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A B S T R A C T

As a sustainable alternative regarding environmental impact, cost-effectiveness, and social integration, solar
energy is expected to become an ever more ubiquitous part of our intricate human world. Dropping prices and
growing demand are making it more viable for a variety of solar devices to be implemented in urban and other
complex environments. From devices helping people meet their energy needs to solar-powered drones fulfilling
urban services like maintenance, security, carrying goods, or even transporting people. These environments in-
volve constrained and dynamic conditions, encouraging the use of solar harvesting devices that can freely adopt
tailor-made positioning and tracking strategies to make the most of available resources. A crucial challenge is
improving the geometrical flexibility and efficiency of modeling capabilities. In particular, developing practical
approaches that account for detailed shadow effects in complex scenarios can be computationally challenging,
and it is not clear how different approaches compare face-to-face in urban contexts and with freely defined
harvesting surfaces. In this work, four shadow modeling approaches are developed and demonstrated in urban
scenes of varying complexity; accuracy and precision are characterized versus computational cost; run-time
trends are analyzed as functions of scene complexity, and energy estimation implications are examined. The
approaches converge within 1% deviations, and the highest performing approach is three orders of magnitude
faster than the most computationally costly. This work supports the selection and development of accurate,
efficient, and flexible modeling frameworks that will play a role in enabling a diverse range of solar harvesting
devices in challenging urban environments.
1. Introduction

The steadily falling prices of Photovoltaics (PV) (by 90% from
2007–2017 [1]), with collectors that can harvest clean energy in a
decentralized, safe, and modular manner are making it more viable
and sustainable [2] for many types of solar devices to be implemented
in urban [3,4] and other complex settings (Fig. 1). As a large fraction
of energy demand comes from cities [5], bringing energy production
closer to consumers reduces transmission and distribution losses [6,
7] and may make the electrical grid more efficient and adaptable.
There has been notable research interest in urban solar harvesting,
including solar accessibility in developing cities [4,8], energy impli-
cations of shadow distribution on roofs [9], solar potential maps [10]
toward more sustainable urban planning [11], energy-efficient architec-
ture [12], solar-powered aerial vehicles [13], fixed building-integrated
PV [14–16], and dynamic building envelopes [17]. Other complex
environments include heliostats [18], step-like fields [19], and wind–
solar dual land use [20]. In this work, ‘‘complex’’ refers to scenarios
where the surrounding objects cannot be reduced to simple analytical
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expressions and their shape, the shape of the available harvesting area,
and the positions and orientations of the harvesting surfaces can be
freely defined.

There are many types of potentially shadow-casting objects that can
be relevant for solar harvesting in intricate settings (Fig. 1(B)). Near
objects [21] include buildings [13], façade prominences [22], trees,
cables, chimneys, antennas, poles or even the surrounding terrain [23].
Self-shadows [24,25] include near solar devices (Fig. 1(A)) or parts
from the same device, such as side-walls in solar cookers [26] or
trough fins in solar heaters [27]. Distant objects or the topography at
the horizon may also be considered [28,29]. The cast shadows may
be ‘‘soft’’ [30], which can reduce the overall intensity of the accessi-
ble solar irradiance, or they may be ‘‘hard’’ partial shadows [30,31],
with abrupt changes in irradiance distribution. This can lead to PV
degradation, bumpy IV curves [32], or dangerous voltage and current
mismatches and hot-spots [32]. This work focuses on modeling the
‘‘hard’’ shadows that result from blocking (partially or fully) the incom-
ing Beam radiation. Many studies focus on Beam shadows (as opposed
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Nomenclature

Acronyms and Names:

Ana Analytical Areas approach for Beam
shadow modeling

B Simulated cuboid volumes as building
objects

CL Convergence Level
FRT Focused Ray Tracing approach for Beam

shadow modeling
GT Naive Ground Truths
MAD Median Absolute Deviations
Med Median
NSRDB National Solar Radiation Database
Pix Rasterization and Pixel-Counting approach

for Beam shadow modeling
POV Point Of View
PV Photovoltaics in general or simulated har-

vesting surfaces
Reg Regression model
RMSE Root-Mean-Square Errors or deviations
RT Forward Ray Tracing approach for Beam

shadow modeling
SD Standard Deviation

Variable subscripts:

𝐴 Related to Albedo radiation
𝑎 Related to ambient temperature
𝐵 Related to Beam radiation
𝑐𝑜𝑣 Related to the PV covering
𝐷𝐶 Related to Circumsolar radiation
𝐷𝐻 Related to Horizon Brightening radiation
𝐷𝐼 Related to Sky Isotropic radiation
𝑔𝑟 Related to ground
𝑠𝑘𝑦 Related to sky

Variables:

𝛼𝑇 Total absorptance
𝛽 Inclination of the harvesting surface
𝜖 Emissivity
𝜂𝑃𝑉 Effective PV efficiency
𝜂𝑟𝑒𝑓 Reference PV efficiency reported by the

manufacturer at 𝑇𝑟𝑒𝑓 temperature
𝜎 Stefan–Boltzmann constant
𝜏 Transmittance factor
𝐵 PV temperature coefficient
𝐶 Thermal conductivity
ℎ Convection coefficient
𝐼 Incident Irradiance
𝐼𝜏𝑠 Total incident irradiance considering trans-

mittance, shading, and electrical mismatch
losses

to Diffuse shadows) because they usually account for most of the
shading-induced energy losses [11,33], and Beam is usually regarded
as the radiation component that is the most affected by shadow-casting
structures [9,19,34–36].

Some common simplifying constraints and assumptions are useful in
traditional solar harvesting scenarios, e.g., solar farms in open spaces,
𝐼𝜏𝑠𝑔 Same as 𝐼𝜏𝑠 but without 𝑁𝑆𝐵 consider-
ations, i.e., shadow implications are only
geometrical

𝐼𝑠 Total incident irradiance unobstructed by
shadows

𝐿 PV covering thickness
𝑀∕𝑀𝑟𝑒𝑓 Spectral response of the PV material
𝑁𝐵 Number of PV blocks in a PV panel
𝑁𝑅𝑎𝑦𝑠 The total number of rays
𝑁𝑆𝐵 Number of shaded PV blocks
𝑃 Power output
𝑅 Unitless radius for relative comparisons

between simulated scenes
𝑟𝑇 Relative run-time
𝑇 Temperature
𝑈𝑆𝐹𝐵 Unshaded Factor for Beam radiation

but may be limiting or lead to considerable inaccuracies in more
complex and dynamic environments. Regarding positioning, solar har-
vesting devices are often arranged in uniform and fixed grids [36,37]
along with fixed orientations [34], and when active tracking is used,
the trackers are often assumed to be aligned with each other [19,
24,35,37]. This simplifies energy estimations, especially concerning
potentially intricate shadowing effects [6,11], but it may restrain flex-
ibility in environments with challenging constraints [36]. In complex
environments, more dynamic tracking [13] and positioning strate-
gies [28] can improve energy efficiency and versatility. For instance,
solar modules may be positioned in 3D arrangements [34], in non-
regular grids [24,36], or use individualized [35] and context-aware
tracking (e.g., backtracking [22]) to minimize shadows and maximize
harvesting.

Shadow modeling can be crucial in the estimation of power out-
put [21,29] and the evaluation and optimization of solar collectors
[19]. It can greatly influence design decisions [33] and play a ma-
jor role in making the most of available resources, such as enabling
efficient land use [37]. Developing accurate, efficient, and flexible
modeling frameworks will play a role in enabling a diverse range of
solar harvesting devices, namely, systems that harvest solar energy
to provide a variety of urban services, such as helping people meet
their energy needs in their homes (e.g., building-integrated PV) or
vehicles (e.g., vehicle-integrated PV [38]), assisting traffic control,
public lighting, and drones for surveillance or carrying goods [39,40].

There are a variety of ways to account for Beam shadows toward
solar energy estimation. Ray-tracing techniques [10,33] are among the
prevailing ways of simulating how solar radiation interacts with an
environment. In the context of Beam shadows, solar radiation can be
modeled as parallel rays that behave according to the laws of geometri-
cal optics. This is known to be a good approximation of radiation when
the scale of the objects involved is orders of magnitude larger than the
wavelength [33]. In ‘‘forward’’ ray-tracing, a set of rays are generated
in the direction of the light source (i.e., the sun) to sample the space of
interest, and then the number of rays that reach the harvesting surfaces
are counted. Some computational resources may be wasted calculating
ray paths that do not interact with harvesting surfaces, so ‘‘backward’’
ray-tracing [33] generates the rays directly from these surfaces and
analyzes whether the rays are obstructed. On the other hand, instead of
counting unobstructed rays, rasterization techniques count the number
of pixels that correspond to the plotted harvesting surfaces and that are
visible from the sun’s point of view [21].

