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Dear Liane Randolph and California Air Resources Board members,

Thank you for the opportunity to provide comments on the proposed Clean Miles Stan-
dard. We are researchers at Carnegie Mellon University who study transportation, energy,
environment, air quality, public policy, and related issues for shared mobility, ridesourcing,
transportation network companies, and other transportation trends and technologies. We
have reviewed the proposed rule and put together some comments informed by our research
and the broader scientific literature that we hope will be helpful. We will first present some
detailed comments on modeling assumptions used to inform the proposed regulation and
then comment on the overall policy design.

1 Comments on CARB cost modeling assumptions

CARB has put substantial effort in to informing the proposed rule with a thoughtful and
fairly comprehensive qualitative and quantitative analysis. In the spirit of supporting
CARB’s efforts to inform policy with data and research, we have identified a set of CARB’s
modeling assumptions and choices that differ from some of the established peer-reviewed
scientific literature and may affect conclusions and policy implications, and we recommend
that CARB consider these in the final version of a model that informs target setting.

Overall, the policy design is focused on setting ZEV targets to avoid imposing costs
on drivers. As such, CARB intentionally makes conservative assumptions throughout the
analysis in an effort to build confidence that the targets are achievable without imposing
costs on drivers. We discuss, in turn, (1) factors that could lead CARB’s analysis to be
too conservative, potentially imposing administrative compliance costs to firms, drivers, and
government without changing outcomes or improving social welfare and, on the other side,
(2) factors that could imply policy costs to drivers that are not modeled in CARB’s analysis.
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1.1 CARB’s conservative assumptions

If CARB’s goal is to set the strictest GHG and eVMT targets that avoid inducing costs
on drivers, the use of many conservative assumptions, when combined, may lead to targets
that are so conservative that they may not affect behavior or outcomes, even as they impose
administrative compliance costs to industry, drivers and government. We discuss a few of
these conservative assumptions.

1.1.1 Purchase subsidy assumptions: As currently structured, the rule assumes that
no drivers will receive federal tax benefits for ZEV switching. Federal tax benefits may
substantially alter switching cost estimates, particularly if federal tax benefits are extended
or expanded. A mechanism for adjusting estimates as federal policy evolves would make
the targets for ZEV switching (and gCO2/PMT by extension) more robust. A similar
mechanism to adjust for the CVRP rebates as they evolve over time would similarly improve
the targets.

For similar reasons, it may be warranted to estimate a fraction of TNC drivers who
are currently eligible for income-based CVRP rebate increases, which currently more than
double the credit for those with a household income up to four times the federal poverty
level. A substantial share of TNC drivers may fall below that income threshold, and an
additional $2,500 rebate may substantively alter switching benefits.

1.1.2 Gasoline price forecast: Using statewide annual average gasoline prices as esti-
mated by the Energy Information Administration, the ZEV switching cost model’s assump-
tion for gasoline price is similar to 2005 fuel prices, which is below the annual average of
any year since. We recommend CARB or the California Energy Commission either provide
methodology or justification for the forecasts used or adjust the forecast values, perhaps
using an average of several independent estimates (or a conservative estimate out of these
forecasts).

1.1.3 Charging behavior assumptions: In our understanding, the model assumes that
all drivers will pay to have a their house rewired and a home Level 2 battery charger installed,
but it also assumes that only half of drivers charge at home, with the remainder using
DC fast chargers that are roughly twice as expensive. Given the potential for redundant
infrastructure and the high range of BEVs indicated by CARB, this could be excessively
conservative. However, we also discuss potential for related un-modeled costs in Section 1.2.

1.1.4 Used vehicle prices: When estimating used vehicle prices, CARB assumes equal
depreciation for BEV and combustion vehicles. However, in practice, BEVs tend to depre-
ciate faster, making used BEVs more cost competitive than assumed. See Section 1.3.

1.1.5 One year payback requirement: CARB requires a 1-year payback period before
considering a BEV to be a cost-reducing investment. The vehicle asset retains substantial
value after one year of TNC service that should be considered. Considering used vehicle
asset value may improve the BEV value proposition and more closely represent economics
to TNC drivers. See Section 1.3.
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1.2 Potential costs to TNC drivers not modeled by CARB

CARB makes a concerted effort to set targets that avoid imposing costs on drivers. If
CARB’s goal is to set the strictest targets that avoid inducing costs on drivers, we recom-
mend that CARB consider several costs to drivers beyond those in the current analysis.

If drivers were fully informed, rational, and agreed with CARB’s assumptions, a policy
designed to avoid imposing costs on drivers would not change behavior because drivers
would adopt ZEVs at levels greater than prescribed even without the policy. Thus, for this
policy to be effective (induce changes in driver behavior) without imposing costs on drivers,
it must be true that either drivers are (1) not fully informed / rational or (2) do not fully
agree with CARB’s assumptions.

For explanation (1), if drivers are not fully informed or not fully rational, it is possible
that they are missing opportunities to invest in vehicles that would save them money, and
the Clean Miles Standard could impose constraints on drivers that end up increasing driver
welfare. The potential for this type of consumer myopia is a major justification for the
federal CAFE standards; however, the scientific literature is mixed on findings about whether
empirical data back up this assumption (for example, [2, 3]). We are not aware of literature
about myopia among TNC drivers in particular, but TNC drivers have a greater incentive to
compute costs to inform decisions, and we might expect less myopia under these conditions.
Only if drivers are myopic and fail to make decisions that are in their own best interest could
the Clean Miles Standard be both effective (change behavior) and reduce driver costs. We
recommend that if CARB is assuming consumer myopia, CARB cite and discuss the scientific
understanding of consumer myopia, and if CARB is not assuming consumer myopia that
CARB explain how the policy can be effective (change behavior) without imposing costs
on drivers if drivers are already successful at minimizing their own costs without policy
constraints.

For explanation (2), we recommend that CARB explicitly consider factors that do not
show up in CARB’s analysis but that may be of legitimate value to drivers in determining
whether investment in a BEV is in the driver’s interest, including:

1. Heterogeneity in economics for specific gasoline vehicles owned by specific TNC drivers
(e.g.: Prius), in contrast to the generic car/truck lookup table assumptions used by
CARB; and

2. Lost income when pulling BEVs out of service to recharge. CARB does discuss that
BEVs now have substantial range and access to DC fast charging; however, CARB
may also want to consider (1) vehicles that are not able to consistently charge to 100%
SOC before every TNC shift; (2) potential for cost of time spent navigating to and
from stations and queuing at occupied fast charge stations; and (3) substantial drop in
BEV range in cold and hot weather, aggressive or stop and go driving, and as vehicles
age [6, 8, 7, 4]. CARB uses a generic barrier cost to account for un-modeled factors
like these, but we recommend assessing (a) how the value to drivers of these factors
might compare to barrier costs used and (b) whether these costs will ever go to zero,
as CARB assumes barrier costs will.

3. BEVs depreciate more quickly than combustion vehicles, imposing additional owner-
ship and operation costs that are larger for BEV drivers (see Section 1.3).
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1.3 CARB’s consideration of depreciation

Our research suggests that considering TNC vehicle depreciation and/or TNC vehicle resale
value in a used market at the end of the service period can have a substantial effect on the
relative economics of BEVs and combustion vehicles for TNC drivers [1], and we recommend
that CARB include depreciation or resale value in the analysis.

Our analysis finds that (although the used market for BEVs is evolving) BEVs tend
to depreciate at a faster schedule than combustion vehicles. Further, because the State of
California and the Federal Government offer purchase incentives for new BEVs, and because
new BEVs are (imperfect) substitutes for used BEVs, new BEV incentives put downward
pressure on used BEV prices, reducing the resale value of the driver’s BEV asset immediately
upon purchase. Both of these factors suggest that BEV used market prices decline more
rapidly than equivalent combustion vehicles. This has two implications for CARB’s analysis:

• Depreciation is a higher cost for BEV owners than combustion vehicle owners (or,
equivalently, a combustion vehicle asset will retain a larger portion of its value at the
end of a TNC service period than a BEV asset).

• For TNC drivers who purchase used vehicles, faster depreciation of BEVs lowers used
BEV purchase prices more quickly than used combustion vehicle purchase prices, mak-
ing BEVs more affordable to buy.

Given the above, we recommend the following:

Adopt powertrain-specific used vehicle prices: We recommend factoring powertrain
into depreciated used vehicle market prices. We anticipate this change would encourage
BEV switching for TNC drivers who purchase used vehicles.

Model depreciation: We recommend that CARB either include differentiated deprecia-
tion costs for BEVs and combustion vehicles as part of the cost of ownership for TNC drivers
or model resale value at the end of the performance period. Taken alone, this change would
capture an additional cost to drivers who buy BEVs because BEVs depreciate faster (how-
ever, used vehicle buyers also benefit from lower purchase costs, as above).

