
legradation rate in soil	s^{-1}	1×10^{-20}	1×10^{-20}	6	
pioaccumulation factor in fish/biota, BAF _{fish}	L kg ⁻¹	5×10^3	5×10^{-2}	46,58	
Based on a density of 1.3 g cm ⁻³ and a length of 100 nm.					

Eckelman, Mauter, Isaacs, and Elimelech, New Perspectives on Nanomaterial Aquatic Ecotoxicity: Production Impacts Exceed Direct Exposure Impacts for CNTs, Enviro Sci Tech, 2012

End-of-Life Alternatives for Batteries


Alternatives for final disposition:

- Landfill
 - Most household batteries
 - 87% of all waste batteries
- Stabilization
 - Prior to landfill
 - Not used in general
- Incineration
 - Municipal waste combustion facilities
- Recycling
 - High temperature processes
 - Percentage depends on battery type

Recycling Laws for Batteries

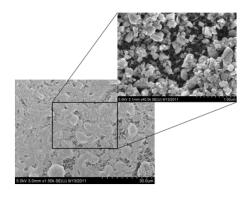
- Rechargeable Battery Recycling Corporation
- Single Chemistry (Lead-Acid)
- Multiple Chemistries (Lead-Acid and Ni-Cd)
- California includes primary batteries
- Recovery of (Ni, Co, Mn) for steel production (secondary feedstock)

Source: Recycling Laws Map http://www.call2recycle.org/recycling-law-map/

Product Stewardship Issues

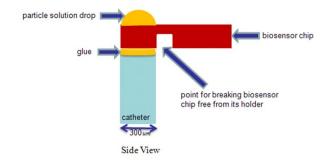
"Product stewardship calls on those in the product life cycle manufacturers, retailers, users, and disposers—to share responsibility for reducing the environmental impacts of products."

US Environmental Protection Agency

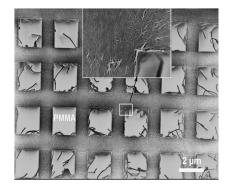

- 1. Can nano-enabled products be handled appropriately using the same stewardship collection infrastructure developed for other products, or must manufacturers provide some form of special handling for products containing nano?
- 2. Does mixing of recyclate from nanoenabled products impact markets for recycled materials?
- Does the collection of nano-enabled products pose particular challenges to household waste facilities run by municipalities in terms of costs, worker health and safety, or public perception?

