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ABSTRACT 

This work investigates how attribute interactions affect 
consumer preference for product form attributes in choice 
based conjoint analysis. Interaction effects are present when 
preference for the level of one attribute is dependent on the 
level of another attribute. When some or all interaction effects 
are negligible, a factional factorial experimental design can be 
used to reduce the number of variants shown to the respondent 
and keep the survey size manageable. This is particularly 
important when the presence of many parameters or levels 
makes full factorial designs intractable. However, if there is 
uncertainty about the independence of attributes or if 
interaction effects are relevant, a fractional factorial design may 
create biased estimates and misleading conclusions. This work 
examines the role of interaction effects in visual conjoint 
analysis, an extension to traditional conjoint analysis that 
allows for product form attributes that vary continuously. Many 
visual conjoint analysis studies assume interaction effects are 
negligible. We conduct preliminary tests on this assumption in 
three visual conjoint analysis studies.  The results suggest that 
interactions can be significant or negligible in visual conjoint, 
depending on both consumer preferences and shape 
parameterization. We suggest that randomized designs are 
generally better than fractional factorial designs at avoiding 
errors due to the presence of interactions and/or the 
organization of profiles into choice sets. 
 
INTRODUCTION 

The ability to capture and characterize consumer 
preference is an important tool for design engineers. When 
developing a design solution, engineers need useful information 
about their target users so that they can better tailor their 
designs. Preference modeling is a common way to gather this 

information. One of the most popular methods for constructing 
consumer preference models is conjoint analysis [1]. In 
conjoint analysis direct feedback is solicited from consumers in 
the form of product surveys. These surveys present participants 
with multiple product profiles chosen to span the design space 
without conflating the effects of attributes [2]. In the past 
decade, conjoint has been applied in a variety of engineering 
design contexts [3–5]. Although originally used to characterize 
consumer preference for the functional attributes of a product, 
over time the method has evolved and extensions have been 
added to accommodate aesthetic attributes. Orsborn et al. 
presented one of those extensions, visual conjoint analysis [6]. 
In that work visual conjoint analysis was used to show aesthetic 
preference for complex designs such as the front of vehicles 
could be captured through conjoint analysis. The designs were 
the composition of several Bezier curves whose control points 
were varied to create alternative designs. The parameterization 
in visual conjoint analysis studies allows for a product’s shape 
to vary continuously through the design space. 

One of the main considerations when planning out a 
conjoint study is the number and makeup of the survey 
questions. In order to develop an effective survey researchers 
employ design of experiments [7]. Design of experiments refers 
to a set of rules that determine how to efficiently plan out 
experiments in order to answer specific questions. The most 
comprehensive design (in a discrete space) is the full factorial 
[8]. In a full factorial design all the possible combinations of 
attribute levels are represented. For example a full factorial 
study design containing 5 attributes each with 3 levels requires 
35 or 243 product profiles. Participant responses to a full 
factorial survey design allow for the calculation of both main 
effects-the effect a product attribute level has on preference for 
the entire product-and interaction effects-the effect one attribute 
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level has on preference for another. This information can be 
used to generate a utility function that describes participant 
product preference. Unfortunately, as the number of questions 
required for a full factorial design scales exponentially with the 
number of attributes, the load on the respondents quickly 
becomes too great. As a result, it is often impractical to use full 
factorial surveys to model preference for complicated products 
that have many attributes. Fractional factorial designs enable 
researchers to estimate specific effects with fewer questions 
when other effects are believed to be negligible. This results in 
a smaller survey size; however, if the assumed-negligible 
effects are in fact significant, estimates will be biased [9].   

It is important to note that factorial design theory is based 
on linear designs and is not directly applicable to choice based 
tasks. In conjoint analysis the linear design is analogous to a 
ratings task, but a choice task is distinct because the dependent 
variable (utility) is not observed directly. Traditional design of a 
choice based task typically begins with developing a balanced 
and orthogonal linear design and organizing the profiles 
arbitrarily into choice sets [10]. Alternative methods for 
optimizing the survey design exist when priors are available on 
the model parameters [11–13], or when adaptive methods are 
available [14] but we do not pursue those here. 

In this work, we use case studies to investigate the validity 
of ignoring interaction effects for conjoint analysis cases that 
involve aesthetic attributes. Our goal is to get a better 
understanding of how the inclusion or exclusion of interactions 
can impact the performance of consumer preference models of 
product form constructed through visual conjoint analysis. 