Model depreciation dependency on VMT: CARB models depreciation as a function
of vehicle age alone. But estimates from Edmunds, Kelly Blue Book, and similar sources
show that depreciation depends not only on vehicle age but also strongly depends vehicle
miles traveled (VMT) (Figure 1). This matters particularly for high-mileage applications,
like TNCs. We have found in our research that including the resale value (or salvage value)
of the vehicle asset at the end of the TNC service period can have a substantial effect on
the relative economics of BEVs and gasoline vehicles for TNC applications and that this
effect differs for high-mileage (“full-time” or “baseload-serving”) TNC vehicles and low-
mileage (“part-time” or “peak-period-serving”) TNC vehicles [1]. We recommend modeling
depreciation as a function of VMT.

Figure 2, based on analysis in [1]1 summarizes an example using data-driven models
of declining asset value as a function of age and VMT for TNC applications to determine
whether BEVs or gasoline vehicles are more cost effective for TNC drivers.

1See also SI Section C and Table S7 in [1]
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Figure 1: Kelly Blue Book fair market value in 2018 for a Toyota Camry LE four-door sedan
of various ages and mileage.
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Figure 2: Annualized capital costs (% of new car MSRP) minus discounted future flow from
vehicle resale, after depreciation is considered. This value is dependent on annual VMT.
This example assumes the vehicle is a newly-purchased TNC vehicle, that decisions are made
using a 7% real discount rate (with 2% annual inflation) and it compares a representative
BEV (Nissan Leaf) and ICEV (Toyota Camry) assuming the TNC driver sells their car once
it reaches 170,000 miles traveled or 12 years of age, whichever happens first (the kink point
is where these two conditions intersect).
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2 Comments on policy design and goals

We first summarize recommendations for setting targets in CARB’s current policy design
and then discuss alternatives to the current approach that have some advantages.

2.1 gCO2/PMT target design recommendations

2.1.1 Measure vehicle efficiency: The lookup tables provided for CO2 emission factors
(Tables 2 and 3) may be too coarsely defined to serve as an efficient incentive. Ideally, a
lookup table derived per vehicle model from fueleconomy.gov or a similar source would more
closely match each vehicle’s emissions to their compliance value. This may add to the rule’s
complexity–and perhaps small TNCs (less than 5 million trips) should be exempted–but
it would provide incentives to reduce GHG emissions through an additional pathway and
improve forecasting uncertainty of future emission factors. Measuring actual vehicle on-road
efficiency would further provide incentives for efficient driving practices as another pathway
to reducing GHGs.

Short of this change, breaking vehicle classes into more granular categories (e.g., to dis-
tinguish smaller sedans and hatchbacks from medium-sized crossover SUVs) could improve
outcomes.

2.1.2 Measure occupancy factors: We have a similar concern regarding compliance
occupancy values (Table 4). When occupancy is assumed, rather than measured, it may
create perverse incentives, such as TNCs intentionally pooling rides that involve long trips
with large detours or little passenger overlap in order to reduce emissions per PMT on
paper, but not in practice. If actual occupancy (which the proposed rule requires TNCs to
report annually) were used rather than the assumed values, the gCO2/PMT metric would
offer an efficient incentive to pool when the benefits are greatest (i.e., by pooling rides that
require fewer detours and overlap for a substantial portion of the ride durations). It also
could offer an incentive to pool more heavily (more than two rides per vehicle), perhaps
even by using higher-occupancy shuttle-style vehicles that could substantially reduce actual
gCO2/PMT in urban cores with greater demand density. Instead of serving as the primary
means of computing occupancy, assumed lookup-table values could serve as an easier option
that small TNCs (less than 5 million trips) could choose to use.

2.1.3 Consider a centralized fund for infrastructure investment: If pedestrian
and bicycle infrastructure investment is to be used as an option for CO2 emissions off-
sets, CARB may consider whether more equitable outcomes could be obtained by a board
charged with considering efficiency, effectiveness and equity in making investment decisions
rather than allowing TNCs to selectively invest in neighborhoods of their choosing (for ex-
ample, TNCs may prioritize projects where bicycle infrastructure would not compete with
ridesourcing).

2.1.4 Revise CO2 credit for transit connections: The current calculation for inte-
grated fare mass transit trips (Equation 5) credits the TNC with offsetting distance equal
to the TNC leg of the trip. The current approach may create perverse incentives, encour-
aging trips that use TNCs to take passengers to the last stop on a transit line before their
destination, rather than the nearest stop. A more efficient version of this offset would take
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Figure 3: Summary of cost minimizing TNC fleet, its private costs, and the public costs
of its emissions when the TNC pays (1) only private costs versus (2) private costs plus the
public health and environmental costs of air pollutants (“tax”), from [1]

into account the how many miles were served by transit, not how many were served by the
TNC. If TNC’s app handles integrated payment such that the user specifies what their final
destination will be (rather than only the “handover point” between TNC and transit), that
transit distance estimate could determine zero-emissions miles.

2.2 Recommendations on policy approach

2.2.1 Public costs: Avoiding costs to TNC drivers is an understandable goal. However,
it is also true that vehicle travel by TNC drivers causes costs to others, through air emissions,
congestion, and other externalities. Our research has found that small increases in private
TNC cost can produce larger reductions in public costs, including health and environmental
costs of air pollution [1]. In particular, we estimate that if TNCs were to pay for the
external health and environmental costs of the air emissions associated with producing and
operating their vehicles, they would have incentives to electrify more of their vehicle fleet and
reduce air pollution-related health and environmental costs by about $30 million per year
in Los Angeles alone (Figure 3; [1]). These improved outcomes only require an estimated
1% increase in private costs of vehicle acquisition and operation. Constraining policy to
avoid imposing any costs on drivers may be missing opportunities to reduce overall costs to
society.

It is important to note, though, that most transportation modes produce air emissions,
and incomplete regulation requiring only TNCs to pay the cost of their emissions (but not
other modes, like personal vehicle travel) could have undesirable implications, like emissions
leakage to other modes.

2.2.2 Perverse incentives: The current policy structure has potential for some perverse
incentives, including:
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1. Deadheading hot potato: The proposed standard creates incentives for TNCs to
avoid taking credit for driver travel while waiting for ride requests. For example, one
possible TNC work-around is for TNCs to ask drivers to log off until they receive a text
letting them know that a ride request is ready so that travel while waiting for a ride
request is not counted. Additionally, as described on p50 of the proposed standard,
many drivers multi-app, logging on to multiple TNC company apps at the same time
and switching between them as ride requests come in. TNCs may have incentive to
figure out how to assign VMT between ride requests to competitors.

2. Inefficient ride pooling: CARB assumes that matched pooled rides always have
2.5 passengers. The use of assumed occupancy for compliance, rather than measured
occupancy, may incentivize TNCs to strategically pool rides that involve long distances
between passengers (long detours with a single passenger to pick up another passenger)
because such a trip will increase the denominator in CARB’s compliance calculation
of CO2/PMT even though pooling for such a combination of trips may increase VMT
overall and contribute to congestion, crash risk, and air emissions. Pooling rides that
have origins and destinations that are not generally along the same trajectory can
increase VMT, relative to separate vehicles serving these rides, but under the proposed
regulation TNCs may have incentive to do this kind of pooling anyway because it helps
their compliance calculations.

3. Inefficient BEV use: The eVMT targets may incentivize TNCs to increase BEV
deadheading because the more BEVs drive (whether with or without a passenger), the
more it helps the TNC comply.

4. PMT: Regulating emissions rates (CO2/PMT) without direct incentives to reduce
PMT may encourage increased PMT through mechanisms like the rebound effect and
compliance work-arounds discussed above.

2.2.3 Improving policy efficiency and avoiding perverse incentives: Environmen-
tal economics has long established that market-based policies that target the underlying
problem’s cost directly via externality pricing, rather than setting targets and standards
using proxies, can produce more benefits to society at lower cost while avoiding perverse
incentives [5].

CARB and the CPUC do not have the authority to impose prices on externalities. SB
1014 gives CARB authority to develop, and CPUC to implement, annual emission-related
targets to reduce GHG emissions for TNCs. However, CARB and CPUC could use flexibility
in the policy structure to partially approximate the benefits of market-based approaches.