Analytical shadow modeling approaches provide direct results that
do not depend on resolution (e.g., the number of rays or pixels used to
sample the space). They differ in the geometries that they allow [29], as
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Fig. 1. Shadow modeling for urban solar harvesting. Shadows that hinder the harvesting performance (A) are dependent on solar position, the positions and orientations of the
harvesting surfaces, the surrounding objects, and the distant silhouettes at the horizon (B). A virtual environment is developed to test and demonstrate different shadow modeling
approaches in a range of urban scenes. The ‘‘Development’’ scene (B) is a generic setting with varying complexity used as the main testing ground. Four additional scenes (C) are
generated based on real locations (screenshots from Google Earth®, 2021) to further explore the modeling capabilities and test the main findings. Radii (R) are unitless and only
for relative comparisons.
well as in the practical restrictions and simplifications that they entail.
Using vector analysis, linear algebra, and trigonometric relationships,
they typically project the shadow-casting geometries along the Beam’s
direction and delimit the shaded area. Some are elegantly simple and
effective, but constrained to specific applications, such as shadows cast
over windows [41], stratospheric aerostats with solar arrays [42], solar
cookers [26], roofs as common 3D shapes [9], wind turbine poles [20],
fixed parallel solar arrays [19,43], and solar trackers aligned with each
other [24,35,37]. Overall, the more general and detailed these methods
are, the more complex and difficult to implement they are [21,25,44].
One main challenge is tracing the relevant isolated contours from
arbitrarily intricate overlapping geometries, which may be addressed
with convex-hull and polygon-clipping algorithms [6,12,29,36].

Developing practical modeling frameworks that account for de-
tailed shadow effects in complex scenarios can be computationally
challenging [21,29,45,46]. Also, computational cost has been reported
to increase with scene complexity [11,29], which may be limiting for
some applications. From the published literature, it is not well under-
stood how the different Beam shadow modeling approaches compare in
terms of accuracy, precision, run-time efficiency, and practicality, espe-
cially in intricate urban contexts and with the position and orientation
of the harvesting surfaces being freely and dynamically defined. How
to make a one-to-one comparison considering that these approaches
are based on different practical conceptualizations, imply different
underlying assumptions, work with different resolution variables, and
their performance is expected to be a function of the specificities of the
scene? These are some of the questions motivating this work.

Given the growing interest in solar harvesting in urban and other
intricate settings, the push toward more flexible modeling frameworks,
and the questions about comparative performance that remain, the
novelty and contributions of this work are (I.) Four shadow modeling
approaches that allow for flexible positioning and orientation (Figs. 3–
6), developed to have control over most constraints and assumptions,
and which are demonstrated in five virtual urban scenes with varying
complexity (Fig. 1); (II.) characterizing the trade-off between accuracy
and computational cost (Figs. 7–8); (III.) directly comparing the ap-

proaches ( Table 1 and Fig. 9) in terms of computational cost, accuracy,
and precision based on discretized convergence levels and significance
heat maps; (IV.) characterizing the run-time trends as functions of scene
complexity (Fig. 10); and (V.) exploring the implications in energy
estimation (Figs. 11–13). These computational capabilities are devel-
oped and characterized seeking to find a balance between accuracy,
ease of implementation, geometrical flexibility, and computational cost.
This work supports the development, selection, and set-up of computa-
tionally efficient modeling frameworks, which can enable designs and
optimizations that will help to diversify and broaden the adoption of
solar harvesting technologies.

In the following sections, the virtual testing scenarios are described
(Section 2.1), the shadow modeling approaches are presented (Sec-
tion 2.2), the comparative strategy and energy model are discussed
(Sections 2.3–2.4), the results on convergence, run-time versus scene
complexity, and energy implications are described (Sections 3.1, 3.2,
and 3.3, respectively), and the main findings and implications are
summarized in Section 4. Please refer to the Supplementary Material for
relevant data and code and additional details on the shadow modeling
approaches and the energy model.

2. Methods

Fig. 2 summarizes the methodological steps and phases of this work,
from the development of the code ‘‘infrastructure’’ to the main outputs
and results. The steps are discussed in further detail in Sections 2.1–2.4
and in the Supplementary Material.

2.1. Virtual environment and testing scenarios

To test the different shadow modeling approaches, a virtual environ-
ment is developed in Python 3.0. The virtual scenes are generated using
basic functions from the Matplotlib library for visualization and Numpy
for geometric constructions, projections, and for employing linear al-
gebra in space manipulations. Scenes (Fig. 1(B)–(C)) are represented
mainly with PV and Building objects (Bs).

PVs are flat polygon surfaces and Bs are cuboid volumes bounded
by polygon faces. Every polygon is characterized by four vertices
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Fig. 2. Methodological Steps.
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ith (𝑋, 𝑌 ,𝑍) coordinates. PVs can have any arbitrary length, width,
umber of sub-modules (i.e., ‘‘blocks’’, see Section 2.2) represented
y the number of block columns and rows, any roll angle (about
n axis perpendicular to the PV surface at its center), azimuth an-
le (North-clockwise direction of the normal vector), and inclination
ngle from the horizontal. Similarly, Bs can have any width, length,
eight, and North-clockwise azimuth direction. Large Bs objects can
e composed of several adjacent smaller cuboids so that the shadow
odeling approaches perceive the relative distances more accurately.
s and PVs are first generated at the center of the scene, rotated using
otation matrices (using linear algebra), and then displaced to their
arget (𝑋, 𝑌 ,𝑍) positions. All PVs can freely and dynamically adjust
heir positions and orientations in these recreated virtual worlds.

As an angular reference of the sky and ground domes, a spherical
urface is centered ideally with respect to the PV objects. An area of
nterest can be delimited with a circle to focus the shadow modeling
fforts and make better use of the space-sampling resources. Distant
bjects and surrounding topography can be represented as Horizon
hadows projected onto the spherical sky surface. Similar to [28,29],
orizon Shadows are represented as sets of (Azimuth, Elevation) coor-
inates and projected onto the spherical sphere. These projected shapes
ast shadows at an angular level. Namely, if Beam radiation from a
iven Point Of View (POV) direction falls within a Horizon Shadow,
ll radiation from that POV is considered blocked. This is analogous to
hen the solar disc falls behind the top of a mountain and objects in

he local scene can no longer access Beam radiation, regardless of their
ocal positions and orientations. Considering reflections from nearby
bjects is not part of the scope of this work. Similar studies have
escribed such considerations as impractical, by Cascone et al. [29],
r often negligible, by Erdélyi et al. [7]. Nonetheless, that may be an
nteresting addition to the modeling problem that is worth exploring in
uture work.

A hypothetical ‘‘Development’’ scene, located in Chicago, is gen-
rated as the main environment for debugging, testing, and charac-
erizing the different approaches (Fig. 1(B)). Additionally, to test the
pproaches in more diverse conditions, four scenes are generated based
n real urban locations (explored using Google Earth®) in New York,
lano Texas, Pittsburgh, and near Los Angeles (Fig. 1(C)). These loca-
ions are meant to represent a range of different weather and latitude
onditions, and the scenes can vary in the number of PV and Building
bjects to represent different complexities. For power calculations,
eteorological data of the 5 locations is obtained through The National

olar Radiation Database (NSRDB) [47] for the year 2019.

.2. Beam shadow modeling approaches

Four approaches for modeling Beam shadows are developed: For-

ard Ray Tracing (RT), Focused Ray Tracing (FRT), Rasterization and
ixel-Counting (Pix), and Analytical Areas (Ana). Figs. 3–6 illustrate the
ain steps of how these approaches work. A more detailed description

f these steps, including pseudo-code, is presented in Supplementary
ec. 2. They are programmed in Python 3.0 using functions from
he Numpy and Random libraries for the ray-based and analytical
pproaches, as well as Matplotlib and the io module of Skimage library

for rasterization and pixel-counting. The code for these algorithms is
openly available in the Supplementary Material.