PREVIOUS WORK 
There are many examples of researchers using conjoint 

analysis and other methods to model consumer preference for 
form attributes. Swamy et al. successfully used conjoint 
analysis to model preference for vehicle headlight shape [15]. 
The product representation in that work was the outline of the 
headlight composed of Bezier curves. Headlight shape was also 
the subject of preference modeling in separate work completed 
by Petiot and Dagher [16]. Here an alternative method to 
conjoint analysis is shown to be able to capture preference. This 
method uses multidimensional scaling to build a perceptual 
space that yields interpretable perceptual dimensions. Reid et 
al. used a visual conjoint method to quantify the relationship 
between aesthetics and perceived environmental friendliness 
[17]. That work had participants rate two-dimensional vehicle 
silhouettes on environmental friendliness. The results showed 
that cars with smoother curves were more likely to be thought 
of as being inspired by nature while boxier cars were less likely. 
Macdonald et al. [18] used conjoint analysis to model semantic 
messages of wine flavor associated with different wine bottle 
shapes. The flavor models were used in conjunction the shape 
models to optimize wine portfolio characteristics such as flavor, 
quantity produced, and profitability. Kelly and Papalambros 
[19] presented a method for optimizing a product based on 
aesthetic preference data and engineering performance 
characteristics. Conjoint analysis is used to capture preference 

for the shape of a beverage bottle. Shape preference was then 
plotted along with shape dependent engineering characteristics 
to create a Pareto front that illustrated the tradeoffs between 
aesthetic form preference and actual functional performance. 

In work by Tseng et al. a methodology was presented for 
capturing preference for stylistic attributes [20]. The subject of 
that work was a vehicle design represented by line drawing 
silhouettes. Here neural networks were used to capture 
preference and genetic algorithms were used to create optimal 
designs based on preference. Sylcott et al. [21] used the same 
vehicle representation scheme as Tseng et al. in a visual 
conjoint analysis study. The work involved developing a meta-
conjoint approach in order to combine form and function 
preference. In work by Turner et al. a conjoint framework was 
used to model preference for color [22]. The attributes in that 
study were the red, green, and blue components that make up 
the color of a backpack and the levels were the component 
intensity values. That work showed that preference for 
something as subjective color can be captured in a utility 
function. 

In many of these cases and others that deal with modeling 
preference for subjective characteristics, interaction effects 
were assumed to be negligible and were not included in the 
preference models. Missing interactions can bias parameter 
estimates and result in misleading conclusions. However, there 
is evidence that in some situations the added complexity that 
comes with including interaction effects is not extremely 
beneficial and that the variance in the term estimation can 
negatively impact the model performance [23]. 

Green and Srinivasan suggested that interaction effects are 
important in situations that involve surveying sensory 
phenomena, styling, and aesthetic features [24]. The literature 
on multi-attribute utility theory has also emphasized the 
importance of nonlinear effects [25–28]. In the following case 
studies this work investigates examples of preference models 
with and without interaction effects in order to get a better 
understanding of how interaction effects influence the 
performance of visual conjoint based models. 

APPROACH 
This work consists of three different case studies. In each 

study utility functions are developed based on the results from 
choice based visual conjoint surveys. When making a choice 
between alternatives, Eq. 1 defines the total utility associated 
with alternative j out of J total alternatives: 
 

  . (1) 

 
Here, uj is the total utility associated with the jth design 
alternative, xj contains the attribute values for the design 
alternative (and their combinations, such as interactions), and β 
is a vector of unknown regression parameters. The quantity xjβ, 
or vj accounts for the observable portion of the alternative’s 
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utility while εj accounts for the unobservable portion, which is 
treated as a random variable. In this work maximum likelihood 
estimation (MLE) is used to solve for β. 

Multinomial logit (MNL) models relate the utility of a 
design and its alternatives to the probability of the focal design 
being chosen [29]. β is found by maximizing the probability 
that the model will generate the observed data. Assuming each 
of N total decision makers makes their selections independently 
and that the error term from Eq. 1 follows an extreme value 
distribution, this likelihood, L can be expressed as Eq. 2 [30]: 
 

 ,  (2) 

 
where nj is the number of respondents that choose alternative j 
and the logit probability, Pj is defined by Eq. 3 [31]: 

 

 .  (3) 

 
Eq. 3 describes the probability of choosing alternative j from 
the set of M alternatives present in a choice set k. The log 
likelihood, LL, is obtained by taking the log of Eq. 2 resulting 
in Eq. 4: 
 

 .  (4)  

 
An optimal value for β can be found by maximizing Eq. 4 (a 
monotonic transformation of Eq. 2) with respect to β. Once β is 
specified the utility model is complete and can then be 
evaluated for performance. 

The metrics chosen to evaluate the performance of the 
utility models in this work are the log likelihood, LL, 
equivalent average likelihood (EAL), hit rate (HR), and mean 
absolute share error (MASE), all calculated at the optimal β.  

EAL (equivalent average likelihood) simply normalizes LL 
with respect to the size of the data set by assessing the common 
likelihood necessary at each data point to produce an equivalent 
overall likelihood for the model. EAL is calculated using Eq. 5: 
 

 .  (5) 
 

HR (hit rate) is a measure of how well a utility function 
can predict consumer choice. It is calculated by comparing the 
observed selections with the predicted selections for each 
choice set [32]. The predicted selections are determined by 
calculating the utility associated with each choice option using 
the attribute β coefficients. The choice option with the highest 
utility is the predicted choice for that set. Each time the 

observed selection matches the predicted choice counts as a hit-
otherwise it is a miss. The hit rate is calculated with Eq. 6: 
 

 ,  (6) 

 
where K is the total number of choice sets and nh is the number 
of respondents who selected the highest predicted Pj for each 
choice set k. 