For the Clean Miles Standard, CPUC will need to establish penalties for non-compliance
and begin implementation by 2023 (p16). If said penalties for non-compliance are calibrated
so that they are comparable to the external costs to society caused by non-compliance, this
could potentially offer a pathway to approximate an efficient market-based policy under
current regulatory authority. Under this approach, standards could be set more tightly and
penalties calibrated to impose external costs of air emissions on the emitters so that non-
compliance is an acceptable response to the policy that simply triggers TNC payment for
the societal costs of externalities it generates. Such an approach could potentially improve
efficiency of the policy, improve flexibility of TNCs and drivers to respond in efficient ways,
and reduce potential for perverse incentives.
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ABSTRACT: Ridesourcing services from transportation network companies,
like Uber and Lyft, serve the fastest growing share of U.S. passenger travel
demand.1 Ridesourcing vehicles’ high use intensity is economically attractive
for electric vehicles, which typically have lower operating costs and higher
capital costs than conventional vehicles. We optimize fleet composition (mix
of conventional vehicles (CVs), hybrid electric vehicles (HEVs), and battery
electric vehicles (BEVs)) and operations to satisfy demand at minimum cost
and compare findings across a wide range of present-day and future scenarios
for three cities. In nearly all cases, the optimal fleet includes a mix of
technologies, HEVs and BEVs make up the majority of distance traveled, and
CVs are used primarily for periods of peak demand (if at all). When life cycle
air pollution and greenhouse gas emission externalities are internalized via a
Pigovian tax, fleet electrification increases and externalities decrease,
suggesting a role for policy. Externality reductions vary from 10% in New York (where externality costs for both gasoline and
electricity consumption are relatively high and a Pigovian tax induces a partial shift to BEVs), to 22% in Los Angeles (where high
gasoline and low electric grid externalities lead a Pigovian tax to induce a near-complete shift to BEVs).

1. BACKGROUND
Passenger cars produce the largest share of greenhouse gas
(GHG) emissions from U.S. transportation, which recently
surpassed electric power as the country’s highest-emitting
economic sector.2 Passenger cars also emit substantial conven-
tional air pollution, and premature mortality from U.S. air
pollution (28% of which results from transportation) is
comparable to automobile accident fatalities, with an annual
social cost of $886 billion.3

Ridesourcing services are rapidly and dramatically changing
the passenger car landscape: from 2009 to 2017, for-hire vehicles
in the United States more than doubled their share of trips and
their daily per capita usage, due primarily to the rapid growth of
ridesourcing services,1 and by 2016, 15% of intraurban trips in
San Francisco were served by Uber and Lyft.4

Vehicle electrification has the potential to drastically reduce
ridesourcing emissions while perhaps also lowering operating
costs. Electricity is often cleaner and cheaper than gasoline per
vehicle distance traveled (VDT), and for intensively used
vehicles lower fuel costs and operation emissions might offset
their higher upfront costs and manufacturing emissions. The
Intergovernmental Panel on Climate Change recently stated
that electric modes of transportation would “need to displace
fossil-fuel powered passenger vehicles by 2035−2050 to remain
in line” with pathways to hold global warming to 1.5 °C.5

Recognizing the potential of transportation network company
(TNC) fleet electrification to reduce transportation emissions,
the California Public Utilities Commission in 2018 released an

initial overview of regulatory approaches that are worth further
research as a means to encourage TNC electrification, including
technology mandates, distance-based fees on combustion
engine usage, and financial incentives.6 Also in 2018, Uber
announced a goal of an all-electric vehicle (EV) fleet within the
city of London by 2025. This plan’s stated motivation is to
reduce pollution, and a per mile “clean air fee” will fund driver
financing programs.7 Advances in vehicle electrification and
automation may transform the way ridesourcing services
operate.8

However, the premise that full fleet electrification is a viable or
desirable policy goal warrants further investigation. At the
current cost of lithium-ion batteries, battery electric vehicles
(BEVs, which plug in to charge and rely entirely on electricity
stored in large battery packs) have a much higher upfront cost
than conventional vehicles (CVs); battery manufacturing
emissions are nontrivial;9,10 and, depending on region, timing,
and vehicle design, electric vehicles do not always reduce air
pollutant emissions or greenhouse gas emission externalities
compared to CVs (with lower-income census block groupsmore
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likely to face increased emission externalities from BEVs).11−14

Furthermore, the operations of BEVs suffer from logistical
constraints of limited range and slower refueling (charging).
BEVs cannot service demand while charging, so a larger fleet is
required to satisfy a given level of demand. BEVs also must
detour to recharge, increasing VDT. In contrast, gasoline hybrid
electric vehicles (HEVs, which draw all net energy from gasoline
but use a battery and electric motor to improve efficiency) have
no additional range or refueling constraints, but they do burn
gasoline and emit pollution from the tailpipe.
In general, it may be that the lowest-cost or lowest-emission

fleet does not use a single homogeneous technology but, rather,
a mixture of technologies, with different duty cycles (e.g., peak
versus off-peak) being served by different technologies.
We investigate the optimal technologymix and operations of a

ridesourcing fleet whose operator has perfect foresight of
exogenous (and inflexible) passenger trip requests and total
control over fleet acquisition and routing. Centralized control of
fleet vehicle choices may represent ridesourcing companies that
have owned or leased vehicles in some locales,15,16 a future with
autonomous vehicle fleets,17,18 or vehicles that are purpose-built
for ridesourcing fleets.19,20 Centralized vehicle routing may
become widespread as autonomous vehicle technology
advances, whereas today’s ridesourcing services only approx-
imate centralized routing via human drivers responding to ride
requests and price signals. Also, regulations and incentives that
operate at the level of the fleet, rather than the individual driver
(e.g., California’s under-development Clean Miles Standard,
which will regulate fleet-wide annual CO2 emissions per
passenger-mile21), increase the role of centralized fleet-wide
planning, coordination, and control.
We assess the policy opportunity of electrification by

comparing costs and emissions of pure CV, HEV, and BEV
fleets with mixed fleets across a range of scenarios. By comparing
cases that include or exclude emission externality costs in fleet
optimization, we assess the degree to which unpriced emission
externalities bias fleet outcomes away from socially optimal
solutions and consider whether policy intervention may be
therefore justified on economic efficiency grounds.
1.1. Literature. A body of literature considers operations

and outcomes of electrified vehicle fleets, but the question of
electrification’s role within a ridesourcing fleet’s optimal
technology mixture and its impact on resulting emissions is
relatively unexplored.
Some studies use agent-basedmodeling (ABM) to explore the

operational impacts of homogeneous all-electric fleets. Bauer et
al. estimate that such a fleet operating in Manhattan would
reduce private costs and emissions relative to a homogeneous
fleet composed of either CVs or HEVs, and Bauer et al. find that
fleet-wide coordination of charging would allow BEVs serving
demand New York City or San Francisco to meet the same level
of service as CVs at a lower cost even if charge networks are
relatively sparse.22,23 Our fleet differs in its optimization of the
fleet mix under different objectives and its consideration of
multiple cities. Chen et al. find that electrification can meet
ridesourcing demand while barely increasing empty VDT, but
only if the fleet size is increased.24

Other studies use ABMs in combination with a second model.
The scenarios simulated in Chen et al.24 were used as a case
study and defined the inputs for a life cycle assessment
framework in Gawron et al., which found that a fleet of electric
autonomous taxis could reduce cumulative greenhouse gas
emissions by 60% in the period from 2020 to 2050 in the base

case and up to 87% in additional scenarios.25 Sheppard et al. use
an ABM to generate simplified operational parameters for a
national-scale optimal sizing of vehicles and infrastructure for an
all-electric fleet, estimating that 12.5 million vehicles could
replace the fleet of 276 million personally owned vehicles.26

Chen and Kockelman incorporate a logit choice model into an
ABM to estimate that a shared, autonomous, all-electric vehicle
fleet could capture 14−39% of all passenger trips within the
Austin, Texas region, depending on pricing.27

Studies employing ABMs use simplifying assumptions or
heuristics to model agents’ behavior. These heuristics’ ability to
achieve representative behavior or near-optimal behavior cannot
easily be evaluated for each test case, so comparisons across
scenarios can conflate effects of the scenarios with effects of the
heuristics. Specifically, it is difficult to determine the degree to
which differences in results across scenarios are due to
differences in the scenarios themselves or due to differences in
the performance of the heuristics across scenarios. Bertsimas et
al. find that for vehicle routing problems, optimization coupled
with well-designed heuristics increases fleet revenue results by as
much as 9% relative to a heuristic alone and that heuristics
perform unevenly across problem instances;28 it is conceivable
that this 9% gap widens when a fleet’s technology mix is jointly
optimized with its routing. Heuristics are necessary to address
city-scale problems at manageable computational cost, but they
introduce challenges for comparing across casessuch as
comparing solutions with and without internalized air emission
externality costs. To address this limitation, we pair heuristics
with mathematical optimization to understand heuristic quality,
to gain intuition on their biases, and to compare fairly across
cases.
There is also a separate stream of methodologically focused

research applying optimization to the routing of range-limited
electric vehicles. These are typically conducted at a very small
scale (exact solutions for 100−200 trips or heuristic solutions for
several hundred more), they do not consider external costs, and
they rarely jointly optimize purchases and routing even in cases
when a fixed mixture of powertrains is assumed.29,30 The
Supporting Information (SI) describes some of these studies in
greater detail. Optimizing fleet size and mix at any scale requires
careful model formulation and development of problem-specific
heuristics, which our study contributes to its problem (applied
to an instance of 5000 trips).
In the somewhat-related context of round-trip car-sharing

fleets, in which the user pays for short-term rental of a car and
drives it themselves, Zoepf finds that BEVs do have a niche to fill,
reducing private costs when 20−40% of a gasoline fleet is
electrified but increasing private costs beyond that threshold.31

