Nanoscale Silicon Based Nonvolatile Memory

Chungwoo Kim, Ph.D.
cw_kim@samsung.com
Acknowledgements

Collaboration

Seoul National University (SNU)
Prof. Park, Byung-GooK

Korea Institute for Advanced Study (KIAS)
Prof. Kim, Dae Mann

Cornell University, USA
Prof. Sandip Tiwari

Institute of Semiconductor Physics, Russia
Prof. Vlradmir Gritsenko

Funding

Kwangju Institute of Science and Technology (KJ IST)
Prof. Hwang, Hyun sang

Sungkyunkwan University
Prof. Chung Ilsueb

Tera-level Nanodevices
21st Century Frontier R&D Program, Ministry of Science and Technology
SEC and SAIT
Outline

- Introduction
- Current research status
 - Nano fabrication Process
 - Nanoscale patterning
 - SiN thin film
 - Si Nanoparticle
 - Nano devices
 - Nanoscale SONOS memory
 - Vertical channel memory
- Future Work
New application, unification
- Diversified from PC into digital application
- Increasing capacity of voice, motion picture information
 → Need higher density of memory
- Increasing demand for unified memory

Uncertainty of DRAM & Flash Memory scalability

Memory Market: $35 billion (2001), $72 billion (2010), 8.3% increase/year
Flash Memory Roadmap

(Source: ITRS 2001)

- **Research Stage**: Scale limit?
- **Uncertain Stage**: 130, 180, 70, 50, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 10

Year:
- 1995
- 2000
- 2005
- 2010
- 2015

- **Unit Cell**
- **Production**

Flash Technology Requirements

(Source: ITRS 2001)

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash tech. Node, F[nm]</td>
<td>150</td>
<td>130</td>
<td>115</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>NOR highest W/E Voltage[V]</td>
<td>8-10</td>
<td>8-10</td>
<td>8-10</td>
<td>8-10</td>
<td>7-9</td>
<td>7-9</td>
<td>7-9</td>
</tr>
<tr>
<td>NAND highest W/E Voltage[V]</td>
<td>19-21</td>
<td>18-20</td>
<td>18-20</td>
<td>18-20</td>
<td>17-19</td>
<td>17-19</td>
<td></td>
</tr>
<tr>
<td>NOR tunnel dielectric thickness[nm]</td>
<td>9.5-10.5</td>
<td>9.5-10</td>
<td>9-10</td>
<td>9-10</td>
<td>8.5-9.5</td>
<td>8.5-9.5</td>
<td>8.5-9.5</td>
</tr>
<tr>
<td>NAND tunnel dielectric thickness[nm]</td>
<td>8.5-9.5</td>
<td>8.5-9</td>
<td>8-9</td>
<td>8-9</td>
<td>7.5-8</td>
<td>7.5-8</td>
<td></td>
</tr>
<tr>
<td>NAND interpoly dielectric thickness[nm]</td>
<td>14-16</td>
<td>13-15</td>
<td>12-14</td>
<td>12-14</td>
<td>12-14</td>
<td>11-13</td>
<td>10-12</td>
</tr>
</tbody>
</table>

Notes:

- Solutions Exist
- Solutions are Known
- Solutions are NOT Known

What’s the limits of flash scaling?
Discrete traps

Discrete traps (SiN traps or Nanocrystal)

* SONOS (Silicon-Oxide-Nitride-Oxide-Silicon)
Motivation for SONOS

< Advantages >

- Compatibility of SONOS with CMOS with the use of thin nitride
- Lower programming voltage
- Smaller dimension capability than FG EEPROM
- Longer retention & low defect induced tunneling leakage (Nitride instead of poly Si)
- Higher programming speed (depends on ONO thickness)
Comparison of Memory Technologies