MASE (mean absolute share error) is used to evaluate how 
well the observed market shares line up with the predicted 
market shares. It is calculated by taking the average of the 
absolute difference between the observed and predicted market 
share for each design alternative as shown in Eq. 7 [33]: 
 

 ,  (7) 

 
where sj,PRED is the predicted market share, and sj,OBS is the 
observed market share. Together these metrics are used to 
evaluate the overall performance of the utility models in each 
of the following case studies. 

CASE STUDIES 
Case 1: Line Angle Preference Illustration 
Methodology 

This example is used to illustrate the role model 
formulation plays in determining the importance of interactions 
and their impact on model performance. In order to make this 
illustration as clear as possible a simple model was developed 
using simulated response data. Taking this approach we created 
responses consistent with a particular preference. This allowed 
for a cleaner evaluation of the model of that preference. 

Visual conjoint studies often use outlines and silhouettes to 
represent product shape. That representation is simplified 
further in this example as preference for the angle of a line is 
modeled. The subject of the example is a straight line drawn 
between two points, p1 and p2, whose coordinate positions vary. 
The x-coordinates remain constant and each y-coordinate has 
three possible values: py = {-1,0,1}. The survey consists of 2 
attributes each with 3 levels leading to a total of 32 or 9 possible 
profiles. In each question there are three alternative profiles. An 
example trial is shown in Figure 1. 

 
Figure 1: Example line Angle Trial 
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All possible combinations of the design profiles are used to 
develop 84 choice sets (choice sets involving identical profiles 
were ignored). For each trial, synthetic data from 102 subjects 
were generated to simulate respondents who have a preference 
for flat lines and select alternatives with the smallest slope. The 
number 102 was chosen because it is divisible by 2 and by 3 
allowing the number of respondents to be split evenly when 
options appear with the same slope. The data were generated 
using the following rules: (1) if the magnitude of the slope of 
one of the alternatives is smaller than the other two, the 
alternative is chosen by 100 simulated respondents and each of 
the other two is chosen by 1 respondent; (2) if the magnitude of 
all the slopes of all three alternatives is the same, each 
alternative is chosen by 34 of the simulated respondents; (3) if 
there is a tie for the lowest slope magnitude, each of the tied 
alternatives is selected by 50 of the simulated respondents and 
the third alternative is selected by 2 respondents. Since ln(0) is 
undefined each option always had at least 1 respondent. 

By adapting Eq. 1 the observed utility, v, for all design 
alternatives can be represented by Eq. 8: 
 
 ,  (8) 
 
where X is the j x i coded design matrix, and i is the number of 
regression parameters. Each row of X corresponds to a design 
alternative. For a given design matrix, the utility associated 
with the jth alternative is described by Eq. 9: 
 

   (9) 

 
The composition of X is determined based on which β 
coefficients are to be estimated. Referring back to Figure 1, the 

design matrix representing this trial would be 

1 0
X 1 1

1 1

− 
 =  
 − 

. 

The first row of X corresponds to alternative A. p1y is at level 1 
and p2y is at level 2. Rows 2 and 3 of X correspond to 
alternatives B and C, respectively. For part-worth models 
dummy variables are used to code the design matrix so that 
each column corresponds to a part-worth level of an attribute. 
Only n-1 levels are required to estimate part-worth values for 
each attribute. Level 2 was chosen to be the base level and 
omitted. Using this coding transforms X into a 3 x 4 matrix, 

1 0 0 0
0 1 0 1
0 1 1 0

 
 
 
  

. Multiplying out Eq. 9 leads to Eq. 10:  

 
 .  (10) 

 

Here x11 and x13 correspond to the two levels of attribute 1 
(other than the base level 2) while x21 and x23 correspond to the 
two levels of attribute 2. When attribute i is at level 1 xi1 = 1 
otherwise xi1 = 0. Accounting for interactions in this model 
requires the addition of four columns to the design matrix, the 
product of the elements of columns 1 and 3, 1 and 4, 2 and 3, 
and 2 and 4. Now, X is a 3 x 8 matrix. The additional columns 
in X transform Eq. 10 into Eq. 11: 
 

   (11) 

 
In the initial model formulation the attributes were taken to 

be the y-coordinates of the endpoints, p1 and p2. However, there 
is more than one way to define a line. Since we have prior 
knowledge that preference is based on the magnitude of the 
slopes of these lines, it is reasonable to define the lines using 
their starting point, p1 and slope magnitude |(p2y-p1y)/1|. 

Each of the two attributes in this formulation will also have 
3 levels, py = {-1,0,1} and m = {0,1,2}, so the structure of 
Equations 10 and 11 will remain the same; however, X will not. 
Going back to the trial in Figure 1, the initial X will have a 

different second column, 

1 1
1 0
1 2

X
− 
 =  
  

. This difference 

carries through the coded matrices. 
 