For TNC fleets, in the grey literature, a 2019 International
Council on Clean Transportation report examined powertrain
choice from the perspective of TNC driver costs of vehicle
ownership.32 It found that hybrids may be financially favorable
and that battery vehicles may become favorable around 2023−
2028, using assumptions for factors such as the total distance
traveled per year that, in practice, vary across vehicles in the fleet.
A later analysis by the same group found that a per-trip fee,
indexed to tailpipe emissions, between $0.58 and 1.12 would
suffice to make BEVs economically superior to HEVs.33

We contribute to the prior literature by (1) constructing a
mixed-integer optimization model with heuristics that make
meaningfully sized problems tractable and provide near-optimal
solutions for fair comparisons across scenarios and (2) applying
the model to characterize how the optimal technology mix,
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operations, and life cycle air emission externalities of a TNC fleet

change across scenarios representing geographic and temporal

variation, uncertainty, and the internalization of air emission

externalities (as a Pigovian tax passed through to the fleet

operator). Our model is also unique in its treatment of vehicle

costs, incorporating into the optimization the effect of vehicle

usage on the period of use, resale value at end of use, and the
resulting discounted future cash flow.
We include air emission externalities across the vehicle life

cycle from greenhouse gas emissions (including carbon dioxide,
methane, and nitrous oxide) and from criteria air pollutants
(particulate matter, nitrogen and sulfur oxides, and secondary
particulate matter from emissions of volatile organic com-

Figure 1. Illustration of the time−space graph showing passenger trips (red), charging arcs (yellow), dispatch arcs (gray), and relocation arcs (blue).
Some arcs are omitted for simplicity.

Table 1. Formulation of the FullMILP Optimization Problem
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pounds) using reduced complexity models that estimate health
costs caused by emissions of air pollutants. We use TNC trip
data from Austin, Texas to represent TNC demand, but to
consider how findings vary from city to city, we also model Los
Angeles andNew York by changing parameters related to energy
prices, health costs impacts, and marginal emissions from the
electric grid to represent each location. In each scenario, we find
the fleet size, technology composition, and vehicle routing
combination that satisfies TNC trip demand (matching origin−
destination location and time) at minimum cost.

2. MATERIALS AND METHODS
We construct an optimization model to choose fleet
composition (mix of CVs, HEVs, and BEVs) and operations
(vehicle routing and BEV charging) to minimize the cost of
satisfying exogeneous demand (origin and destination location
and time) under a range of scenarios. We first describe our
model and the customized methods we develop to solve it at
scale, and then we describe the data that we use to instantiate the
model.
2.1. OptimizationModel. Figure 1 illustrates our modeling

framework with an example. Vehicle purchase choices determine
the vehicles available to dispatch (left). Routing options, jointly
optimized with purchases, are represented using a graph, where
each vertex (dot) represents a specific place and time, and the
arcs connecting them include available options for:

• Trip arcs: Passenger trip requests that must be served.

• Charging arcs: Spending time parked (divided into 15
min charging increments) at a charging location while
recharging a battery or waiting for the next trip.

• Dispatch arcs: Deadheading from a vehicle’s home base to
the first passenger trip request.

• Return arcs: Deadheading from a vehicle’s final passenger
trip back to its home base.

• Relocation arcs: Deadheading from the end of one
passenger trip to the beginning of a next passenger trip or
between passenger trips and recharge locations.

In describing our model, we first define the full mixed-integer
linear programming (MILP) model FullMILP used to
represent this problem, then describe a set of heuristics that
we use to improve scalability.

2.2. MILP Formulation. Our FullMILP formulation,
shown in Table 1, finds the cost-minimizing fleet technology mix
and assignment of vehicles to trip arcs where the set of decision
variables includes the number of vehicles nk of each
powertrain type k purchased, assignments ak,i,j of vehicles k to
arcs (i, j), charge level qk,t and energy charged from the grid
Δqk,tCHG for each vehicle k at each discrete time point t, and total
annualized capital cost κk for each vehicle type (determined by
vehicle utilization levels) for all vehicle types ∈k , arcs

Table 2. Sets, Decision Variables, and Input Parameters

label type description

set all decision variables
set vertices representing points in space−time
set arcs connecting feasible pairs of vertices in
set vehicles or vehicle types (BEVs are represented individually, whereas CVs and HEVs are each tracked as a group)

B set battery electric vehicles (subset of , indexed individually)

set all unique arc start and end times

Q set all unique charging arc start times (subset of )

Ωk set linear constraints that make up the piecewise linear convex cost floor for capital cost κk for vehicle type k
nk variable number of vehicle k purchased (BEVs are tracked individually, whereas CVs and HEVs are tracked as a group)
ak,i,j variable assignment of vehicle k to arc (i, j)
qk,t variable charge level of vehicle k at time t
Δqk,tCHG variable energy charged to vehicle k from the grid at time t
κk variable private acquisition cost for vehicle k
δk variable externality costs of manufacturing, disposal, and recycling emissions k
τ parameter flag controlling whether air emission externalities are included as a tax
r parameter source vertex from which all routes originate
s parameter sink vertex at which all routes terminate
ti parameter time of vertex i
tSTART parameter earliest time in
tEND parameter latest time in
ni, j parameter number of trips requested along arc (i, j)
mi, j parameter travel distance along arc (i, j) (annualized)
mMAX parameter maximum lifetime travel distance of a vehicle
qk
MAX parameter energy capacity of vehicle k(∞ for CVs and HEVs)
ck,i,j parameter private cost for vehicle k to traverse arc (i, j)
dk,i,j parameter external cost from vehicle k traversing arc (i, j)
ct parameter private cost per kWh of electricity from the grid at time t
dt parameter external cost per kWh of electricity from the grid at time t
Δqk,i,jMAX parameter maximum energy change for car k induced by travel on arc (i, j) (positive for charging arcs, negative for all others)
αω,k
COSTS parameter intercept term for line Ω, representing a portion of the convex piecewise linear VDT-dependent capital costs

βω,k
COSTS parameter slope term for line Ω, representing a portion of the convex piecewise linear VDT-dependent capital costs

αω,k
X-COSTS parameter intercept term for line Ω, representing a portion of the convex piecewise linear VDT-dependent manufacturing external costs

βω,k
X-COSTS parameter slope term for line Ω, representing a portion of the convex piecewise linear VDT-dependent manufacturing external costs
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∈i j( , ) , and times ∈t . The full set of notation is shown in
Table 2.
In all test cases, the objective function, eq 5, sums the relevant

vehicle purchase costs κk, gasoline and per mile maintenance
costs ck,i,j, and time-varying battery charging costs ct. In cases
where air emission externalities are internalized, τ = 1, so the
fleet also considers a Pigovian tax on externalities from
manufacturing, disposal, and recycling emissions δk, tailpipe
and fuel refining emissions dk,i,j, and grid emissions dt.
At the core of FullMILP are equations that are standard for

many vehicle routing problems. Constraint 6 ensures preserva-
tion of flow for each vehicle through the network (forcing
vehicles to return to the depot after serving trips), Constraint 7
requires that all passenger trips be satisfied, and Constraint 8
requires that a vehicle must be purchased to be dispatched. The
remainder of the formulation is customized for our case.
In our model, annualized mileage determines in what future

year each vehicle is sold (either due to age or high mileage), its
resale value, and the resulting discounted resale cash flow.
Constraints 9−10 model capital costs and manufacturing
external. For all vehicles, Constraint 9 uses a set of linear
constraints Ω to define a convex piecewise linear cost floor
representing the sum of annualized vehicle costs (including
salvage value, which is a function of vehicle assignment) and, in
relevant cases, internalized externality costs. We discuss this
aspect of our formulation in more detail in the SI.
Constraints 12−14 manage the BEV charge level. Constraint

11 applies to timesteps at which regular (15 min) interval
charging timesteps begin, defines charger usage, and tracks
charge level changes. Constraint 12 applies to all other
timesteps, at which there is no charging option, so that the
charge level is fully determined by traversed arcs’ energy
requirements. Constraint 14 enforces bounds of BEV charge
levels. The implied amount of electricity purchased from the grid
is quantified for the objective function in the “where” statement
as the change in charge unexplained by travel.
The set of vehicle types ∈k indexes individual vehicles for