The goal of these approaches is to find the Beam Unshaded Fac-
tor (𝑈𝑆𝐹𝐵) of the PV objects, namely, the proportion of PV surface
that is visible (unobstructed), divided by the total PV surface from
Beam’s POV. For example, 20% 𝑈𝑆𝐹𝐵 means that 80% of the solar
harvesting surface is blocked by shadows from a particular POV. Some
studies refer to the Shadow or Shading Factor instead [11,25], which
is 𝑆ℎ𝑎𝑑𝑜𝑤𝐹𝑎𝑐𝑡𝑜𝑟 = 1−𝑈𝑆𝐹 . Shadow calculations are performed at the
evel of panels (Panel 𝑈𝑆𝐹𝐵) and blocks (Block 𝑈𝑆𝐹𝐵), i.e., groups

of solar cells connected in series and protected by the same bypass
diode [25]. The use of blocks and diodes is one of the main electrical
hardware solutions to minimize risks in the event of hard partial shad-
ows. In addition to calculating the proportion of a panel that is being
visually obstructed (the geometrical aspect of shading), the number of
shaded blocks is identified, as this has electrical implications that can
be approximated in the modeling framework [48] (Section 2.4).

The four approaches begin by projecting the objects in the scene
(PVs and Bs) onto a POV plane, which is normal to the sun vector
(solar azimuth and elevation) (see Supplementary Fig. 1). This way, the
problem becomes 2-dimensional, and the depth distances from the POV
plane to the objects are used to establish what objects may cast shadows
over others. For instance, a building block can only cast a shadow over
a PV if it is ‘‘in front’’ from the perspective of incoming rays.

As illustrated in Fig. 3(A), the characterization of Beam shadows
can be carried out using ray-tracing techniques. RT simulates Beam
radiation as a set of parallel rays that stochastically sample the area of
interest. Whenever a projected ray is inside a polygon, the unobstructed
ray would go through that object. If this object is a PV and it is the
first object to make contact with the ray, then the ray is illuminating
the harvesting surface (Actual Hit). Conversely, if this is not the first
object to make contact with the ray, then the ray would hit that PV
if unobstructed (Ref Hit), but it is actually blocked by a shadow. The
Unshaded Factors are the total number of Actual Hits over the number
of Ref Hits. The resolution variable is the mean number of rays per PV
block area, which is related to the ray density. To enforce this ratio, the
total number of rays (𝑁𝑅𝑎𝑦𝑠) must increase proportionally to the area
of interest. To improve efficiency, if a ray is too far from any of the PVs
(beyond their radius of influence), the algorithm moves on to the next
ray. Similarly, when the intersections of a ray are being analyzed, only
the objects that are close enough are considered. The radii of influence
of both PVs and Bs are half their maximum diagonals. Also, the ray
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Fig. 3. Forward Ray Tracing approach for modeling Beam shadows. (A) Illustrated example of how the approach works and (B) Flowchart of the main steps.
density (the number of rays per unit volume) is constant regardless of
the POV direction because the plane where the rays are originated is
normal to the POV.

FRT also uses parallel rays (Fig. 4), but this approach does not
sample the whole area of interest. Instead, the rays are generated
directly from or toward the PV surfaces (similar to Backward ray-
tracing [33]) to avoid processing rays that do not interact with PVs. It
is established by design that all unobstructed rays intersect a PV surface
(Ref Hits). Thus, it is not necessary to process all intersections between
every ray and every projected polygon, so the algorithm stops after the
first intersection is found. If this intersection is with the PV object that
originated the ray, then this ray is illuminating the surface (Actual Hit).
To reduce the computational cost further, FRT also only considers the
objects that are close enough to a ray while looking for intersections.
As with RT, shadow characterization improves with resolution, i.e., the
number of rays per block (𝑁𝑅𝑎𝑦𝑠𝐵𝑙𝑜𝑐𝑘) and panel (𝑁𝑅𝑎𝑦𝑠𝑃𝑉 ). But
nlike RT, the total number of rays does not depend on the area of
nterest; only on the resolution and number of blocks. Also unlike RT,
he ray density in FRT increases with the angle of incidence because a
et of rays sample an increasingly narrower cross-sectional area. This
ay be a convenient aspect of this approach because shadow modeling

ccuracy is not necessarily hindered by large incidence angles, namely,
hen geometrical overlaps often appear smaller from POV and are

herefore more challenging to characterize. Additionally, the effective
ay density can be different for each PV surface, as they may all have
ifferent orientations.

Pix (Fig. 5) computes Beam shadows using rasterization and pixel-
ounting. The vector geometry of the scene is projected onto the POV
lane by setting a virtual camera along the Beam rays. Then, every
rojected polygon is plotted in order (farthest from the sun first);
imilar to [21]. For this, a raster PNG image is generated using the
Matplotlib library functionalities (in Python 3.0). Every PV block is
assigned a particular color value and everything else (B objects and
background) is plotted in black. When polygons are plotted, their
vector-like geometric description becomes discretized and rasterized.
This procedure is used to simulate the PV areas that are visible from
POV, namely, the unshaded areas are approximated by counting the
number of pixels in the raster image that correspond to PV block colors
(Actual Pixels). The Unshaded Factors are the total number of Actual
Pixels, divided by the number of PV block pixels that are visible in a
Reference scene without shadows (Ref Pixels). The Reference scene is
produced by ignoring the B objects, arranging the PVs in a grid where
no shadows can be cast, setting the POV from the Zenith, and rotating
the PVs so that the angles of incidence between their surface and the
POV are preserved.

The resolution variable in Pix is the mean number of pixels per PV
panel side length. Similar to RT, the total number of pixels must increase
proportionally to the area of interest to enforce this ratio. There is a
trade-off between pixel resolution and accuracy, and some studies have
suggested hardware considerations to boost similar procedures, such as
GPU computing and Z depth buffering [11,44]. The higher the pixel res-
olution is, the better the accuracy is, but also the more computationally
costly the process becomes due to larger output images.

In the case of the Ana approach (Fig. 6), the aim is to fully charac-
terize the projected shadows (from the POV perspective) so that the
unshaded PV areas (Actual Areas) can be delimited analytically. A
polygon overlap with an object that is ‘‘in front’’ implies that a shadow
is cast. To find the ‘‘Actual Area’’ of a PV block, all shadow-casting
polygons are identified and carefully merged (whenever possible) into
isolated shadow envelopes. The Shoelace Formula [49] is used to
calculate the non-overlapping areas of these shadow envelopes. The
shadow envelopes are then merged to the block polygon, and the Actual
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Fig. 4. Focused Ray Tracing approach for modeling Beam shadows. (A) Illustrated example of how the approach works and (B) Flowchart of the main steps.

Fig. 5. Rasterization and Pixel-Counting approach for modeling Beam shadows. (A) Illustrated example of how the approach works and (B) Flowchart of the main steps.
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Fig. 6. Analytical Areas approach for modeling Beam shadows. (A) Illustrated example of how the approach works and (B) Flowchart of the main steps.
Area results from this aggregated area minus the area of the shadow
envelopes alone. The reference area (Ref Area) results from applying
the Shoelace formula to the projected vertices of the block. To limit
the impact of potential errors, the Actual Area is constrained to positive
values equal to or smaller than Ref Area.

Ana is considerably more complex than the other approaches, and
the main challenge is tracing the relevant isolated contours from arbi-
trarily intricate overlapping geometries. To reduce complexity in Ana,
B objects are represented by finding the Convex Hull [50] envelope of
their projected volume as opposed to 6 individual polygon faces. The
envelopes of B and PV objects can be assumed to be simple and convex
because they are cuboids, but the overall shadows cannot be assumed
to be convex because they result from interactions between several
shadows. Additionally, rounding errors can lead to inconsistencies, so a
uniform and fine-tuned rounding procedure is used for all coordinates
and angular comparisons (e.g., checking whether two lines are paral-
lel). For instance, if too many decimal places are used, then several
definitions of the same point in space may be incorrectly treated as
different points. Conversely, too few decimal places may hinder general
accuracy or lead to merging points that should be distinct.

Figs. 3–6 describe the basic structure of the Beam shadow modeling
approaches. However, additional considerations are required for the
appropriate behavior of actual implementations, such as accounting for
interactions with Horizon Shadows, dealing with division by zero and
PV surfaces that are not facing the POV plane, or constraining 𝑈𝑆𝐹𝐵
etween 0 and 1.