Results - All choice sets 

For each of the two formulations two MNL models were 
created. These models are summarized in Table 1. 

 
Table 1: Summary of choice models 

Model Formulation Main Effects Interaction Effects 

Part-worth End Point A (Eq. 10) B (Eq. 11) 
Point Slope C (Eq. 10) D (Eq. 11) 

 
The solution to each of these models was found using the 
modified quasi-Newton method implemented in Matlab’s 
fminunc function. The part-worth model results presented in 
Table 2 are based on simulated responses to all 84 possible 
choice sets. Since each possible combination is present in the 
model, there are no holdout questions. 
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Table 2: Line angle part-worth results using all choice sets 

 β  A B C D 

 
x11 0 -0.22 (0.03) 

*** 
-3.98 (0.11) 

*** 
-0.00 (0.04)  -0.00 (0.07)  

 
x13 0 -0.22 (0.03) 

*** 
-3.98 (0.11) 

*** 
-0.00 (0.04)  -0.00 (0.07)  

 
x21 0 -0.22 (0.03) 

*** 
-3.98 (0.11) 

*** 
3.98 (0.09) 

*** 
3.98 (0.10) 

*** 

 
x23 0 -0.22 (0.03) 

*** 
-3.98 (0.11) 

*** 
-2.94 (0.12) 

*** 
-1.96 (253.24)  

 
x11*x21 0  7.95 (0.19) 

*** 
 0.00 (0.09)  

 
x11*x23 0  1.04 (0.20) 

*** 
 -0.98 (253.24)  

 
x13*x21 0  1.04 (0.20) 

*** 
 0.00 (0.09)  

 
x13*x23 0   7.95 (0.19) 

*** 
  -0.98 (253.24)  

In
 S

am
pl

e LL -9412.91 -9339.93 -3600.65 -3600.65 -3600.65 
EAL 33% 34% 66% 66% 66% 
HR 39% 39% 77% 77% 77% 

MASE 33% 32% 1% 1% 1% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1 

 
The first column in Table 2 lists the attribute effects. For each 
model the estimated coefficients are listed with the standard 
error in parentheses and asterisks to indicate statistical 
significance. The table also shows in-sample performance 
metrics. Higher LL and EAL values indicate a higher 
probability that the model is a good fit for the data. HR will 
only reach 100% if all of the respondents choose the highest 
utility option in all the choice sets. That will not happen in 
these examples because many choice sets include multiple 
options with the same utility and respondents split their 
decisions over those options. As MASE approaches 0% so does 
the difference between the observed and predicted market 
shares. We include for reference a null model, in which the 
utility of all alternatives is taken as zero (no information). The 
null model is a baseline that indicates how the models would 
perform if they were fit at random.  

With the endpoint formulation, the solution to Model A, 
which lacks interaction effects is βx11 = βx13 = βx21 = βx13 = -
0.22. This solution indicates that on average there is a 
disadvantage in moving from level 2 to levels 1 or 3 for both 
attributes. The only information gained is that the best 
alternative is for both attributes to be at level 2. The model 
performs no better than the null model. Because preference is 
based on each endpoint’s position relative to the other, main 
effects alone are not sufficient to model preference. In the 
solution to Model B the main effects are βx11 = βx13 = βx21 = 
βx13 = -3.98. However, the interaction terms in this model give 
additional descriptive capability. For example, βx11*x21 is 
considerably greater than βx11*x23. Plugging these values into 
Eq. 11 shows that if p1y is at level 1 it is much better for p2y to 
be at level 2, (v = -3.98) than at level 3 (v = -6.91). The best 
option would be for p2y to be at level 1 as well (v = 0). This 

matches well with a preference for the line to be as flat as 
possible. As expected, the inclusion of interaction terms allows 
Model B to perform much better on all of the performance 
metrics than model A. This was not case for the point-slope 
formulation. 

Unlike the endpoint formulation, the point-slope 
formulation includes the slope as a main attribute. This attribute 
describes the relationship between the positions of p1y and p2y 
and allows the formulation to model preference without 
including interaction terms. As a result, in this formulation 
Model C supplies all the information necessary to model 
preference. βx11 = βx13 = 0 and is not statistically significant, 
indicating that there is no preference for the starting point of the 
line. The values of βx21 and βx23 indicate the best slope is at 
level 1 (value of zero) no matter the position of the starting 
point. This matches preference for a line with a slope of 0. The 
performance of Model C in the point-slope formulation is 
identical to that of Model B. The performance of Model D is 
identical to Model C. None of the interaction terms are 
statistically significant showing there is nothing gained by 
including them. 

The key observation here is that when the shape is modeled 
with one representation (endpoint), interactions are critical, 
whereas when the same shape is modeled with a different 
representation (point-slope), interactions are negligible. Thus, 
the question of what role interactions play in visual conjoint 
depends not only on the shape and preferences for that shape, 
but also on the way the shape is parameterized. This 
parameterization is a choice that researchers make when using 
these types of representations in visual conjoint studies.  
 