BEVs (each with binary purchase and routing decisions) but
groups vehicles into types for CVs and HEVs (with integer
purchase and routing decisions) for computational efficiency.
This grouping means that FullMILP assumes refueling time
and routing of CVs andHEVs is negligible, such that individually
tracking fuel level is unnecessary and FullMILP need not
separately index each car. Aside from these refueling
implications, CV andHEV dispatch are otherwise representative
of a fleet of discrete vehicles.
2.3. Heuristics. Solving the FullMILP problem with a

standard commercial solver is impractical for city-scale problems
with thousands of trips, particularly due to BEV charge
constraints. To improve scalability, we introduce a set of
customized heuristics that reduce problem size and tend to
discover solutions quickly, allowing us to find near-optimal
solutions to a sample of 5000 trips. This is a larger instance than
commercial tools can solve for many vehicle routing problem
variants in reasonable time and larger than the optimization state
of the art for exact solutions (200 trips) described in the SI. We
solve FullMILP first via a sequence of optimizations and
heuristics:

1. A novel MCF_VaryingFleetSize heuristic reduces
problem size by taking all feasible relocations from each
trip to potential next trips and eliminating relocations that
are

likely to be higher cost and therefore unused in optimal
routing solutions. It adapts prior work28 and uses
MCF_CarLimit, a customization of the widely
known minimum-cost network flow problem.34

2. A novel ShrinkingBattery heuristic builds an
initial feasible solution from an aggregated simplification
of the electric subset of the vehicle fleet, iteratively making
the aggregation more realistic.

3. A customized variant of a widely used RuinAndRe-
create heuristic randomly selects pieces of the solution
to reoptimize, improving the ShrinkingBattery
solution.

4. The FullMILP formulation is executed, taking the best
solution found by steps 1−3 as a starting point and upper
bound on cost. It measures solution quality relative to a
lower bound on cost defined by FullMILP’s linear
relaxation, which is iteratively tightened. In many of the
cases we test, this step simply verifies that the upper
bound found by steps 1−3 is within a tolerance of the
solution, but in some cases, this step also improves the
solution.

The MCF_VaryingFleetSize, ShrinkingBat-
tery, and RuinAndRecreate heuristics constitute a
substantial portion of this study’s contributionand this
research question would be unanswerable at a meaningful
scale without thembut because they are all tools to help solve
the FullMILP formulation, we present their underlying
intuition and algorithmic steps in the SI.

2.4. Passenger Trip Data and Driver Relocations. We
instantiate the model using a dataset of 1.5 million passenger
trips from June 6, 2016 to April 13, 2017, released in 2017 by
RideAustin, a nonprofit ridesourcing service in Austin, Texas.
We use the same set of trips from Austin to also model Los
Angeles and New York City (varying private and external costs
by region but not travel demand). We extract passenger trip
origin and destination, starting and ending timestamps, and
distance traveled to define trip arcs ni, j. All demand must be
satisfied, and passenger pickup times are inflexible. We sample
down to 5000 trips using the weekday-season categories shown
in Figure S17, plus a separate category for the high-demand days
of the South By Southwest Festival. This sample size equates to a
fleet size ranging from 37 to 39 vehicles in the base case (37−44
vehicles across all sensitivity cases), depending on the optimal
technology mix. The number of trips sampled from each
category is proportional to average daily demand (which
increased season to season as RideAustin became more
popular), and costs and distance values (which affect capital
costs of each vehicle) are scaled up to annual quantities based on
the number of days per year represented by each category. For
tractability, we use k-means clustering to group locations into 25
clusters and round times to the nearest 5 min. Because efficiency
varies with driving conditions,12 we estimate each trip’s
efficiency for each powertrain type using average speed,
computed from the known distance and duration, and
interpolating efficiency (gallons or kWh per mile) between
standard test city and highway drive cycles (EPA drive cycles
with average speeds of 21.2 and 48.3 miles/h, respectively).35

RideAustin data does not include travel between passenger
trips. For every potential relocation from each trip to each
subsequent trip (or charging node), we estimate the required
distance traveled and duration using k-nearest neighbors
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regression36 on the RideAustin trips. This method and its
implications are described further in the SI.
Relocations from the prior trip to the next trip were

disallowed if the actual time gap (from the first trip’s end to
the second trip’s start) was shorter than the estimated relocation
duration or longer than 30 min. For tractability, vehicles may
chain trips more than 30 min apart but must park at the central
charge station depot between those trips. When the estimated
duration is shorter than the time gap between trips, we assume
that the vehicle travels at the estimated speed for the estimated
trip duration, then idles for the remainder of the excess time
(assuming the combustion engine, if applicable, is shut off using
a start−stop system). For relocations between passenger trips
and the charging station or the source/sink nodes, we instead
assume that the vehicle parks immediately at the station and
departs the station as late as possible.
2.5. Vehicle and Charger Technology. We model a

typical present-day ridesourcing vehicle with otherwise-identical
CV, HEV, and BEV counterparts. For model year 2018 in the
United States market, there are five light-duty passenger vehicles
with BEV and CV variants. Of those, the Kia Soul is best suited
for ride hailing due to sufficient backseat space, so we adopt it for
this study. Figure S25 shows that its efficiency and range are
representative of model year 2018 BEVs excluding Teslas (likely
too expensive for mass-market TNCs), the Chevrolet Bolt, and
the BYD e6.
We assume one charging station (also the depot from which

all vehicles must begin and end trip chains) and place it at the
centroid of all trip origin−destinations. In practical contexts,
optimal sizing and siting of charge capacity is a challenging
problem that requires planning and investment, and it would
add a great deal of complexity to our optimization. However,
because our results do not show a substantial increase in VDT
from BEVs routing to and from charging stationsperhaps due
to perfect demand informationwe do not consider sensitivity
cases with more charging stations or a different charge station
location. There is no capacity constraint for charging or parking
at this location. The charger is the fast-charger specification
(CHAdeMO) that is compatible with the Soul, which can charge
its 30 kWh battery to 90% in 46 min (linearized to a rate of 35.2
kWh/h for simplicity). The BEV has anMSRP of $33 950, a city
efficiency of 27.3 kWh/100 miles, and a highway efficiency of
36.1 kWh/100 miles. The middle-trim version of the Soul CV is
used, with an MSRP of $20 500, city efficiency of 26.1 miles/
gallon (mpg), and highway efficiency of 30.9 mpg. The
hypothetical hybrid version of the Soul’s parameters is estimated
using differences in cost and efficiency between the similarly
sized Kia Optima sedan’s gasoline and hybrid variants, resulting
in a cost of $25 000, a city efficiency of 40.7 mpg, and a highway
efficiency of 39.7 mpg. CV and BEV variant efficiencies are taken
from the fueleconomy.gov;37 their MSRPs were accessed from
the manufacturer’s product websites.
In the base case of present-day Austin, energy prices come

from EIA-estimated 2017 Austin Energy annual averages for
transportation sector retail electricity prices (10.90¢/kWh) and
gasoline prices for 87 octane gasoline ($2.20/gal).38,39 These
time-invariant energy prices are shown in Table S8.
To annualize vehicle purchase costs, the MSRP minus a

discounted future cash flow from resale of the vehicle (whether
due to high mileage or age) is multiplied by a capital recovery
factor F, as shown in eq 2
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whereN is the age, in years, of the vehicle at which it ceases fleet
operation and is sold in the used car market (N may be a
noninteger) and r is the discount rate. Note that this capital
recovery factor is for equivalent annual payments from years 0 to
N − 1 (rather than years 1 to N).
We assume that vehicles are retired from the fleet and sold in

the used market after NMAX years or dMAX miles, whichever
happens first. Given a private firm discount rate r, a vehicle
purchase price p, and vehicle resale value function v(N,d) that
depends on age N and annual distance traveled d, the private
costs of each vehicle investment are
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MAX and d is defined for each vehicle k

as ∑ ∈ m ai j i j k i j( , ) , , , . Here, we use the symbol κ for capital cost

loosely because the MILP model treats κ as a decision variable
bound below by a set of constraints that represent a piecewise
linear convex function approximating eq 3. We describe this in
more detail in the SI.
We assume a private firm real discount rate of 7% (with annual

inflation of 2%), a maximum vehicle age ofNMAX = 12 years, and
a maximum VDT of dMAX = 170 000 miles, based on Argonne
National Laboratory’s Greenhouse gases, Regulated Emissions,
and Energy use in Transportation Model (GREET).40 For each
powertrain type, a separate regression (described in the SI)
estimated the relationship between age, miles driven, and resale
value using resale values queried from Kelley Blue Book.