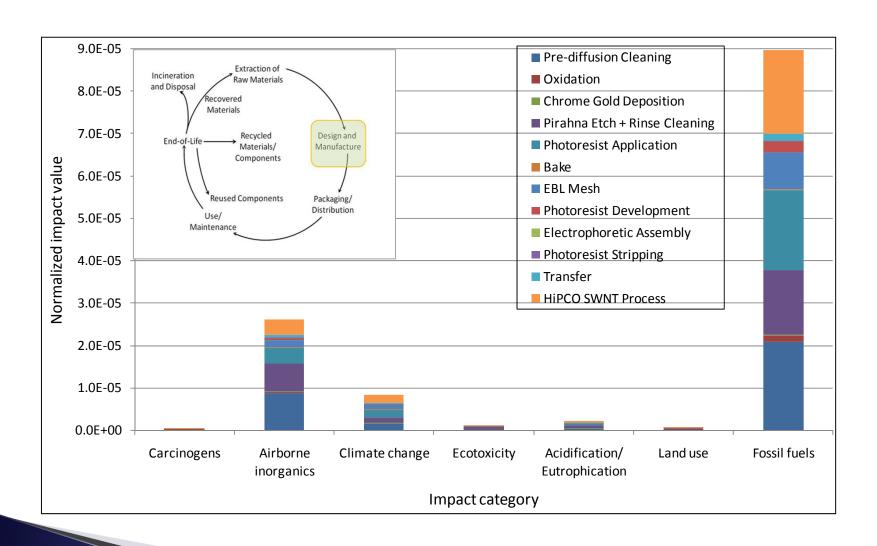
Applications Using CNTs

SWNT Switch



Batteries



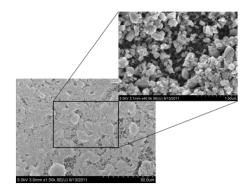

Sensors

EMI-Shielding/ Composites


Impacts for CNT-Composite Fabrication

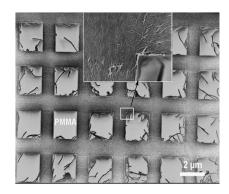
Recycling at EOL for CNT-Polymers

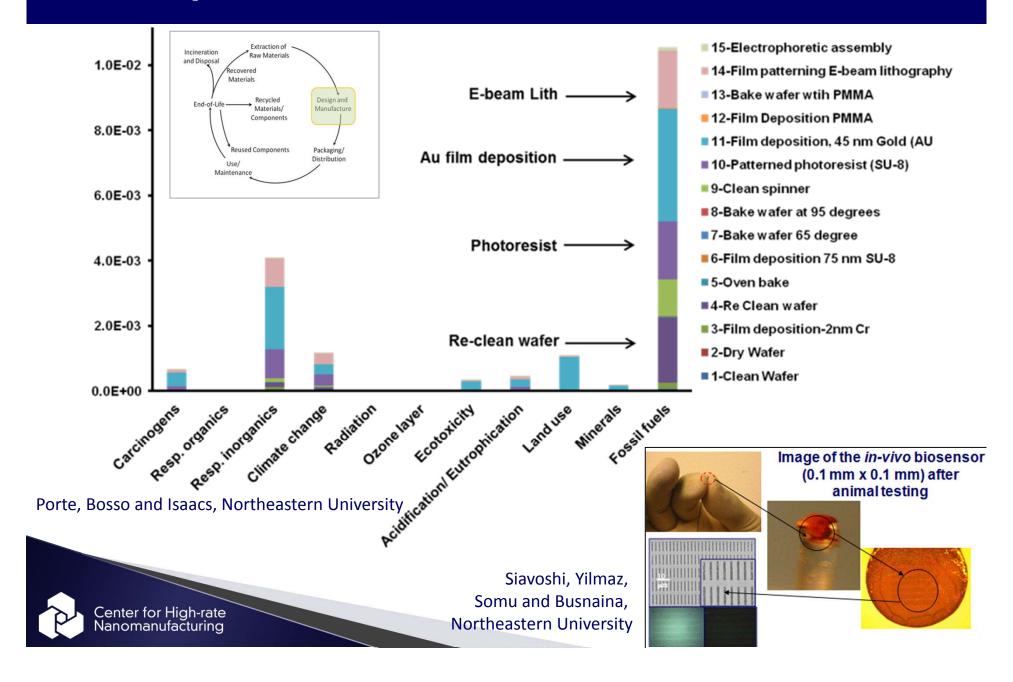
- Sustainability infers need for recycling strategies for both manufacturing scrap and post-consumer waste
- Determine effect of molding cycles on recyclate properties
 - thermal and/or mechanical degradation?
 - chemical and physical changes?
 - decrease in final properties?
- Determine maximum number of cycles to maintain the level of quality for secondary materials
- Assess potential for worker exposure during recycling processes, such as machining and grinding



Applications Using CNTs

SWNT Switch


Batteries



▶ EMI-Shielding/ Composites

Impacts from CNT-Sensor Fabrication

Process Flow Diagrams

Chemical sensors

Biosensors

Comparative Impact Assessment

Conventional Chemical Sensor (Metal Oxide)

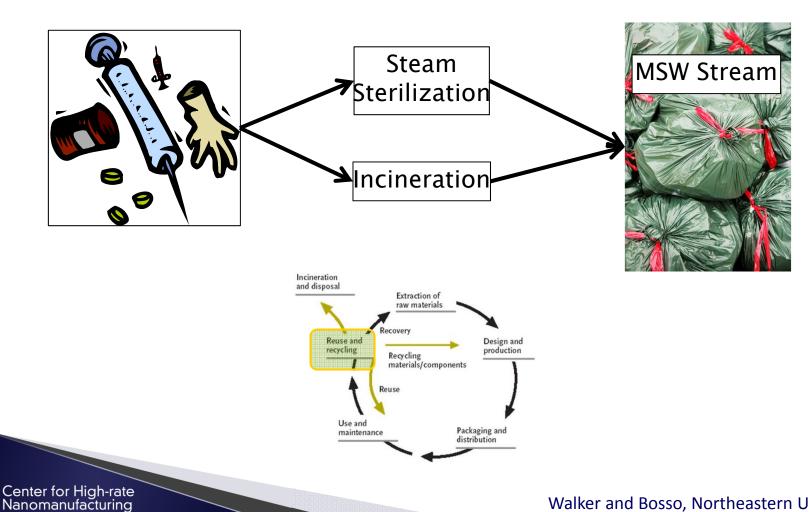
VS

Next Generation Chemical Sensor (Carbon Nanotube, CNT)