Results - 9 choice sets 

It is often impractical and unnecessary to gather subject 
responses to all possible choice set combinations. Instead, a 
subset of the choice sets are chosen and organized into an 
efficient survey. The information obtained from different 
surveys is not always equivalent. One common metric for 
evaluating the goodness of a survey is D-efficiency. The 
formula often used to calculate D-efficiency is shown in Eq. 12 
[10]: 

 .  (12) 

 
Here, X is an orthogonally coded design matrix of size N x p. A 
survey that is orthogonal will have a D-efficiency equal to 
100%. However, this formula is based on a linear survey design 
and only takes into account which design profiles are included 
in the survey, not how they are organized into choice sets. This 
example was also used to explore how the choice of survey 
design can affect results. 

In a linear design the minimum number of runs needed to 
develop an orthogonal design to estimate main and interaction 
effects for this example is 9. The SAS software package is used 
to generate a 100% efficient survey with 9 choice sets. MLE is 
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used to estimate β for the simulated responses to this survey. 9 
questions were also generated as a holdout sample. The in 
sample and hold out part-worth results are listed in Table 3. 

 
Table 3: Line angle part-worth results 9 choice sets 

 β Null 
Model A B C D 

 x11 0 -0.15 (0.08) 
* 

-4.08 (0.47) 
*** 0.05 (0.14) -0.00 (0.19) 

 x13 0 -0.15 (0.08) 
* 

-4.08 (0.47) 
*** 0.05 (0.14) -0.00 (0.19) 

 x21 0 -0.15 (0.08) 
* 

-4.08 (0.47) 
*** 

4.21 (0.30) 
*** 

4.08 (0.36) 
*** 

 x23 0 -0.15 (0.08) 
* 

-4.08 (0.47) 
*** 

-2.59 (0.37) 
*** -1.72 (*) 

 x11*x21 0  
8.31 (0.65) 

***  0.16 (0.31) 

 x11*x23 0  1.50 (1.06)  -0.86 (*) 

 x13*x21 0  1.50 (1.06)  0.16 (0.31) 

 x13*x23 0  
8.31 (0.65) 

***  -0.86 (*) 

In
 S

am
pl

e LL -1008.53 -1003.58 -344.32 -344.52 -344.32 
EAL 33% 34% 69% 69% 69% 
HR 35% 37% 80% 80% 80% 

MASE 24% 33% 1% 1% 1% 

H
ol

d 
O

ut
 LL -1008.53 -993.75 -579.65 -579.49 -579.65 

EAL 33% 34% 53% 53% 53% 
HR 42% 40% 62% 62% 62% 

MASE 36% 24% 1% 1% 1% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1, (*) SE with complex roots 

 
Overall the models built from the 9-question survey performed 
as well as the models built from all possible choice sets. The 
values of the regression coefficients are similar and each 
model’s performance metrics were comparable to those found 
using all choice sets. As before, the metrics for models B, C, 
and D are far better than the null case both in and out of 
sample. Additionally, the same relationship between the models 
and their formulations is present. 

There are hundreds of thousands of orthogonal surveys that 
can be developed with 9 choice sets. While traditional choice 
designs based on linear models organize a factorial of profiles 
into choice sets arbitrarily [34], when the modeler has priors for 
coefficients, optimal design methods exist to determine the best 
choice sets for estimating the parameters with the lowest error 
[13], but we do not pursue optimal design approaches here. 
1,000 surveys were generated by randomly assigning a full 
factorial design into choice sets three separate times. This 
prohibits any design profile from appearing in a choice set 
more than once. Responses to each survey were simulated and 
models were constructed. The same 9 holdout questions were 
used to evaluate each model. Table 4 shows the mean of the 
performance metrics with standard deviations. 
 

Table 4: Line angle mean performance 9 choice sets (n=1000) 

  A B C D 

In
 S

am
pl

e LL -955 (50)  -386 (121)  -389 (121)  -386 (121)  
EAL 35% (2%) 66% (9%)  66% (9%)  66% (9%)  
HR 46% (9%)  76% (9%)  76% (9%)  76% (9%)  

MASE 30% (6%)  1% (0%)  1% (0%)  1% (0%)  

H
ol

d 
O

ut
 LL -1079 (136)  -633 (66)  -596 (41)  -626 (50)  

EAL 31% (3%)  50% (3%)  52% (2%)  51% (3%)  
HR 37% (7%)  60% (5%)  61% (4%)  60% (5%)  

MASE 26% (2%)  5% (3%)  2% (3%)  5% (3%)  
 

The mean performance metrics for models B, C, and D are 
far better than the null model. Other than the log likelihood the 
performance metrics have relatively small standard deviations. 
This suggests that many of the models have similar 
performance. However, when comparing individual surveys, 
performance can vary greatly. The model A results from one 
survey showed HR to be 62% and MASE to be 1% while 
another resulted in an HR = 51% and MASE = 24%. The D-
efficiency of both of these designs was equal to 100%. These 
results suggest that the manner in which design profiles are 
organized into choice sets can have a significant impact on 
model performance and that D-efficiency alone may not be 
sufficient to find the best survey design. Conducting 
randomized surveys, where each respondent receives a different 
group of choice sets, can mitigate error associated with 
arbitrary assignment of profiles into conjoint questions. 