2.6. Air Emission Externality Costs. In scenarios where
external costs of emissions are considered, air emission
externalities from the manufacturing stage are added as a
Pigovian tax on vehicle investments

∑ γ=
∈

T c
i

i iMFG
MFG P

(4)

where is the set of pollutants considered, γi
MFG is the quantity

of pollutant i produced during manufacturing, and ci
P is the

external cost per unit of pollutant i emitted. We consider
greenhouse gas emissions from CO2, methane, and N2O; we
consider health costs from PM2.5, SOX, NOX, and VOC.
To compute external costs per unit of greenhouse gas

emissions, we adopt the social cost of carbon $50 per ton of CO2
equivalent estimated by the Interagency Working Group on the
Social Cost of Carbon.41 For conventional air pollutants,
external costs depend on emission location, and we use the AP3
model42 to compute and monetize estimated health costs
associated with these emissions. AP3 is one of several reduced
complexity models that estimate the health impacts resulting
from air pollution. In contrast to the estimates generated by
complex chemical transport-based air pollution models, reduced
complexity models generate estimates at an acceptable level of
accuracy while enabling estimates to be found for large numbers
of scenarios quickly.
We adopt estimates of emissions from manufacturing each

vehicle technology from GREET,40 adjusting inputs to the
modeled vehicles’ curb weight and battery weight, and we
assume that manufacturing emissions from each production step
occur in U.S. counties where similar economic activity occurs.
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When air emission externalities are included, p in eq 3 is the
vehicle’s MSRP + TMFG. When externalities are excluded, p is
simply the vehicle’s MSRP. The SI includes further details and
input values.
Air emission externalities associated with vehicle operations

were estimated in a similar manner.

∑ γ=
∈

T c
i

i iOP
OP P

(5)

As with manufacturing emissions, we use the social cost of
carbon and AP3 to estimate external costs per unit of pollutant
emitted from vehicle operations. We adopt GREET tailpipe and
upstream estimates of emissions per gallon of gasoline
consumed and compute emissions based on the fuel
consumption rate of each vehicle technology on each route
arc. We assign tailpipe emissions to each scenario’s relevant
county (Travis County, TX in the base case of Austin). For
upstream emissions associated with BEV charging, there is a
body of literature estimating the time-varying marginal grid
emissions from end uses, including studies by Graff Zivin,
Kotchen, and Mansur and Siler-Evans et al.43,44 that use
regression approaches. We use the Siler-Evans et al. method-
ology, recalculated on recent data and averaged by season and
hour of day in 2017 for each analysis city’s eGrid subregion
(ERCOT in the case of Austin).45 For upstream emissions
associated with feedstock production and transportation for
making gasoline and fuel for power plants, we use emissions
quantities from GREET and AP3 costs factors of refinery
counties in the city’s region. This approach is described further
in the SI, and values used as inputs are given in Tables S2 (time-
invariant gasoline externalities) and S3 (average values of time-
variant grid externalities).
For emission external costs from all sources, we use the AP3

external cost model, a value of statistical life of $9.41 million
(2018), a carbon price of $50/tonne, and the Pope et al.
concentration−response relationship.47

3. RESULTS AND DISCUSSION

Across a wide range of scenarios for three citiesAustin, Los
Angeles, and New York Citywe find the optimal fleet
composition and operations for (1) minimizing private costs
and (2) minimizing private costs plus air emission externality

costs, and we compare resulting outcomes of policy interest. The
second case assumes the firm faces a Pigovian tax on direct
emissions as well as other life cycle emissions passed through
suppliers to the fleet operator without inducing other changes in
the economy. Each test case has the same total trip miles, since
demand is exogenous and must be met, and we present results
per trip-mile with outcomes annualized and monetary values in
2018 USD. Costs labeled as “external” refer to life cycle air
emission externalities from vehicle manufacture and use
(computed with a social discount rate of 3%), and costs labeled
as “social” refer to the sum of private and external costs.
In the base test case for each city, we assume a 7% real

discount rate used by the fleet operator, no labor costs, a BEV
price of $33 950 (2019 Kia Soul), $50/tonne CO2 externality
valuation, the AP3 model of conventional air pollution emission
mortality effects, $9.41 million value of statistical life, and the
Pope et al.47 air pollution concentration−response function. We
use a trip dataset from Austin for all three cities, but private and
external costs related to gasoline (at the tailpipe and refinery)
and electricity vary across cities. These assumptions are
discussed in Materials and Methods.
We first describe the impacts of a Pigovian tax on our results

and assess the cost reductions possible through technology
mixing. We then summarize the key results from an extensive
sensitivity analysis. In the SI, we provide additional analysis of
the base case results and a range of sensitivity cases.

3.1. Impact of a Pigovian Tax. Figure 2 summarizes key
cost outcomes in each city when optimized with and without a
Pigovian tax on air emission externalities. Across cities in our
base case, with no Pigovian tax, private costs range from 45.5 to
49.0¢ and external costs range from 10.1 to 14.8¢ per trip-mile
(that is, total annualized life cycle costs divided by the number of
annualized miles of passenger trips served). Depending on the
variability of regional costs, a tax leads the fleet to increase its
usage of BEVs by 5−156% and dispatch these vehicles in a
manner that reduces emission externalities per trip-mile by 10−
22%. In absolute terms (x-axis of Figure 2), these reductions
range from 1.3 to 2.3¢ per trip-mile. These values are broken
down in greater detail in Figures S1−S4, SI.
External cost reductions are greatest in percentage and

absolute terms in Los Angeles, where fuel emission externalities
are high and electricity generation externalities are low relative
to the other cities modeled (a larger relative difference for

Figure 2. Summary of changes to the optimal ridesourcing fleet when air emission externalities are internalized, including share of fleet-wide vehicle-
distance traveled (VDT) from BEVs (left) and total air emission externality costs per trip-mile (right) in three cities for the optimal fleet technology
mix and routing to serve exogenous travel demand. Each measure’s relative change induced by a Pigovian tax (expressed as a percentage of the “no-tax”
case) is annotated. Assumed private and external costs of energy inputs vary by city, as described in Sections 2.5 and 2.6. All cases use a 7% real private
firm discount rate, no labor costs, the vehicles described in Section 2.5 including the 2019 Kia Soul BEV, $50/tonne CO2 externality price, the AP3
external cost model, $9.41 million (2018) value of statistical life, and the Pope et al.47 concentration−response function. Results using alternative
assumptions are summarized in Section 3.3.
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criteria pollutant external costs than for GHGs). In percentage
terms, they are smallest in New York City, where the external
costs of electricity generation are highest of the three cities.
Austin sees the largest increase in BEV usage, partially because of
lower gas prices that lead a private cost-minimizing fleet to use
many CVs and few BEVs. However, due to lower health external
costs per unit of tailpipe emissions and a less “clean” grid than
Los Angeles, Austin’s external cost reductions fall between the
other two cities’ in percentage terms and are smallest in absolute
terms.
To put these per trip-mile results in context, a recent Fehr and

Peers consulting report estimated that Uber and Lyft drive 104
million monthly trip miles in Los Angeles.48 Multiplying those
trip miles by the 2.3¢ per trip-mile decrease in externalities, we
can roughly estimate external cost reductions of $29 million per
year in Los Angeles ($24 million in reduced criteria pollutant
emissions and the remainder in reduced GHG emissions).
As shown in Figure S2, these external cost reductions occur

alongside private cost increases up to 1% in our base case
(increases no higher than 0.4¢ per trip-mile). The net effect of
these cost changes is a reduction in overall social costs (private
costs plus external costs) ranging from 2 to 3% (0.9−2.0¢ per
trip-mile). While this net effect is small in relative terms, the
distributional impacts are significant since the tax shifts the
fleet’s external costs away from the public, many of whom do not
benefit from the fleet’s services and onto the fleet operator (and
potentially its customers).
These effects are not uniform across life cycle stages. Figure S5

shows that across analysis regions, as more BEVs are used, per
trip-mile manufacturing external costs increase by 6−11% (0.3−
0.5¢), almost entirely due to criteria pollutants. Tailpipe and
refining external costs drop by 17−80% (0.7−2.9¢) as internal
combustion engines are used less. In New York City, where BEV
usage is low without a Pigovian tax and the increase is largest in
relative terms, grid external costs increase by a factor of four
(0.9¢); in Austin and Los Angeles, where the shift is less drastic
in relative terms, changes in charge scheduling offset emissions
from increased grid energy usage.
These effects also vary by type of emissions. The share of per

trip-mile external cost reductions attributed to reduced criteria
pollutant emissions ranges from 63 to 85% (0.8−2.0¢), with the

remaining 15 to 37% coming from reduced GHG emissions
(0.3−0.5¢). Criteria pollutant external cost reductions range
from 8 to 11%, while greenhouse gas external cost reductions
range from 16 to 19%.
These external cost reductions are accomplished in each city

not only by shifting VDT away from gasoline usage (in CVs and
HEVs) and toward electricity usage (in BEVs), but also by a
corresponding change in vehicle purchases. Figure 3 illustrates
for each city, with and without the Pigovian tax, the share of
vehicle purchases for each powertrain (out of an optimal fleet
size ranging from 37 to 39 vehicles in the base case) and the
annual miles driven per car of each powertrain type. For all three
cities, the Pigovian tax results in increased fleet electrification,
both per vehicle and per mile, but the details of each city’s
private-optimal and socially optimal fleets differ:

• In Austin, where gas prices are low relative to other
modeled cities, a private-cost-minimizing fleet is
composed of a majority of CVs, but those CVs are used
infrequently, primarily during periods of high demand,
while HEVs serve as “baseload” supply and are
responsible for a plurality of total miles driven. When
air emission externalities are internalized, the fleet uses
HEVs to serve baseload and BEVs for nearly all remaining
trips, almost eliminating CV usage.

