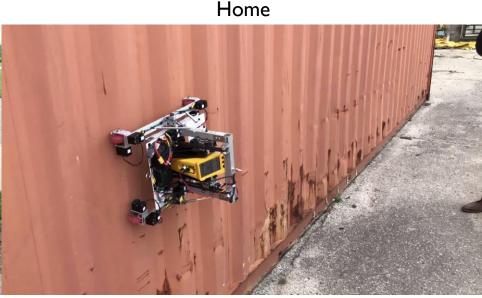
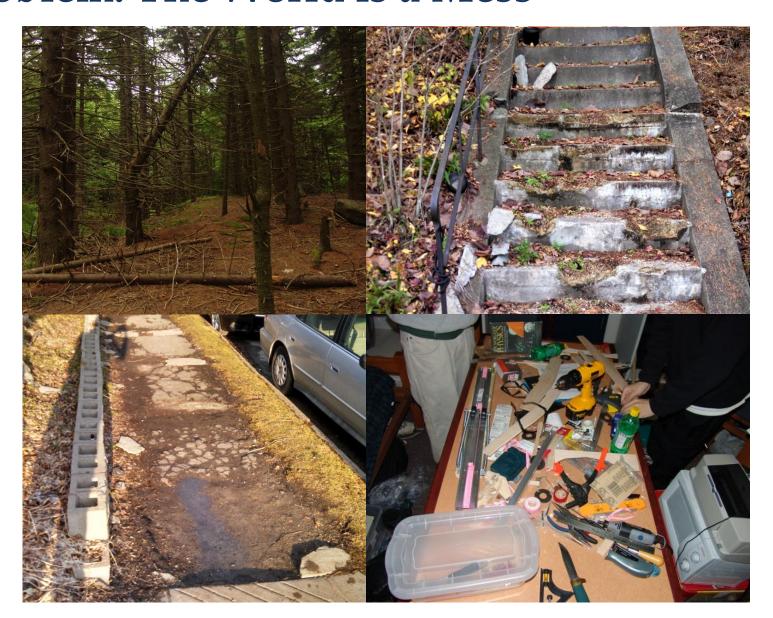
The Robomechanics Lab


Goal: Robots that can work in the real world

Wilderness/Planetary Exploration

Environmental Monitoring


Industrial Inspection

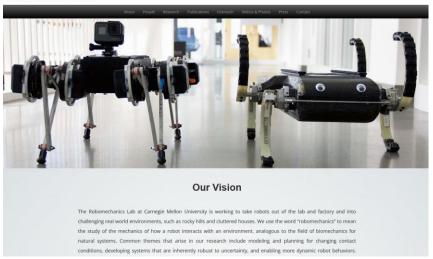
C. Pavlov and A. M. Johnson. "Soil Displacement Terramechanics for Wheel-Based Trenching with a Planetary Rover." ICRA, 2019.

2 S. Srinivasa, et al. "A System for Multi-step Mobile Manipulation: Architecture, Algorithms, and Experiments." *ISER*, 2016. J. Norby, et al. "Path to Autonomous Soil Sampling and Analysis by Ground-Based Robots." J. Environmental Management. 2024

Carnegie Mellon University

Problem: The World is a Mess

Robot Locomotion Challenges



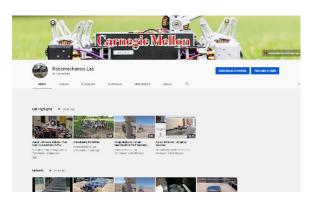
Unexpected contact with the world

Lab Overview

Lab

Carnegie Mellon University Robomechanics Lab

With research overview, recent publications, etc https://robomechanics.net


YouTube Channel with more talks and research videos:

https://www.youtube.com/channel/UCKD78aZAsdB9-JTwrt6Q1KA

Recent Seminars:

https://www.youtube.com/watch?v=KVjeNPxD0DE https://www.youtube.com/watch?v=GHXko5-CorQ

Where is Prof. Johnson?

- Munich, Germany
- Prof. Johnson is on sabbatical for the 2025-2026 school year
- BUT, we are still taking new students for projects
- He will be joining meetings and available for 1:1 over zoom

Fall 2025 Projects

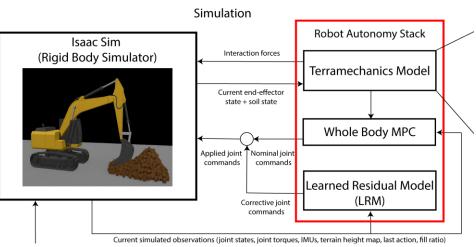
robomechanics.net amj1@cmu.edu

- I am an MS-R or CIT-H student. How do I work with you?
 - 1. Look through this document at the advertised projects.
 - 2. Read the recommended paper.
 - 3. After that, email Prof. Johnson with:
 - Your resume
 - Which project you are interested in
 - Why you want to work on that project (~2 sentences)
- Do you advise MS-C, MS-AS, or other non MS-R students?
 - Yes, but priority is for MS-R slots first.
- Do you fund MS-R students?
 - No. I wish I could!