The main objective of this example is to illustrate how, in 
visual conjoint, interactions are sometimes critical and other 
times negligible. Identifying whether they matter in a given 
case requires some exploration and as shown will depend on 
the formulation of the model. In the endpoint formulation, 
interaction effects were required to perform better than the null 
model, which is equivalent to random guessing. The inclusion 
of interaction terms leads to a substantial improvement in 
performance over all the metrics. In the point-slope 
formulation, models performed just as well with or without 
interactions. The results from this study serve as motivation for 
researchers to further investigate the role of interaction effects 
as they can have significant impact on model performance. 
These results also show how models based on the same data 
can perform better or worse based on how the model is 
formulated. 
 
Case 2: Vase Shape Preference Illustration 
Methodology 

The subject of this example is the outline of a flower vase. 
The vase consists of the four Bezier curves depicted in Figure 
2. The control points of the Bezier curves are parameterized so 
that three attributes of the vase vary. These attributes are the 
height to average width ratio, the top to bottom width ratio, and 
the curvature of the sides. Symmetry is enforced between 
curves 2 and 4. Each attribute has three levels. The attributes 
are depicted in Figure 3. 
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Figure 2: Four Bezier curves that make up vase model 

 
Figure 3: Vase attribute 

The three attributes, each with three levels, yield 27 possible 
profiles. As done in the previous example all combinations of 
these 27 profiles were combined in to choice sets. Taking three 
alternatives per set yields 2925 possibilities (choice sets 
involving identical profiles were ignored). An example trial is 
depicted in Figure 4. 

 
Which vase shape do you prefer? 

 
Figure 4: Example Vase preference trial. 

For each trial, synthetic data from 102 subjects was generated 
to simulate respondents who have a preference for a square 
vase. When each of the three attributes is at level 2 the vase is a 
square. Preference for the design alternative decreased as the 
model deviated from the ideal. This deviation is equal to 

. The data were generated using the following rules: 

(1) if the deviation of one of the alternatives is smaller than the 
other two, the alternative is chosen by 100 simulated 
respondents and each of the other two is chosen by 1 
respondent; (2) if the deviation of all of the three alternatives is 
the same, each alternative is chosen by 34 of the simulated 
respondents; (3) if there is a tie for the lowest deviation, each of 
the tied alternatives is selected by 50 of the simulated 
respondents and the third alternative is selected by 2 

respondents. This formulation presumes that interactions are 
not important to the respondent. 

As before, the utility for each alternative j is determined by 
Eq. 9. In this case only part-worth models are used. The three-
three level attributes result in a 3 x 6 dummy coded design 
matrix for the main effects model corresponding to Eq. 13: 
 

 .  (13) 

 
Here, x = {height to average width ratio, top to bottom width 
ratio,  the side curvature}. Accounting for first order 
interactions leads to a 3 x 18 design matrix and Eq. 14: 
 

 .  (14)

 
 

Results - All choice sets  
As before, the solution to each of these models was found 

using the modified quasi-Newton method implemented in 
Matlab’s fminunc function. The part-worth model results are 
presented in Table 5. 
 

Table 5: Vase part-worth results all choice sets 

 β Null Model Eq. 13 Eq. 14 

 x11 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x13 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x21 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x23 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x31 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x33 0 -3.58 (0.01) *** -3.73 (0.03) *** 

 x11*x21 0  0.11 (0.03) *** 

 x11*x23 0  0.11 (0.03) *** 

 x11*x31 0  0.11 (0.03) *** 

 x11*x33 0  0.11 (0.03) *** 

 x13*x21 0  0.11 (0.03) *** 

 x13*x23 0  0.11 (0.03) *** 

 x13*x31 0  0.11 (0.03) *** 

 x13*x33 0  0.11 (0.03) *** 

 x21*x31 0  0.11 (0.03) *** 

 x21*x33 0  0.11 (0.03) *** 

 x23*x31 0  0.11 (0.03) *** 

 x23*x33 0  0.11 (0.03) *** 

In
 S

am
pl

e LL -327770.98 -124348.48 -124334.76 
EAL 33% 66% 66% 
HR 29% 78% 78% 

MASE 32% 1% 1% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1 

 
The results from the part-worth model indicate that the best 
design alternative has all attributes at level 2. There is a 
decrease in utility associated with moving from level 2 in either 
direction for all attributes. Although interactions were found to 
be significant, the EAL, HR, and MASE for the main effects 
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model are identical to the first order interaction model 
suggesting there is no need to include interaction effects. 
 