• In Los Angeles, a private-cost-minimizing fleet uses no
CVs due to higher gasoline prices. Instead, BEVs serve a
majority of demand with HEVs used primarily in periods
of high demand. Due to high gasoline externalities and
low electricity externalities, a Pigovian tax results in a fleet
that is almost entirely composed of BEVs.

• In New York City, where gasoline is more expensive than
Austin but cheaper than Los Angeles, a private cost-
minimizing fleet relies heavily on HEVs, using a mix of
BEVs and CVs for high-demand periods. A Pigovian tax
eliminates CVs from the fleet and makes the fleet majority
BEV, but due in part to relatively high externalities of
electricity generation, HEVs are still used as the baseload.

Across the three cities, the number of BEVs in the optimal fleet
increases by 63−180% when a Pigovian tax is imposed on the
fleet, and BEVs’ total vehicle-distance traveled increases by 5−

Figure 3. Vehicle purchases (x-axis) and average utilization (y-axis) by powertrain type for cost-minimizing fleets when excluding (left) and including
(right) a Pigovian tax on air emissions. Private and external costs of energy inputs vary across cities, as described in Sections 2.5 and 2.6. All cases use a
7% real private firm discount rate, no labor costs, the vehicles described in Section 2.5 including the 2019 Kia Soul BEV, $50/tonne CO2 externality
price, the AP3 air emission external cost model, $9.41 million (2018) value of statistical life, and the Pope et al.47 concentration−response function.
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156%. HEVs serve virtually all of the remaining demand in these
three Pigovian tax cases, while CVs are at or near 0% of the fleet’s
purchases and distance traveled.
3.2. Value of Optimally Mixing Technologies. Across

cities, a fleet that optimally determines the mixture of
powertrains to purchase and dispatch substantially reduces its
private costs and the air emission externalities it produces.
Figure 4 illustrates each cost component for four fleet
configurations: (1) an all-CV fleet optimized for private costs
with no Pigovian tax on emission externalities (the single-
technology fleet option that is arguably closest to the business-
as-usual case of present-day fleets); (2) the same fleet facing a
Pigovian tax; (3) a mixed fleet optimized for private costs; and
(4) the same fleet facing a Pigovian tax. For an all-CV fleet,
internalizing emission externalities has virtually no ability to
reduce them because routing decisions for CVs that minimize
private fuel and capital costs also nearly minimize external costs
(a very small reduction occurs because internalizing externalities
alters tradeoffs between energy usage and distance-based net
capital costs).
In all three cities, an all-CV fleet is suboptimal enough that

many of the external cost reductions seen from a Pigovian tax are
also achieved simply by having the fleet optimally choose
powertrains (while still providing it with the full foresight to
knowwhat that optimal mix is). Relative to an all-CV fleet, a fleet
optimized for private costs reduces private costs by 5−14% and,
in doing so, also reduces emission externalities by 14−66%. In
the SI, we also compare the optimal mixed fleet to optimal
homogeneous fleets composed of either CVs HEVs or BEVs.
Across the three cities, the best homogeneous fleet does not
depend on a Pigovian tax: it is all-HEV in Austin and New York
City and all-BEV in Los Angeles regardless of whether a tax is
included. Relative to the best homogeneous fleet, the mixed fleet
optimized without a Pigovian tax reduces private costs by 1−4%
and themixed fleet with a Pigovian tax reduces social costs by 1−
4%.
Unlike all-CV and all-HEV fleets, internalizing an all-BEV

fleet’s emission externalities can shift charging to lower-polluting
times of the day to reduce externalities (assuming perfect day-
ahead information regarding external costs of the grid’s marginal

generator). Themagnitude of this reduction ranges from 4 to 6%
depending on the scenario. All-BEV fleets are also slightly larger
than other fleets, due to the need for some portion of the fleet to
recharge during high-demand hours. These results are provided
in the SI.

3.3. Sensitivity to Model Inputs. Here, we briefly
summarize findings across additional test cases. In Figures
S7−S16, we provide more exhaustive results from all sensitivity
cases.

3.3.1. External Cost Model and Social Cost of Carbon. Our
base case assumes a $50/tonne CO2-equivalent externality
valuation and uses the AP3 reduced complexity model to
estimate health costs from criteria air pollutants. Using a very
high CO2 externality valuation of $300/tonne increases private-
optimal externality estimates by a factor of roughly two to three
across cities and leads the fleet to use nearly all BEVs under a
Pigovian tax, reducing externalities as much as 39% (in Austin).
We also consider EASIUR and InMAP, two alternative

reduced complexity models downloaded from a Center for Air,
Climate, and Energy Solutions Database.46,49,50 Using either
model rather than AP3 in Austin (where those models’marginal
grid external cost estimates are each roughly half of AP3’s) leads
to substantially increased BEV uptake in Pigovian tax scenarios.
In tax scenarios for Los Angeles, BEV usage is nearly maximized
with all three models. In New York City, EASIUR results in
similar outcomes as AP3, but InMAP leads to estimated
externality reductions of 75% due to near-total electrification
with a tax. This change is primarily driven by a large difference in
county-level tailpipe external cost estimates for Manhattan
(where InMAP’s are around 5 times greater than AP3’s and 3
times greater than EASIUR’s). These models’ structural
differences, and regional variations in differences between
their external cost estimates, are examined systematically in
Gilmore et al.51

3.3.2. Discount Rate, Resale, and Labor. Our base case
assumes that the fleet pays drivers no hourly wages (instead
effectively assuming either a flat percentage of fare or driverless
cars) and uses a 7% real discount rate for future operation costs
and future resale value of its vehicles at the end of TNC use
(resale value estimation is described in Section 2.5, eq 3).

Figure 4. Average private costs, external costs from air emissions, and social costs (private + external) per trip-mile for TNC fleets in three cities,
considering an all-conventional vehicle fleet (“CVOnly”) and an optimally mixed fleet (“optimal fleet”) with and without a Pigovian tax on air emission
externalities. The percentage cost reduction relative to the “CVonly, no-tax” case is annotated. Assumed private and external costs of energy inputs vary
across cities. All cases use a 7% real private firm discount rate, no labor costs, the vehicles described in Section 2.5 including the 2019 Kia Soul BEV,
$50/tonne CO2 externality price, the AP3 external cost model, $9.41 million (2018) value of statistical life, and the Pope et al.47 concentration−
response function.
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Using a lower discount rate of 1%, the fleet places greater
value on the future cash flow from reselling each car; this reduces
the capital cost advantage of CVs and they are used negligibly
even when minimizing private costs. With a higher discount rate
of 13%, the capital cost advantage of CVs increases, but when a
tax is introduced, they still serve no more than 22% of VDT and
BEVs still serve 23−97% of VDT.
If we instead assume fleet vehicles have no resale value,

outcomes shift slightly. This is because our resale value
regression model estimates faster depreciation for BEVs than
for HEVs and faster depreciation for HEVs than for CVs. This
means when the resale value is removed, the effective purchase
costs of CVs increase by more than HEVs or BEVs in percentage
terms, but the gap is narrow in absolute dollar terms. When
minimizing private costs in Austin, for example, CVs fall from
27% in the base case (7% discount rate) to 26% of total VDT (no
resale value).
If we assume the fleet pays its drivers an hourly wage of $12,

including when BEVs must go out of service to recharge, BEV
VDT decreases by 26 (in New York City) to 52 (in Los Angeles)
percentage points in no-tax scenarios. This demonstrates that
charging may not only increase planning complexity but also
impose labor costs that change a fleet’s optimal strategy.
3.3.3. Battery Capacity and Cost. Our base case uses the