.3. Comparative strategy

The shadow modeling approaches developed in this work aim to
apture the same optical phenomena. However, how to make a one-to-
ne comparison considering their conceptual and practical differences?
To address this, an exploratory and systematic comparison is car-
ried out based on simulations, convergence criteria, and inferential
statistics. The results are expected to be generalizable enough to be
useful for theoretical and practical purposes in comparable scenarios.
Namely, since the modeling performance trends characterized in this
work are obtained from exploring different locations, incidences, panel
orientations, and surroundings, then similar trends are expected in
future applications with similar scene complexity.

A set of 𝑈𝑆𝐹𝐵 are established as the target values, referred to as
‘‘Naive Ground Truths’’ (GTs), in the five scenes and for two repre-
sentative dates, i.e., March 20 (Equinox) and December 21 (Winter
solstice), 2019. For this, Forward Ray Tracing (RT) is selected as
Baseline because it is more directly related to how Beam radiation
is conceptualized in Geometrical Optics [33], i.e., as parallel rays in
the sun’s direction filling a space. RT is run with progressively higher
resolutions until the 𝑈𝑆𝐹𝐵 Standard Deviation (SD) falls well below
1% and performance reaches an apparent point of diminishing returns.
The algorithm is run several times (10 in the case of Development
scene) and GTs result from the averages among repetitions. These may
be considered ‘‘naive’’ because absolute Ground Truths would require
extensive experimental validations, yet these values are robust enough
to serve as useful practical targets.

Resolutions are sampled in logarithmic progression to assess the
convergence behavior of the shadow modeling approaches toward the
target values. Approximate resolution ranges are then delimited and
classified into Convergence Levels (CL) that allow for more direct
comparisons between the shadow modeling approaches. The mean run-
time is also analyzed as a function of resolution and scene complexity
(i.e., Area of interest and number of PVs, Bs, and blocks per PV).
Different aspects of scene complexity are relevant depending on the
modeling approach. For instance, Area of interest is not defined for

FRT and Ana. Time behavior is characterized in relative terms for the
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findings to be potentially more generalizable, and all simulations are
run on a Dell XPS 15-7590, 9th Generation Intel® CoreTM i7-9750H
rocessor, 32 GB RAM, and NVIDIA® GeForce® GTX 1650 4 GB video
ard.

Regression models are fitted to the relative results (using the
‘scipy.optimize.curve_fit’’ function in Python 3.0.) to capture run-time
rends. For all linear models, the significance of the regression is tested
sing a Monte Carlo random permutations test of hypothesis [51,
2]. Monte Carlo methods can be powerful alternatives for testing
nferential hypotheses without assuming underlying distributions [51].
anly [53] suggests generating a minimum of 1,000 Monte Carlo sim-

lations for a 5% significance level. In this work, 100,000 simulations
re used in every Monte Carlo analysis to better approximate exact
tatistical tests of hypothesis [54]. Additionally, Monte Carlo analyses
re used to test the significance of the differences in run-time and error
istributions comparing the shadow modeling approaches at the same
onvergence levels.

.4. Energy model

To have a meaningful interpretation of the results in terms of
ower output implications [W∕m2], an energy modeling framework is
mployed based on an expansion of the one described in detail by Arias-
osales and LeDuc [55]. This energy model accounts for the date, time,
eographic location, altitude, measured local weather and available
olar resources, anisotropic sky model, transmittance losses, spectral
esponse, heat transfer model, efficiency as a function of temperature,
eam Unshaded Factors, and some additional electrical considerations.

The Unshaded Factors for Beam radiation (𝑈𝑆𝐹𝐵) at the panel level
nd the Number of Shaded Blocks (𝑁𝑆𝐵) can be obtained with the
pproaches described in this work. These variables are key components
n the ‘‘Shading Effect Model’’, which accounts for the impact of hard
artial shadows on the effective irradiance toward estimating power
utput. The Shading Effect Model is based on the experimentally-
djusted model proposed by Martínez-Moreno et al. [48], which con-
iders the geometrical proportion of shaded area as well as an electrical
actor equal to the number of blocks that are shaded (𝑁𝑆𝐵) over the
djusted number of blocks per panel (1 + 𝑁𝐵). In this work, a block
s considered shaded whenever its unshaded area is 97% or less of its
eference area (i.e., the visible area ignoring shadows). As an example,

his corresponds to shading half of the area of one solar cell in a panel
ith 60 cells and 3 blocks.

In this modeling framework, only Beam shadows are considered and
𝑆𝐹𝐵 is applied to both Beam and Circumsolar irradiances. Based on

hese assumptions, 𝐼𝑠, 𝐼𝜏𝑠𝑔, and 𝐼𝜏𝑠 (all in [W∕m2]) are defined in
qs. (1)–(3). 𝐼𝑠 is the total irradiance that reaches the solar device
nobstructed by shadows, while 𝐼𝜏𝑠 is the total effective irradiance
hat reaches the PV surface considering losses due to transmittance,
hadows, and electrical mismatches. 𝐼𝜏𝑠𝑔 is the same as 𝐼𝜏𝑠, but it does
ot include 𝑁𝑆𝐵 considerations, i.e., shadow implications are only
eometrical. The distinction between these three irradiances is impor-
ant to differentiate the inputs and outputs in the heat transfer model
elow. In Eqs. (1)–(3), irradiances are denoted by (𝐼), transmittances
y (𝜏), and the subscripts correspond to the anisotropic components
f solar radiation [56], i.e., Beam (𝐵), Sky Isotropic (𝐷𝐼), Albedo (𝐴),
ircumsolar (𝐷𝐶), and Horizon Brightening (𝐷𝐻). Transmittances are
alculated with the ‘‘Default Diffuse Transmittance Models’’ presented
n [55].

𝑠 =
(

𝐼𝐵 + 𝐼𝐷𝐶
)

𝑈𝑆𝐹𝐵 + 𝐼𝐷𝐼 + 𝐼𝐴 + 𝐼𝐷𝐻 (1)

𝜏𝑠𝑔 =
(

𝐼𝐵 ⋅ 𝜏𝐵 + 𝐼𝐷𝐶 ⋅ 𝜏𝐷𝐶
)

𝑈𝑆𝐹𝐵 + 𝐼𝐷𝐼 ⋅ 𝜏𝐷𝐼 + 𝐼𝐴 ⋅ 𝜏𝐴 + 𝐼𝐷𝐻 ⋅ 𝜏𝐷𝐻 (2)

𝜏𝑠 =
(

𝐼𝐵 ⋅ 𝜏𝐵 + 𝐼𝐷𝐶 ⋅ 𝜏𝐷𝐶
)

𝑈𝑆𝐹𝐵

(

1 − 𝑁𝑆𝐵
1 +𝑁𝐵

)

+𝐼𝐷𝐼 ⋅ 𝜏𝐷𝐼 + 𝐼𝐴 ⋅ 𝜏𝐴 + 𝐼𝐷𝐻 ⋅ 𝜏𝐷𝐻 (3)

As PV efficiency is known to be affected by temperature [57],
a heat transfer model modified from [55] is used to estimate the
temperature of the harvesting surfaces (𝑇 in [Kelvin]). Eqs. (4) and
𝑃𝑉
(5) describe the energy balance for the PV material and the covering
layer, respectively, with the inputs to the left of the equality and
the outputs to the right. The input for the PV layer is the effective
transmitted irradiance, and the outputs are the power output (𝑃 ) and
the heat conducted to the covering layer, where 𝑇𝑐𝑜𝑣 is the covering
temperature (in [Kelvin]), 𝐶 is the thermal conductivity (taken as 1.8
W/mK [58]), and 𝐿 is the covering thickness (taken as 0.002 m [55]).
The inputs for the covering layer are the absorbed irradiance and the
heat conducted from the PV layer, and the outputs are heat losses
due to convection and emission toward the sky and the ground. Here,
𝛼𝑇 is the total absorptance, ℎ is the convection coefficient, 𝑇𝑎 is the
mbient temperature, 𝜖 is the covering emissivity (0.9 for glass [59]),
is the Stefan–Boltzmann constant, 𝑇𝑠𝑘𝑦 is the sky temperature, 𝛽 is the

nclination of the harvesting surface, and 𝑇𝑔𝑟 is the ground temperature
taken as 𝑇𝑔𝑟 ≈ 𝑇𝑎).