Project 1: Adaptive Learning Control

- Improving adaptability of learned control systems
- Applications on legged robots and construction vehicles
- Integration with perception and multi-agent coordination
- Skills: Strong C/C++, RL
- Talk to David
- Paper to read:

https://www.youtube.com/watch?v=kSXKjTxKpuA


Sean J. Wang; Honghao Zhu; and Aaron M. Johnson. "Pay Attention to How You Drive: Safe and Adaptive Model-Based Reinforcement Learning for Off-Road Driving." In *IEEE Intl. Conference on Robotics and Automation*, 2024. https://arxiv.org/pdf/2310.08674.pdf

https://youtu.be/5WgZQ_ALNHg

Project 2: Mud-interaction / Construction

- Simulation for contact modeling with mud/soil interaction
- Considering how legs, wheels, tracks, and scoops interact with soils
- Skills: C/C++
- Talk to Wensen or David
- Paper to read:

Catherine Pavlov; and Aaron M. Johnson. "A terramechanics model for high slip angle and skid with prediction of wheel-soil interaction geometry." *Journal of Terramechanics*, 111: 9–19. 2024

Project 3: Muscle-Inspired Control

• Study muscles to understand the lowlevel reflex control and mechanics

- Create simulated model to look at muscle response. Compare stability loop of muscles to PID control
- Build a small robot arm using lowlevel muscle controller
- Skills: Strong classical and modern controls background
- Talk to Diana or Naomi
- Papers to read:

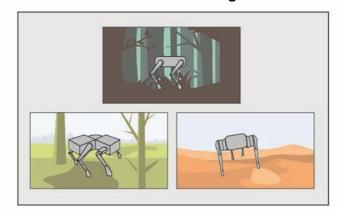
Yeo, S.-H., Verheul, J., Herzog, W. & Sueda, S. Numerical instability of Hill-type muscle models. *Journal of the Royal Society Interface* **20**, 20220430. ISSN: 1742-5689 (2023).

Zhu, J., Payne, J. J. & Johnson, A. M. Convergent iLQR for Safe Trajectory Planning and Control of Legged Robots in IEEE Intl. Conference on Robotics and Automation (2024),

RF5: Whole body control for effective and stable locomotion

Trajectory stablization

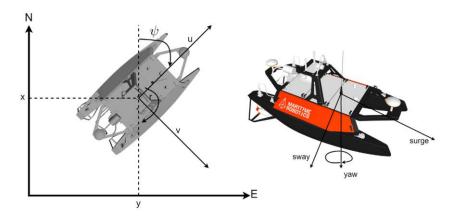
on complex terrains


Project 4: Paleo-Spined Design & Control

- Designing small paleo-inspired quadrupedal robots
- Create simulations to evaluate multiple designs
- Develop learned RL-based controller
- Skills: Python, Strong C/C++, simulation, Robot Design
- Talk to Aja
- Papers to read:

Extinct Animals (e.g., Dinosaurs)

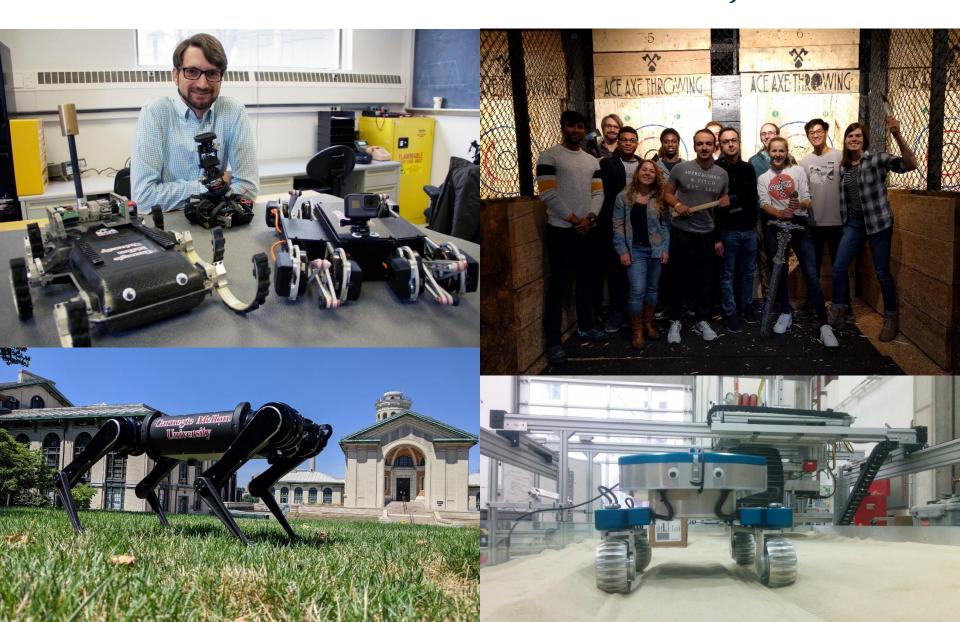
New Robot Design


Lee, Joonho, et al., "Learning quadrupedal locomotion over challenging terrain." *Science Robotics* (2020) Bishop, P.J, Pierce, S.E., "Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals" *Science Advances* (2024)

Project 5: Boat

- Dynamics discovery and optimal control of marine vessels
- Exploring how to control around disturbances such as waves and current
- Talk to Wensen
- Skills: Strong Python, optimal controls

Papers to read


- [1] A. Hasan, "Physics-informed discovery of marine vessels dynamics from noisy data," *Ocean Engineering*, vol. 317, p. 120032, Feb. 2025, doi: 10.1016/j.oceaneng.2024.120032.
- [2] R. Skjetne, T. I. Fossen, and P. V. Kokotović, "Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory," Automatica, vol. 41, no. 2, pp. 289–298, Feb. 2005, doi: 10.1016/j.automatica.2004.10.006.

Coordinate system for USV dynamics modelling. Reproduced from [1]

Thank you!

robomechanics.net amj1@cmu.edu