Assessment Input

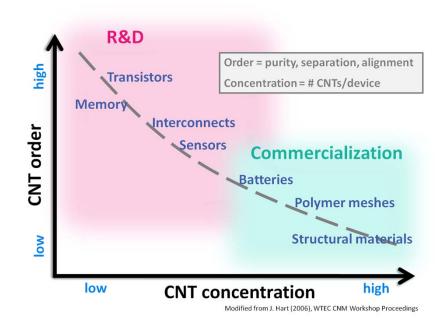
Processes unique to metal oxide semiconductor sensor fabrication Same manufacturing foundation: Silicon microchip (IC) CMOS Process Processes unique to carbon nanotube sensor fabrication (ex. manufacture and functionalization of CNTs)

Assessment Output


- Comparative environmental and human health impacts throughout the life cycle
- Will focus on human toxicity, ecotoxicity, global warming potential, fossil fuels

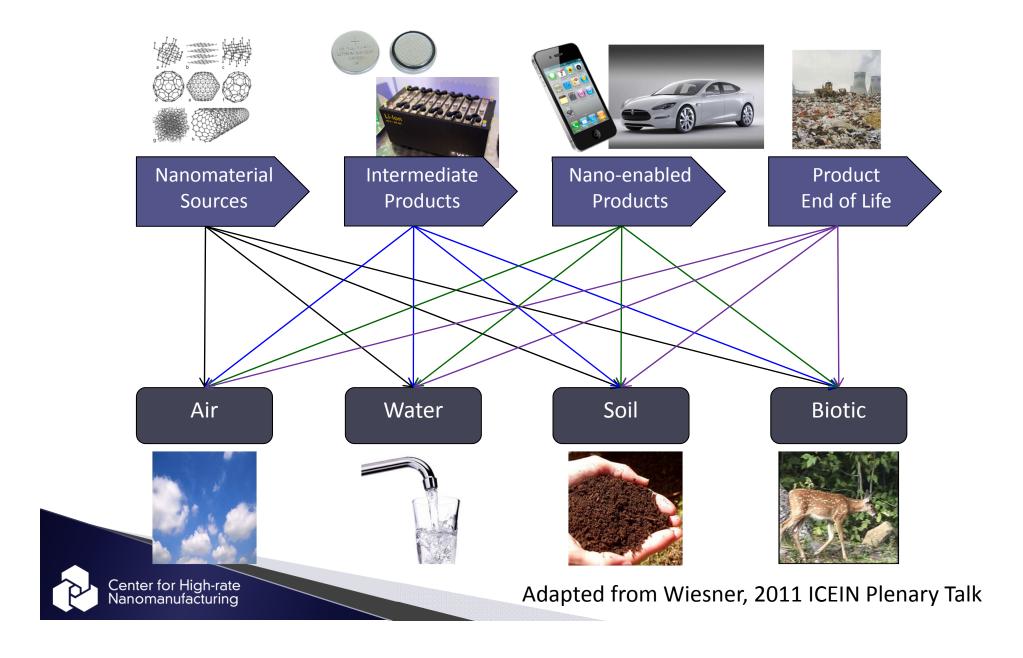
Proposed Advantages:

Lower Detection Limits
Enhanced Selectivity
Lower Operational Temperature
Low operation energy consumption
Small Size
Longer Lifetime


End-of-Life Issues for Nanosensors

Do standard practices for medical waste hold for CNTs?

Inventory Collection Offers Value


- Process-based inventory collection applied to lab-scale fabrication of CNT applications
- Scale-up estimates allow approximation of possible CNT releases by series of nanoenabled products
 - Manufacturing
 - Use
 - End-of-Life decommission
- Opportunity to reduce environmental footprint of nano-fabrication
 - Greener design...
 - Early intervention...

Inventory collection and estimations through the lifecycle will provide data for influence diagrams and help prioritize subsequent research needs.

Nanomaterial Releases Through the Value Chain

Finding the Balance Between Social & Technical

- Materials scarcity?
- Energy increase for raw mat'l production?
- Energy reduction during manufacture?
- Energy reduction during product use?
- Dissipation issues at End-of-Life?

System analysis needed to inform decisions --But system can become quite broad and includes the social context into which the technology evolves...

Can the interdisciplinary community learn to bridge the gap?

Sustainable Process/Product Development

Engineering Performance

EHS Monitoring and Screening

Enviro-Economic Assessment

Regulation and Economic Developmt

Social Justice Issues

- Create technological feasibility
- Determine best safety practices and screening methods for nanomaterials
- Evaluate EHS /economic tradeoffs and impact of possible releases
- Promote informed policymaking
- Advocate productive public discourse

Integrated Systems Approach Required for Appropriate and Efficient Commercialization

Acknowledgements

Funded by NSF Award Numbers EEC-0832785 and SNM-1120329

http://www.northeastern.edu/chn/