Results - 27 choice sets 

For this example, the minimum number of runs needed to 
develop an efficient linear survey capable of estimating main 
and interaction effects is 27. SAS was used to generate a 100% 
D-efficient 27-question survey. MLE is used to estimate β for 
the simulated responses to this survey. 27 additional questions 
were also generated as a holdout sample. The in sample and 
holdout part-worth results are listed in Table 6. 
 

Table 6: Vase part-worth results 27 choice sets 

 β Null Model Eq. 13 Eq. 14 

 x11 0 -3.20 (0.14) *** -6.26 (0.75) *** 

 x13 0 -3.25 (0.14) *** -6.59 (0.75) *** 

 x21 0 -3.23 (0.14) *** -6.59 (0.71) *** 

 x23 0 -3.22 (0.14) *** -6.28 (0.79) *** 

 x31 0 -3.26 (0.13) *** -7.06 (0.68) *** 

 x33 0 -3.24 (0.14) *** -6.78 (0.67) *** 

 x11*x21 0  2.68 (0.69) *** 

 x11*x23 0  2.41 (0.72) *** 

 x11*x31 0  2.81 (0.71) *** 

 x11*x33 0  2.63 (0.81) *** 

 x13*x21 0  2.43 (0.85) *** 

 x13*x23 0  2.44 (0.98) ** 

 x13*x31 0  3.47 (0.64) *** 

 x13*x33 0  3.21 (0.64) *** 

 x21*x31 0  3.25 (0.61) *** 

 x21*x33 0  3.20 (0.66) *** 

 x23*x31 0  3.12 (0.67) *** 

 x23*x33 0  2.90 (0.59) *** 

In
 S

am
pl

e LL -3025.58 -1175.12 -1150.14 
EAL 33% 65% 66% 
HR 47% 79% 79% 

MASE 30% 1% 1% 

H
ol

d 
O

ut
 LL -3025.58 -1290.81 -1293.61 

EAL 33% 63% 63% 
HR 26% 76% 76% 

MASE 29% 1% 2% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1 

 
The results from the SAS designed survey were comparable to 
the results from the survey of all choice sets. Both models 
performed well above the null model and there was not a major 
difference in performance between the main and interaction 
effects models. 

An additional 1,000 27-question surveys were generated by 
randomly assigning a full factorial design into choice sets three 
separate times. Design profiles were prohibited from appearing 
in a choice set more than once. Responses to each survey were 
simulated and models were constructed. The same 27 holdout 
questions were used to evaluate each model’s out of sample 
performance. Table 7 shows the mean of the performance 
metrics with standard deviations. 
 

Table 7: Vase mean performance 27 choice sets (n = 1000) 

  Null Model Eq. 13 Eq. 14 

In
 S

am
pl

e LL -3025.58 -1144 (184) -1138 (185) 
EAL 33% 66% (4%) 66% (4%) 
HR 47% 78% (5%) 78% (5%) 

MASE 30% 1% (0%) 1% (0%) 

H
ol

d 
O

ut
 LL -3025.58 -1303 (7) -1326 (32) 

EAL 33% 62% (0%) 62% (1%) 
HR 26% 76% (0%) 76% (0%) 

MASE 29% 1% (0%) 3% (1%) 
 
The results in Table 7 indicate there was a relatively small 
variation in performance between the difference surveys and on 
average each survey performed reasonably better than the null 
model. 
 
Results - 9 choice sets 

Although some interaction terms were found to be 
significant in the previous sections the models in this example 
performed comparably with and without interaction effects both 
in and out of sample. In this situation ignoring interactions will 
not lead to decreased predictive capability. However, doing so 
allows for the use of a main effects design. The minimum 
number of runs needed to develop an efficient survey to 
estimate the main effects in this example is 9. SAS is again 
used to develop an efficient survey. The results from this survey 
are listed in Table 8. 
 

Table 8: Part-worth results from 9 question survey 

 β Null Model Eq. 13 

 x11 0 -3.46 (0.26) *** 

 x13 0 -3.19 (0.29) *** 

 x21 0 -3.27 (0.24) *** 

 x23 0 -3.27 (0.30) *** 

 x31 0 -2.98 (0.29) *** 

 x33 0 -3.29 (0.25) *** 

In
 S

am
pl

e LL -1008.53 -226.91 
EAL 33% 78% 
HR 37% 91% 

MASE 38% 2% 

H
ol

d 
O

ut
 LL -3025.58 -1313.00 

EAL 33% 62% 
HR 26% 76% 

MASE 29% 3% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1 

 
The regression coefficients and the holdout sample 
performance metrics listed in Table 8 are consistent with those 
found in the previous sections. 

Another 1,000 9-question surveys were generated by 
randomly assigning a single full factorial design into choice 
sets. Responses to each survey were simulated and models were 
constructed. The same 27 holdout questions were used to 
evaluate each model’s out of sample performance. Table 9 
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shows the mean of the performance metrics with standard 
deviations. 
 