𝜏𝑠𝑔 = 𝑃 + 𝐶
𝐿

(

𝑇𝑃𝑉 − 𝑇𝑐𝑜𝑣
)

(4)

𝐼𝑠 ⋅ 𝛼𝑇 + 𝐶
𝐿

(

𝑇𝑃𝑉 − 𝑇𝑐𝑜𝑣
)

= ℎ
(

𝑇𝑐𝑜𝑣 − 𝑇𝑎
)

+ 𝜖𝜎
(

𝑇 4
𝑐𝑜𝑣 − 𝑇 4

𝑠𝑘𝑦

)

(

1 + cos 𝛽
2

)

+𝜖𝜎
(

𝑇 4
𝑐𝑜𝑣 − 𝑇 4

𝑔𝑟

)

(

1 − cos 𝛽
2

)

(5)

The coupled two-equation system has two unknowns (𝑇𝑃𝑉 and 𝑇𝑐𝑜𝑣),
hich are calculated simultaneously for every time step with a fixed-
oint iteration method [60] and with the equations re-organized as Eqs.
6)–(7). The stopping criterion for this procedure is a maximum of 250
terations or an energy balance threshold of 1 W∕m2, whichever occurs
irst.

𝑃𝑉𝑖+1
= 𝐿

𝐶

[

𝐼𝜏𝑠𝑔 − 𝐼𝜏𝑠 ⋅ 𝜂𝑃𝑉𝑖

𝑀
𝑀𝑟𝑒𝑓

]

+ 𝑇𝑐𝑜𝑣𝑖 (6)

𝑇𝑐𝑜𝑣𝑖+1 = −𝐿
𝐶

{

ℎ
(

𝑇𝑐𝑜𝑣𝑖 − 𝑇𝑎
)

+ 𝜖𝜎
[

(

𝑇 4
𝑐𝑜𝑣𝑖

− 𝑇 4
𝑠𝑘𝑦

)

(

1 + cos 𝛽
2

)

+
(

𝑇 4
𝑐𝑜𝑣𝑖

− 𝑇 4
𝑎

)

(

1 − cos 𝛽
2

)]

− 𝐼𝑠 ⋅ 𝛼𝑇

}

+ 𝑇𝑃𝑉𝑖+1
(7)

Lastly, power output (𝑃 in [W∕m2]) is a function of 𝐼𝜏𝑠 as well as
the effective PV efficiency (𝜂𝑃𝑉 ) and the Spectral Response (𝑀∕𝑀𝑟𝑒𝑓 )
(Eq. (8)). For calculating 𝜂𝑃𝑉 (Eq. (9)), 𝜂𝑟𝑒𝑓 is the reference PV effi-
ciency reported by the manufacturer at a temperature 𝑇𝑟𝑒𝑓 , and 𝐵 is the
V temperature coefficient. Based on commonly used values for silicon
rystalline modules, 𝐵 is assumed to be 0.004, 𝜂𝑟𝑒𝑓 as 0.2, and 𝑇𝑟𝑒𝑓 as
98.15 Kelvin [57].

= 𝐼𝜏𝑠 ⋅ 𝜂𝑃𝑉
𝑀

𝑀𝑟𝑒𝑓
(8)

𝜂𝑃𝑉 = 𝜂𝑟𝑒𝑓
[

1 − 𝐵
(

𝑇𝑃𝑉 − 𝑇𝑟𝑒𝑓
)]

(9)

The steps toward calculating power output are outlined in further
detail in Supplementary Sec. 1. Aside from Eqs. (1)–(9), all the required
equations and procedures are readily available in Section 2.3 of [55].
In particular, those procedures explain how to obtain the incident
irradiances and transmittance factors for every anisotropic component
of the radiation, as well as 𝛼𝑇 , 𝑇𝑠𝑘𝑦, ℎ, and 𝑀∕𝑀𝑟𝑒𝑓 .

3. Results and discussion

3.1. Convergence: Accuracy and computational cost trade-off

The convergence behavior toward the Naive Ground Truths is char-
acterized as a function of resolution for all the Beam shadow modeling
approaches (Fig. 7). The main trends (curves) are explored using the
Development scene with base complexity (Fig. 1(B)-left) and then com-
pared to the other scenes (markers). As RT and FRT involve stochastic
ray instantiations, they are run repeatedly, seeking more robust results
(10 repetitions in the case of the Development scene). Root Mean
Square Errors (RMSE) are used as proxies for accuracy versus GTs and
Standard Deviations (SD) as proxies for precision (variation among
repetitions).

There appears to be a distinct pattern of convergence for both RT
and FRT, with RMSE and SD consistently improving with resolution
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Fig. 7. Characterizing the trade-off between accuracy (RMSE), precision (SD), and computational cost (Run-Time). This figure suggests that the different approaches do converge,
mostly agree with each other (within 1% deviations), and their shadow modeling errors tend to decrease with resolution but with increasing computational cost. RT is the Baseline
(A–B) and Ana is the most efficient (G–H). Partial USF are between 0 and 1 (non-inclusive); the most challenging cases. Resolution ranges are classified into Convergence Levels
(CL): 5%–1%. The Mean Run-Time, used as an experimental proxy for computational cost, is the mean time to run an algorithm on a given scene and time of the day (solar
position). ‘‘SD Range Overall’’ accounts for the average variation in run-time caused by both the change in solar position and stochastic repetitions. ‘‘SD Range Repetitions’’
compares among repetitions, so it only accounts for the effect of stochasticity in the generation of rays.
(Fig. 7(A) & (C)). The five scenes exhibit a similar pattern, suggesting
that the Convergence Levels (CL) are potentially generalizable to com-
parable environments. The Mean Run-Times (Fig. 7(B) & (D)) present
linear relationships that are directly proportional to resolution and, in
the case of RT, the higher the scene complexity is (e.g., in NY), then
the steeper the slope is. FRT makes more effective and efficient use of
the generated rays compared to RT, so it converges with fewer rays
and takes less time to run the algorithm with the same number of
rays per block. ‘‘SD Range Repetitions’’ is remarkably narrow in both
approaches, suggesting that run-time is not considerably sensitive to
how rays are stochastically instantiated.

The Pix approach is not stochastic, so there is no measure of
precision with SD (Fig. 7(E)). Although there is an apparent pattern of
convergence for the Development, Texas, and Pitts scenes, the results
diverge for NY and LA. This seems to be due to a vulnerability that this
approach has of plotting polygons in the wrong order when the distance
of multiple objects to the POV plane is too similar. The main challenge,
however, is representing polygon borders as accurately as possible. As
details become smaller and more intricate, such as when a PV looks
very narrow from the side, border limitations start dominating how the
PV areas are characterized. This is mitigated with better resolutions but
only up to a point. Higher resolutions imply larger image outputs, and
there is a limit to the image size that is effectively dealt with using the
conventional functionalities of Matplotlib (for Python 3.0). Because of
this, it is not possible to test the Texas and Pitts scenes at CL 1% as those
are the scenes with the largest outer areas. The run-times (Fig. 7(F))
follow the decreasing rank order of outer areas, i.e., Texas-Pitts-NY-LA-
Development. An exponential regression model is fitted to capture this
behavior, in which the pixel resolution has an approximately quadratic
effect on mean run-time (i.e., 𝑁𝑃𝑖𝑥2). Also, the SD range is notably
narrow compared to RT and FRT, suggesting that run-time in Pix is
barely sensitive to the solar position.

In the case of Ana, which does not depend on any resolution, most
error distributions (Fig. 7(G)) are concentrated below the 1% threshold.
Ana tends to overestimate the illuminated PV area when the merged
shadow has holes (see Supplementary Fig. 5), but this issue appears to
be infrequent (once in Development, NY, and LA) and has a marginal
effect on performance. Additionally, Ana is sensitive to rounding errors,
but uniform and fine-tuned rounding has been carried out to overcome
this. The Mean Run-Times (Fig. 7(H)) are orders of magnitude smaller
than the other approaches, especially toward CL1%.