<table>
<thead>
<tr>
<th></th>
<th>FRAM</th>
<th>MRAM</th>
<th>PRAM</th>
<th>SONOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size</td>
<td>8~25 F²</td>
<td>8~9 F²</td>
<td>6 F²</td>
<td>4~10 F²</td>
</tr>
<tr>
<td>Read time</td>
<td>30~200 ns</td>
<td>10~100 ns</td>
<td>10~100 ns</td>
<td>20~120 ns</td>
</tr>
<tr>
<td>Write time</td>
<td>30 ns</td>
<td>10~15 ns</td>
<td>10~100 ns</td>
<td>1 µs ~ 1 ms</td>
</tr>
<tr>
<td>Retention</td>
<td>> 10¹⁰</td>
<td>> 10¹⁰</td>
<td>> 10¹⁰</td>
<td>>10¹⁰</td>
</tr>
<tr>
<td>Endurance</td>
<td>> 10E12</td>
<td>> 1E13</td>
<td>> 10E13</td>
<td>> 1E5</td>
</tr>
<tr>
<td>Current/Power</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Process</td>
<td>Special</td>
<td>Special</td>
<td>Special</td>
<td>CMOS</td>
</tr>
<tr>
<td>Issues</td>
<td>Etching process Cost, Retention, Fatigue</td>
<td>Etching process Uniform thin films Cost</td>
<td>Power consumption</td>
<td>Thin Oxide film Faster P/E time</td>
</tr>
</tbody>
</table>
SONOS Memory Development

- **Channel Length:**
 - 130 nm (2001)
 - 70 nm (2002)
 - 30 nm (2003)

- **Source, Drain, Gate:**
 - 70 nm

Nano Lithography

Sidewall Patterning

Positive Resist: PMMA

Negative Resist: Calixarene
Si Nanoparticle Fabrication by Aerosol Laser Ablation

- D < 10nm
- \(\rho \sim 1 \times 10^{11} \, \text{cm}^{-2} \)

```
Concentration (cm\(^{-3}\))
```

```
Nanoparticle Size (nm)
```

![Graph showing concentration vs. nanoparticle size](image)

![Micrograph of Si nanoparticles](image)
30nm SONOS Memory by SWP

Key Features of SONOS Cell
- Memory Node Size: 30 x 30 nm²
- Write/Erase Voltage: <10V
- Write/Erase Time: 1 msec
- Endurance: >10⁶ cycles
- Retention = 1 year @ T=85°C

ONO=23/120/45 Å

Threshold Voltage [V] vs Write/Erase Time [Sec]

Key Characteristics of SONOS Memory

- Drain Current [A] vs. Vds [V]
 - ONO=23/120/45 Å
 - Vth=-0.05V
 - W/L=30nm/30nm
 - S.S = 89mV/dec
 - DIBL = 105mV
 - Vth=0V

- Vth (V) vs. Cycles (number)
 - At 85°C
 - Program state
 - Erase state

- Vth vs. Time [sec]

SONOS Memory by E-beam Lithography

SONOS Cell by E-beam Lithography

W/L : 33nm / 46nm
ONO layer TEM & AES Analysis

- TEM of the ONO (2 nm/7 nm/9 nm) stack
- Auger profile showing the stoichiometric of ONO layer.
Program & Erase Characteristics

- $\Delta V_{th} \sim 2.4V$
- Trapped Charge density = $4.1 \sim 5.9 \times 10^{12} \text{ cm}^{-2}$
- No. of $e^- = 61 \sim 88$ for 33nm x 46nm node size
• Memory window is nearly similar for SONOS devices with different memory node areas.
• Retention time is good with 75nm width and 100 nm length at 85°C.

• It remains unchanged up to 10^5 cycles, indicating superior endurance characteristics at 85°C.
Memory Effect at 30 nm dimensions

- Single electron charging effect at 30 nm dimensions.
Vertical Channel SONOS

Schematic of VC SONOS

- $\Delta V_{th} = 1.6V$ @ 8/-8V & 10ms
TEM images

Source gate drain

CVD oxide
Vertical channel

Gate

Source

Drain

Contact

Vertical channel bulk
Future Work

- Nano fabrication process for Integration
- Improvement of SONOS memory characteristics
 - High-k materials
 - New memory cell structure
 - Optimal bias conditions
- Device physics
 - Single electron effect
 - Reliability failure mechanism
 - Memory cell Modeling/Simulation