2019 Kia Soul with a retail price of $33 950 and a 30 kWh
battery. Rather than model an explicit cost per kWh, we consider
a sensitivity case in which the BEV’s sticker price is reduced to
$28 950 (a cost reduction of $167/kWh if all price reductions
are attributed to lower battery costs). In that case, the private
cost-minimizing fleet would be the majority BEV in each city (in
terms of purchases and VDT) and a Pigovian tax would lead
BEVs to serve 60−96% of VDT.
If we instead used a 2020 Chevrolet Bolt as the reference

vehicle, with a price of $36 620 and a 66 kWh battery, a tax
increases electrification slightly in Austin, where the higher
sticker price makes BEVs less competitive as baseload, and
increases it slightly in New York City, where each BEV can serve
additional trips in high-demand periods. In Los Angeles, where
BEVs already served a nearly all VDT, they serve roughly the
same share of VDT but require fewer purchases to do so.
3.3.4. Electricity Rates. Our base case uses average retail

electricity rates from 2017. In the future, higher rates could
result from large amounts of demand induced from economy-
wide BEV charging, which may alter grid dispatch and require
additional generating capacity. For sensitivity cases, we focused
on Austin, which has the most evenly mixed fleet in the base
case, and varied its electricity rates from 5.5¢ (half of the base
case value) to 21.8¢ (double the base case value) per kilowatt
hour. Across all price ranges, usage of CVs does not change
much: they make up 68−73% of the fleet with no-tax (but
primarily serve peak demand, around 30% of total VDT) and are
nearly eliminated with a tax. However, the portion of the
remaining demand served by BEVs varies by electricity price.
When rates are doubled, they are used only in the tax scenario
(for 17% of VDT versus 29% in the base case); when rates are
halved, at least 68% of VDT are served by BEVs with or without
a tax. Since this affects scenarios with and without a tax in similar
ways, the range of reductions in external costs induced by a tax is
relatively consistent, from 10% (with rates doubled) to 15%
(with rates halved). Because Austin is the least favorable for
BEVs in our base case, it loosely corresponds to a pessimistic
lower bound on BEV usage under increased electricity rates.

3.3.5. Marginal External Costs from Electricity Generation.
Our base case (described in Section 2.6) uses marginal
generation estimates from 2017 for each eGrid subregion. It is
unclear how external cost values from marginal generation may
change in the future: it is possible that in some regions, demand
induced from economywide BEV charging could shift less
efficient coal plants to the margin, but it is also possible that
long-term increases in renewable energy may result in some
hours of the day having zero marginal emissions. Rather than
explicitly model these possibilities, in each region, we consider
three additional sensitivity cases with three time-invariant values
for marginal external costs: the region’s highest-external cost
marginal emissions from 2017 (the most damaging plant is
always on the margin), the region’s lowest-external-cost
marginal emissions from 2017 (the least damaging plant is
always on the margin), and 50% of the region’s lowest-external-
cost marginal emissions from 2017 (on average, renewables and
the least damaging plant are each on the margin half the time).
For Austin’s lowest-external-cost case, BEVs serve 79% of VDT
with a tax; in the highest-external-cost case, they serve only 18%.
External cost estimates shift with generation assumptions across
tax and no-tax scenarios, and the external cost reductions
induced by a tax vary in the range from 9 to 19% (0.8−1.8¢ per
trip-mile). The trend is less pronounced in New York City,
where BEVVDT in tax cases ranges from 31 to 42% and external
cost reductions range from 7 to 15% (1.6−2.3¢). In Los Angeles,
where BEVs serve a majority of VDT across all cases, external
cost reductions shift even less, ranging from 17 to 22% (1.9−
2.3¢).
Detailed results from sensitivity analyses, along with an

expanded discussion, are available in the SI.
3.4. Discussion.Across a wide range of scenarios, our results

consistently suggest that internalizing air emission externalities
results in a greater degree of electrification (shift from CV to
HEV and BEVs and shift from HEV to BEV) as well as
operational changes that together reduce air emission externality
costs (by 10−22% in the base case and 4−75% across sensitivity
cases, depending on the city) and lower social costs (by 2−3% in
the base case and 0−18% across sensitivity cases, depending on
the city). This suggests a potential role for policy because when
emission externalities are unpriced, firms have incentives to
lower private cost in ways that increase air emissions, implement
a lower degree of electrification, and charge BEVs when the grid
is less clean than socially optimal. While the change in social cost
is fairly small across most of the scenarios examined, the change
in who bears the cost (private versus external costs) can be
significantas estimated above for Los Angeles, as high as $29
million of annual environmental and health outcomes.
Pigovian taxes offer efficiency and flexibility, but in the

absence of such an option, other policies that encourage similar
outcomes, such as policies encouraging increased electrification,
could potentially improve economic efficiency. However, any
such policy should be designed with care. A blunt instrument
favoring one technology over others may not be desirable
because (1) the optimal fleet is generally a mixed fleet; (2)
beyond fleet composition, it is important how intensively each
vehicle type is used; and (3) factors that vary with location and
over time, like energy prices, vehicle cost, population density,
and grid emission factors, can dramatically change the degree of
electrification that is optimal.
It is worth noting that unlike private vehicles, ridesourcing

fleet vehicles spend a substantial portion of time deadheading
with no passengers while they wait for their next ride request and
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travel to its pickup location. Across test cases, even with our
model’s assumption of perfect information, around 47% of total
distance traveled result from these empty miles (due in part to
relatively low demand density in the RideAustin dataset); this
implies that a similar share of external costs is due to
deadheadinga largely unavoidable aspect of ridesourcing
regardless of powertrain decisions. Because demand is
exogenous in our model, the Pigovian tax (and the resulting
electrification) does little to reduce the degree of deadheading.
These results should be interpreted in context. Our model is

relatively detailed in its treatment of supply-side investment and
operation costs and constraints, but it considers a single
ridesourcing firm with perfect information and full control of
fleet acquisition and operation that must satisfy all demand with
inflexible pickup times. In practice, current ridesourcing fleets in
the U.S. are staffed by workers who choose their own vehicles,
which often serve dual uses as personal vehicles and choose
when to work in response to incentives. Where vehicles are
purchased by each worker, it is unclear what options (e.g., a
powertrain externality based driver incentive program) may be
most viable for fleet owners to induce these shifts. Our model
may approximate today’s dispatch to the degree that accurate
demand prediction is possible and to the degree that drivers
respond to incentives about when to work, but we ignore the
pricing mechanisms altogether, as well as the potential for dual-
use vehicles. Our model may be a better approximation of a
future fleet centrally owned and routed by the ridesourcing firm
(e.g., a fleet of autonomous vehicles; a fleet owned and leased to
drivers for TNC work) or perhaps one responding to policies
requiring greater fleet-wide coordination and optimization.21

Our exclusion of vehicles’ outside value for dual uses
overestimates the extent to which CVs (which have lower
capital costs) reduce costs for peak demand hours relative to
BEVs and HEVs. However, this overestimation is partially
mitigated by our formulation of endogenous capital costs, which
lowers them for less heavily used cars. Accordingly, excluding
dual uses affects the composition of vehicle purchases,
particularly for low-use vehicles, but its effect on the vehicle
distance traveled by each vehicle type is smaller by comparison.
Assuming perfect information and control may overestimate

the fleet’s ability to opportunistically schedule battery charging
around gaps in demand and fluctuations in marginal grid
emissions, overestimating the number of trips each BEV may be
able to serve. Ridesourcing services also need not meet all
demand at the exact start and end time they were served in the
RideAustin data. If we allowed flexible time windows for
passenger pickup and dropoff time (perhaps with a cost for
additional waiting time), the fleet could improve operational
efficiency and the optimal fleet composition could potentially
change.52

We provide results for three cities with varying private and
external assumptions but use RideAustin data from 2016 to 2017
in all scenarios. Because this study does not have accurate and
current inputs for each city’s TNC travel demand, it misses
differences resulting from the urban form that may alter the trip
and relocation distances and speeds across regions (e.g.,
compact versus sprawled development, gridded versus irregular
design, congested versus free-flowing travel, and low-speed
neighborhood streets versus urban highways). This may change
optimal fleets. For example, where trips are more stop-and-go,
BEVs may be more optimal; where trips are longer, BEVs may
face more difficult charging constraints.

We do not consider distributional impacts of ridesourcing
fleet externalities, but rather optimize total social costs across
disparate regions. Approaches considering equitable outcomes
could, for example, require that no region may see external costs
increase by more than some margin. By shifting emissions from
the tailpipe to the grid, fleet electrification could increase health
impacts of air emissions in areas outside the city even while
reducing total air emission health impacts.13 Distributional
impacts within a status-quo city also warrant further attention;
ridesourcing fleets may be used by relatively affluent people but
may impose disproportionately large health costs on populations
less likely to use the services.
Despite these limitations, the ability to observe changes in

optimal fleets under a variety of scenarios helps in developing
intuition about fleet technology choices and operations as well as
the implications of unpriced externalities in technology choice
and operations.
We discuss a range of additional cases and considerations in

greater depth in the SI.
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