Based on the main RMSE and SD trends, approximate resolution
ranges are classified into Convergence Levels. Every CL is represented
by a characteristic resolution value within the range or at the lower
boundary of the range (Table 1). For example, CL3% means that both
precision (SD) and accuracy (RMSE) are expected to have average
deviations below 3%. This allows comparing the different modeling
approaches at the same level in a more direct way despite differences in
conceptualization, underlying assumptions, and the type of resolution.
From Table 1, Ana is markedly more efficient when compared to the
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Table 1
Comparing the Beam shadow modeling approaches at every Convergence Level. General format: [low range boundary–high range boundary] characteristic value.
Resolution: [approximate CL thresholds] representative resolution. RMSE: [corresponding to the lower and upper resolution boundaries] mean between boundaries;
in units of USF. Run-Times: [from the Min of the lower end to the Max of the higher end] mean between boundaries. Relative Run-Times: characteristic run-times
relative to Ana’s run-times. For example, in situations comparable to the ones tested, the RT approach is expected to converge to Naive Ground Truth values
within 5% regarding precision and accuracy if it is run with a resolution of 250–500 Mean Rays per PV block Area and this takes approximately 2.59-13.39 s
to run, which is 62.3 times longer compared to Ana.

CL Metric Ray Tracing Focused Ray Tracing Pixel-Counting Analytical Areas

5% Resolution Unit Mean Rays/Block A Rays/Block Mean Pixels/PV side –
Resolution [250-500] 375 [50-75] 63 [40-60] 50 –
Mean Run-Time [s] [2.59-13.39] 6.41 [0.08-0.64] 0.31 [0.28-0.62] 0.44 [0.02-0.2] 0.1
Relative Run-Time 62.3 3.0 4.2 1
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘) [0.025-0.028] 0.0267 [0.023-0.028] 0.0256 [0.024-0.031] 0.0275 0.0063
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘𝑃𝑎𝑟𝑡𝑖𝑎𝑙) [0.044-0.05] 0.0474 [0.042-0.05] 0.0461 [0.033-0.044] 0.0383 0.0013
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙) [0.011-0.015] 0.0131 [0.013-0.016] 0.0143 [0.018-0.023] 0.0207 0.0036
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙𝑃 𝑎𝑟𝑡𝑖𝑎𝑙) [0.017-0.022] 0.0194 [0.02-0.023] 0.0213 [0.022-0.03] 0.0262 0.0054

4% Resolution [500-750] 625 [75-100] 100 [60-80] 70 –
Mean Run-Time [s] [5.32-20.02] 10.7 [0.12-0.91] 0.43 [0.54-0.99] 0.73 [0.02-0.2] 0.1
Relative Run-Time 104.0 4.2 7.1 1
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘) [0.013-0.025] 0.019 [0.019-0.023] 0.0213 [0.017-0.024] 0.0205 0.0063
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘𝑃𝑎𝑟𝑡𝑖𝑎𝑙) [0.023-0.044] 0.0336 [0.035-0.042] 0.0383 [0.024-0.033] 0.0282 0.0013
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙) [0.009-0.011] 0.0098 [0.011-0.013] 0.0122 [0.014-0.018] 0.016 0.0036
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙𝑃 𝑎𝑟𝑡𝑖𝑎𝑙) [0.013-0.017] 0.0146 [0.017-0.02] 0.0182 [0.018-0.022] 0.02 0.0054

3% Resolution [750-2500] 1625 [100-500] 300 [80-200] 140 –
Mean Run-Time [s] [8-63.9] 27.98 [0.17-4.13] 1.47 [0.87-5.17] 2.94 [0.02-0.2] 0.1
Relative Run-Time 272.0 14.3 28.6 1
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘) [0.009-0.016] 0.0122 [0.009-0.019] 0.0141 [0.01-0.017] 0.0133 0.0063
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘𝑃𝑎𝑟𝑡𝑖𝑎𝑙) [0.015-0.028] 0.0218 [0.016-0.035] 0.0251 [0.015-0.024] 0.0194 0.0013
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙) [0.005-0.011] 0.0084 [0.005-0.011] 0.0082 [0.007-0.014] 0.0104 0.0036
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙𝑃 𝑎𝑟𝑡𝑖𝑎𝑙) [0.008-0.017] 0.0124 [0.007-0.017] 0.0121 [0.01-0.018] 0.0137 0.0054

2% Resolution [2500-5000] 3750 [500-1000] 750 [200-400] 300 –
Mean Run-Time [s] [26.99-126.1] 64.42 [0.89-8.15] 3.73 [4.88-21.03] 12.55 [0.02-0.2] 0.1
Relative Run-Time 626.3 36.2 122.0 1
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘) [0.005-0.009] 0.0071 [0.007-0.009] 0.0077 [0.008-0.01] 0.0087 0.0063
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘𝑃𝑎𝑟𝑡𝑖𝑎𝑙) [0.01-0.015] 0.0125 [0.012-0.016] 0.0137 [0.013-0.015] 0.014 0.0013
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙) [0.003-0.005] 0.0044 [0.004-0.005] 0.0045 [0.005-0.007] 0.0059 0.0036
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙𝑃 𝑎𝑟𝑡𝑖𝑎𝑙) [0.005-0.008] 0.0065 [0.006-0.007] 0.0066 [0.007-0.01] 0.0085 0.0054

1% Resolution [5000-7500] 6250 [1000-5000] 3000 [400-600] 500 –
Mean Run-Time [s] [53.59-192.71] 107.44 [1.97-48.77] 16.73 [19.73-48.97] 33.12 [0.02-0.2] 0.1
Relative Run-Time 1044.5 162.6 321.9 1
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘) [0.004-0.005] 0.0049 [0.003-0.007] 0.0048 [0.007-0.008] 0.0073 0.0063
𝑅𝑀𝑆𝐸(𝐵𝑙𝑜𝑐𝑘𝑃𝑎𝑟𝑡𝑖𝑎𝑙) [0.008-0.01] 0.0087 [0.005-0.012] 0.0085 [0.012-0.013] 0.0125 0.0013
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙) [0.0033-0.0035] 0.0034 [0.002-0.004] 0.0028 [0.004-0.005] 0.0047 0.0036
𝑅𝑀𝑆𝐸(𝑃𝑎𝑛𝑒𝑙𝑃 𝑎𝑟𝑡𝑖𝑎𝑙) [0.0048-0.0051] 0.005 [0.003-0.006] 0.0042 [0.006-0.007] 0.0068 0.0054
e
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others. FRT at CL1% takes approximately 160 times more time to run
on average (two orders of magnitude), Pix takes 320 times more, and
RT more than a thousand times (three orders of magnitude). Focusing
rays with FRT is also notably effective at improving efficiency, as RT
takes from 6.4 more times to run at CL1% to 25 more at CL4%. Also,
FRT takes approximately half the time compared to Pix across CLs. The
results suggest that FRT is competitive in terms of reliability, perfor-
mance, and simplicity of implementation, while Ana is exceptionally
accurate and the most computationally efficient. The most appropriate
approach and CL depend on the particular scene and modeling purpose,
so this table may be used as a comparative tool to aid selection, where
modeling accuracy can be weighted along with computational cost
(Relative Run-Time). For instance, the optimization of the positions of
a solar array may begin with fast calculations at CL5% and end with
detailed evaluations at CL1%.

The Error distributions are compared in Fig. 8. These distributions
show very similar patterns of convergence at the block and panel
levels. 𝑈𝑆𝐹𝐵 deviations tend to be considerably less substantial at the
anel level because larger areas are usually easier to characterize and
ecause some of the errors at the block level cancel out at the panel
evel. From their general shape and medians, RT and FRT deviations
re symmetrical, so there does not seem to be systematic under or
ver-estimation. Ana also appears to be symmetrical at the Box-plot
evel, although one extreme case visually affects symmetry in the Violin
epiction. Conversely, Pix distributions seem to be negatively biased
i.e., under-estimation). The rank order of shadow modeling efficiency
 s
is illustrated in terms of run-time distributions (Fig. 8(C)); in decreasing
run-time efficiency: Ana (barely visible in comparison), FRT, Pix, and
RT.

The distributions and patterns of convergence are compared further
regarding the statistical significance of their differences (Fig. 9). By
comparing distributions from two groups at a time, these 𝑃 -values
estimate (by randomly reassigning the groups) how likely it is to obtain
differences at least as large as the ones observed due to randomness
alone. The smaller the 𝑃 -values are, the more significant the differ-
nces observed are. For instance, comparing the Panel RMSE at CL5%
Fig. 9(A)-left), all approaches are significantly different (𝑃 -value <

3.2%) except for RT-FRT, while there are no significant differences in
the Panel RMSE distributions at CL2% (𝑃 -value > 48%). This suggests
that, as the approaches become more convergent, the error distributions
become more indistinguishable in terms of Panel RMSE. On the other
hand, Mean run-time distributions present highly significant differences
(most with 𝑃 -value ≈ 0%) in pairwise comparisons between approaches
Fig. 9(A)) and between Convergence Levels (Fig. 9(B)).

Fig. 9(B) supports the assessment of how significant the RMSE
mprovements are as a function of Convergence Level. These improve-
ents are all highly significant in the case of Pix, which is expected

ecause the error distributions (Fig. 8) visibly become more compact
nd less biased (Medians closer to 0). The majority of Panel RMSE
mprovements are significant for FRT, especially comparing CL2% to
orse CLs (𝑃 -value < 0.13%). However, FRT at CL1% does not achieve
ignificant RMSE improvements at the panel level (𝑃 -value = 13.5%),
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Fig. 8. Error and run-time distributions for the four Beam shadow modeling approaches. Errors with respect to GTs are presented at the different Convergence Levels and at the
block level (A), panel level (B), and with the corresponding run-times (C). Only partial shadows are included. Scene: Development; Resolutions: low-range of the CLs; Dates: March
20 (Equinox) and December 21 (Winter solstice), 2019; Repetitions: 10 in the stochastic approaches, i.e., RT and FRT.
which can be useful information when choosing between CL1% or
CL2% resolutions. These are examples of how these significance heat
maps can inform decision-making in shadow modeling.

3.2. Run-time and scene complexity

Mean run-time is also a function of scene complexity, which should
be considered when choosing among approaches for a particular envi-
ronment. Relative run-time is analyzed in Fig. 10 for the four Beam
shadow modeling approaches. Regression models (Reg) are used for
comparing the strength of the effect that the different complexity
metrics have on run-time. They may also be used for rough run-time
estimations for different scenes based on a reference scene. As an
example of how these graphs can be used, Fig. 10(B) illustrates how
the mean run-time has a linear relationship with the number of PV
objects, and the trend is consistent across the five scenes. If there is
a known scene available as a reference (e.g., in this case having 5 PVs
and taking 51 s to run the RT algorithm), then it is possible to estimate
how much more (or less) time it would take to run the algorithm in
the same scene (or similar) but with a different number of PVs. This is
accomplished by using the regression models displayed in the figure,
which are stated in relative terms, and using the SD ranges and RMSE
values as an indication of the expected uncertainty or variation from
regression estimates. From Fig. 10, the most relevant metrics for each
approach are, in decreasing order:

• For RT: relative No. of PV panels (rNPV), relative Ray Area (rRA), and
relative No. of Building cuboids (rNB); all linear trends. Run-time is
expected to increase by 60% if the number of panels is doubled (rNPV
= 2), by 40% if rRA = 2, and by 12% if rNB = 2.

• For FRT: rNPV, relative No. of PV Blocks per panel (rNPVB), and rNB;
all approximately linear trends. Run-time is expected to increase by
121% if rNPV = 2, by 107% if rNPVB = 2, and by 23% if rNB = 2.
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Fig. 9. Testing the significance of the pairwise differences between RMSE and Mean run-times of the Beam shadow modeling approaches. Comparing differences between approaches
within Convergence Levels (A), as well as between Convergence Levels within approaches (B). All 𝑃 -values are obtained with Monte Carlo analyses, testing one pair of distributions
at a time (same distributions as in Fig. 8) with 100,000 randomized group re-assignments.
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The relative run-time responses in FRT are almost twice as strong as
in RT.

• For Pix: rRA, rNPVB-rNPV, and rNB; all linear trends. Run-time is
expected to increase by 95% if rRA = 2 (more than twice as much
as in RT), by 27%–44% if rNPVB = 2 (less than half the response
in FRT), by 28% if rNPV = 2 (less than half the response in RT and
FRT), and by 0.2% if rNB = 2 (no meaningful effect). The response
as a function of rNPVB becomes steeper with the number of panels
(5PV-10PV).

• For Ana: rNPV (almost one-to-one correspondence), rNPVB, and rNB;
all linear trends. Run-time is expected to increase by 105% if rNPV
= 2, by 72% if rNPVB = 2, and by 58% if rNB = 2.

Relative run-times in the testing cases seem to follow similar trends
as the ones characterized in the Development scene, suggesting that
these trends may be approximately generalizable to comparable envi-
ronments. This is also supported by how narrow and stable the ‘‘PV
iter’’ and ‘‘B iter’’ ranges are. This implies that the particular PV and B
objects that are randomly iterated are not usually as consequential in
terms of run-time as the relative number of such objects.

3.3. Energy estimation implications

Many solar harvesting applications that require the use of shadow
modeling approaches will ultimately need to perform power or energy
estimations, treating shadows as potential energy losses. This section
explores some of the energy implications of this challenge by addressing
the following questions: How relevant is Beam shadow modeling in
terms of power output estimation in the context of intricate environ-
ments and PVs with freely defined positions and orientations? (Fig. 11),
How do error distributions and convergence in Beam shadow modeling
relate to error distributions in power estimates? (Fig. 12), and how
does the threshold for considering a PV block as a ‘‘shaded Block’’ (𝑆𝐵)
affect power estimation? (Fig. 13).
Generating variation in the simulation conditions is important for
improving how generalizable the explored trends are expected to be.
Sources of variation here include the use of different locations with dis-
tinct environments, as well as harvesting surfaces (PVs) with different
positions and orientations. Every simulated time step implies a shift in
the angle of incidence between Beam rays and the PVs, which intro-
duces changes in shadow events. As an additional source of variation
and to further explore the implications of dynamic and freely defined
harvesting surfaces, the PV orientations (azimuth and inclination) are
‘‘nudged’’ every time step, i.e., the initial PV angular coordinates are
shifted. Each angular nudge is randomly generated in a −45◦ to +45◦

ange. This nudging is akin to PV devices dynamically and individually
djusting their orientations throughout the day. The energy model used
o simulate the power outputs of these harvesting surfaces is described
n Section 2.4 and Supplementary Sec. 1. As part of the modeling
ramework, Beam shadows are modeled using the FRT approach, which
n all tested cases converged (Fig. 7(C)) to approximately the same
alues as RT (the Baseline approach) but with markedly lower run-time
from 6 to 20 times faster, Table 1). The power ‘‘Naive Ground Truths’’
re calculated using 𝑈𝑆𝐹𝐵 ‘‘Naive Ground Truths’’ (as in Section 2.3
ut using FRT instead of RT). Seeking to test the worst-case scenarios
oncerning resolution, low-range resolutions ( Table 1) are used to get
dditional 𝑈𝑆𝐹𝐵 and power distributions for every convergence level.

Fig. 11(A) illustrates how the 𝑈𝑆𝐹𝐵 weighted averages change
throughout the day in the five scenes. Mornings and afternoons tend
to be the moments with the most pronounced shadows because Beam
rays are closer to the ground and, thus, more likely to be blocked by
obstacles before reaching the PVs. The red ranges (Fig. 11(B)) between
the transmitted irradiances with and without shadows illustrate the
potential energy losses due to Beam shadows. Interestingly, not all
the regions where 𝑈𝑆𝐹𝐵 is low (i.e., considerable shadows) coincide
with wide energy loss ranges. This is because some of the cases with
pronounced shadows are from PVs that would not be harvesting a lot

of solar radiation anyway, so in those cases, the shadows do not have a
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Fig. 10. Relative run-time as a function of scene complexity based on the variables that are relevant to every approach. This figure characterizes the trends of how computational
ost increases as the scene complexity increases (Area of interest and the Number of PVs, Bs, and blocks per PV). RT approach in (A–C), FRT in (D–F), Pix in (G–I), and Ana
n (J–L). Trends are characterized in the Development scene, captured with regression models, and compared to other scenes. Run-times and complexity metrics are analyzed in
elative terms (with reference points shown as Ref) to look for potentially generalizable trends. ‘‘PV iter’’ and ‘‘B iter’’ ranges account for the effect of randomly choosing a number
f different objects from a larger set of objects (i.e., PV panels and Building cuboids). ‘‘Overall’’ ranges additionally account for changes in solar position. No. of blocks (D, G &
) is explored by iterating the number of block columns (Col Iter) and rows (Row Iter) per panel.
Fig. 11. The effect of Beam shadows on the irradiance that is available for energy harvesting. The PVs in every scene are treated as part of the same system, so the 𝑈𝑆𝐹𝐵 curves
A) are calculated as the weighted averages among the PVs. The weights are the irradiances (B) that would be transmitted to the PVs without shadows. (B) Illustrates the potential
nergy losses and uncertainties due to shadow modeling. The variations in these curves (A–B) result from the movement of the sun, the PVs, and their shadow interactions with
he environment.
w
p

onsiderable impact on the aggregate. The black ranges (Fig. 11(B))
llustrate the uncertainty in shadow energy losses due to challenges
ith convergence in shadow modeling. Supplementary Figure 6 ex-
lores in further detail how these power estimation uncertainties tend
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Fig. 12. Violins and box-plots of how power estimation error distributions are considerably reduced as Beam shadow modeling converges from CL5 to CL1. The results are
ggregated from all simulated times, PVs, and stochastic repetitions in the 5 scenes. Power E (Errors) compare the power estimates that use 𝑈𝑆𝐹𝐵 Ground Truths versus power

estimates that use 𝑈𝑆𝐹𝐵 distributions at different convergence levels. Mean Power (MeanP), RMSE (absolute and relative to MeanP), maximum relative error (|𝑀𝑎𝑥|), MAD
(Median Absolute Deviations), and 𝑁 (No. instances) are displayed.
o occur with FRT at the level of each harvesting surface, which appear
s sudden but sparse deviations that, for the most part, disappear or
iminish from CL5 to CL1. Nonetheless, the uncertainty ranges at CL5
n Fig. 11(B) do not appear to be very significant compared to overall
rradiance aggregates, which suggests that using the approaches with
L5 resolutions (which are faster to run; Fig. 8(C)) may still be useful

or practical power estimations.
Fig. 12 illustrates how errors in shadow modeling estimation trans-

ate into errors in power output estimates, how these power errors are
istributed, and how convergence in shadow modeling can meaning-
ully reduce uncertainty concerning error distributions. In the aggregate
left), RMSE drop from 3.8% at CL5 to 1.11% at CL1, and the maximum
ower errors drop from 78.6% at CL5 to 53.3% at CL1. This suggests
hat convergence in shadow modeling is an important aspect for ac-
urate power estimations at individual cases, even though on average
hey may not seem very appreciable (Fig. 11(B)). Also, the relevance
f shadow modeling convergence greatly varies among scenes, having a
reater effect in NY, Texas, and Pitts, and less in Deve and LA. Although
here are extreme cases, the bulk of the error distributions is notably
ompact, which is why the box-plots are barely visible (i.e., collapsed
oward 0) while the violin distributions are mostly shaped by outliers
i.e., white dots). This agrees with the Median Absolute Deviations be-
ng 0 in all cases, implying that at least half of the shadow calculations
ully agree with the GT target values (i.e., Power Error ≈ 0).

Another aspect that is influential in the relationship between shadow
nd energy errors is the threshold for considering a PV block as a
‘shaded Block’’ (𝑆𝐵) (see Section 2.4). This threshold accounts for
dditional electrical losses due to hard partial shadows that can go
eyond the geometrical proportion of PV panel being blocked. For
he previous calculations in this work, a block is considered shaded
henever its unshaded area is 97% or less of its reference area.
ig. 13(A) examines the implications of completely ignoring these
lectrical considerations by setting a 0% threshold (i.e., no SB) and
omparing the resulting distributions to the power Ground Truths that
se a 97% threshold. Compared to Fig. 12(left), these error distributions
re notably larger (RMSE ≈ 8.7%) and more asymmetrical toward (+)
rrors, which indicates a tendency to over-estimate power.

Fig. 13(B) explores this relationship more by iterating threshold
alues in the whole range from 0 to 1. Power estimates decrease
s the threshold increases, but changes in the low range seem to
ave negligible effects while they become substantial as the threshold
pproaches 90%. Some scenes like Deve and LA seem to be impervious
o this effect, while NY presents considerable drops at the extreme of
he range, i.e., by −28.6%, −28.9%, and −21.2% in terms of Power
Mean, Median, and SD, respectively. The most appropriate threshold
may depend on the panel-block-cell configurations being used and the
electrical specificities of the actual devices, and this becomes more
relevant the closer it gets to a 100% threshold. A 100% threshold
means that any shadow (regardless of its size) can render the block
as electrically ‘‘shaded’’.

4. Conclusions

Enabling solar technologies that are more diverse and dynamic
regarding positioning and orientation can lead to better and more fine-
tuned integration of solar harvesting in urban environments. A key
challenge is improving modeling capabilities in terms of geometrical
flexibility and efficiency because some common constraints and as-
sumptions can be limiting when attempting to maximize the available
solar resources in such intricate environments. In particular, develop-
ing practical modeling frameworks that account for detailed shadow
effects in complex scenarios can be computationally challenging. It
is not clear how the different available approaches compare directly
in terms of accuracy, precision, efficiency, and practicality, especially
in the intricate urban context and with the position and orientation
of every harvesting surface being freely and dynamically defined. In
this work, four Beam shadow modeling approaches are developed and
demonstrated in a range of urban landscapes. The novelty consists of
the characterized trends and the direct comparison of these approaches,
at different convergence levels, in the context of urban environments
with varying complexity and freely defined solar harvesting devices.
These characterizations involve implications in accuracy, precision,
computational cost, ease of implementation, and energy estimation.

The Beam shadow modeling approaches converge below 1% de-
viations from target values and present considerable differences in
computational efficiency. The fully analytical approach is, on average,
three orders of magnitude faster than the forward ray-tracing approach,
two orders of magnitude faster than the focused ray-tracing approach,
and 320 times faster than rasterization and pixel-counting. Focused
ray-tracing is competitive in terms of reliability, performance, and
simplicity of implementation, while the analytical approach is the most
efficient.

Critical trade-offs between accuracy and computational cost are
characterized. Mean run-times present linear and superlinear trends
that depend on scene complexity, i.e., the area of interest and the
number of PV panels, building cuboids, and blocks per PV panel.
The strength and relevance of the effect depend on the nature of

the modeling approach. These trends underscore the importance of
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Fig. 13. Exploring the relationship between energy estimation errors and the threshold for considering a PV block as a ‘‘shaded Block’’ (𝑆𝐵). (A) Shows the Power Error distributions
when this effect is completely ignored (0% threshold), while (B) iterates the threshold in the whole range and plots the trends in terms of means, medians, and Standard Deviations.
Only cases with Partial shadows are included in (B) to focus on the most challenging shadow events.
considering the particular environment and modeling purpose when
choosing among approaches and resolutions.

The results demonstrate how errors in shadow modeling estimation
translate into errors in power output estimates, how these power er-
rors are distributed, and how convergence in shadow modeling can
meaningfully reduce uncertainty. The use of higher shadow modeling
resolutions (at convergence levels from 5% to 1%), across all the anal-
yses, leads to a drop in power estimation RMSE from 3.8% to 1.11%,
and improvements in maximum power errors from 78.6% to 53.3%.
Nonetheless, using the shadow modeling approaches at a 5% conver-
gence level may have efficiency and practicality advantages while still
leading to average power estimates that may be sufficiently accurate in
the aggregate. The most appropriate approach and resolution depend
on the particular scene and modeling purpose, where modeling accu-
racy and precision can be weighted along with computational cost. For
instance, the optimization of the positions of a solar array may begin
with fast calculations at a 5% convergence level and end with detailed
evaluations at a 1% convergence level. Therefore, the characterizations,
direct comparisons, and trends presented in this work can be a valuable
guide to aid the selection and development of modeling frameworks.

The modeling capabilities presented are expected to be useful in
the design, optimization, control, and forecasting of dynamic solar
harvesting applications in intricate settings, such as cities and solar
installations with shared land use. Developing accurate, efficient, and
flexible modeling frameworks will play a role in enabling a diverse
range of solar harvesting devices. From urban farming and devices
that help people meet their energy needs, to solar-powered drones
that fulfill a wide range of urban services like maintenance, security,
carrying goods, or even transporting people.
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