Table 9: Vase mean performance 9 choice sets (n = 1000) 

 β Null Model Eq. 13 

In
 S

am
pl

e LL -1008.53 -379 (103) 
EAL 33% 0.67 (7%) 
HR 37% 0.78 (8%) 

MASE 38% 0.01 (0%) 

H
ol

d 
O

ut
 LL -3025.58 -1364 (133) 

EAL 33% 0.61 (3%) 
HR 26% 0.76 (1%) 

MASE 29% 0.04 (2%) 
 
The results listed in Table 9 show that on average, over the 
sample set the main effects models performed much better than 
the null model. Additionally, because the interaction effects 
were negligible in the simulated preference data, a fractional 
factorial main effects design was sufficient to estimate the 
model and provide good predictions. 
 
Case Study 3: Vehicle Shape Preference 
Methodology 

The first two cases were simple examples designed to 
illustrate how interaction effects can be either critical or 
negligible and how modeling decisions can impact their 
importance. The first two cases were extremes on two opposite 
ends of the spectrum. A real world case would most likely fall 
somewhere in between. It is often difficult to know the extent 
that interaction effects matter in a given situation before hand. 
Single surveys that are capable of estimating all main and 
interaction effects are often too large to be practical. An 
alternative approach is to use a random survey design for each 
participant. With a large enough sample size, random surveys 
are capable of estimating both main and interaction effect. This 
approach was followed in this case. 

In case 3 surveys are issued to real participants in order to 
capture their preference for vehicle shape. The subject of this 
study is a vehicle design depicted by line drawing silhouettes 
built using the scheme developed by Tseng et al. [20]. An 
example of the vehicle representation is shown in Figure 5. 

 
Figure 5: Eaxmple vehicle 

As shown in Figure 5, these representations are the composition 
of eight Bezier curves. The control points of the curves are 
parameterized in a method that allows several major features of 
the design to be varied continuously. In this study four 
attributes were varied, the ground clearance, body height, hood 

length, and trunk length. These attributes are depicted in Figure 
6. 

 
 

 
 

 
 

 
Figure 6: Vehicle attributes 

Each of the four attributes consisted of three levels. Levels 1 
and 3 of each attribute are depicted in Figure 6. Level 2 is 
midway between the values shown in Figure 6. There were a 
total of 81 possible designs. The Sawtooth software package 
was used to organize the profiles in to random designs for each 
participant. Each survey question presented three design 
alternatives for the participant to choose from. A sample trial is 
shown in Figure 7. 
 

 
Figure 7: Screenshot from vehicle preference survey 

Each survey consisted of 18 questions to build the preference 
model, 6 holdout questions, and a repeat question to check for 
consistency. The Sawtooth SSI web tool was used to administer 
the survey. Participants were recruited using Amazon M-turk. 
There were a total of 109 survey participants. The average 
participant age was 38.5 years old; there were 45 male and 64 
female participants. Each participant was over 18.  

Equations 15 and 16 describe the part-worth main and first 
order interaction effects models respectively:  
 

 ,  (15) 

 

 ,  (16) 

where x11 and x13 correspond to ground clearance, x21 and x23 to 
body height, x31 and x33 to hood length, and x41 and x43 to trunk 
length. 

Trunk Length 

Hood Length 

Body Height 

Ground Clearance 
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In this case no information about which, if any, interactions 
are important is available before hand. Consequently, there is 
no guidance on whether a main effects model can sufficiently 
represent preference. As shown previously, the impact 
interactions can have on model performance ranges from 
negligible to critical. A full factorial of the 81 profiles would 
require 27 choice sets. This would be a fairly long survey, 
especially with the inclusion of holdout questions. As an 
alternative, each participant was given a random survey. The 
random approach has been shown to be robust in situations 
importance of interactions is not known before hand [12]. 
 
Results 

Table 10: Vehicle design part-worth results 

 β Null Model Eq. 15 Eq.16 

 x11 0 -0.40 (0.07) *** -0.58 (0.19) *** 

 x13 0 0.03 (0.07) 0.00 (0.18) 

 x21 0 -0.22 (0.07) *** -0.24 (0.18) 

 x23 0 0.02 (0.07) 0.54 (0.18) *** 

 x31 0 0.13 (0.07) * 0.48 (0.18) *** 

 x33 0 0.01 (0.07) -0.48 (0.19) *** 

 x41 0 0.03 (0.07) 0.50 (0.18) *** 

 x43 0 0.02 (0.07) -0.17 (0.19) 

 x11*x21 0  0.19 (0.17) 

 x11*x23 0  -0.32 (0.17) * 

 x11*x31 0  -0.27 (0.18) 

 x11*x33 0  0.74 (0.18) *** 

 x11*x41 0  0.21 (0.17) 

 x11*x43 0  0.03 (0.18) 

 x13*x21 0  0.15 (0.17) 

 x13*x23 0  -0.17 (0.16) 

 x13*x31 0  -0.14 (0.16) 

 x13*x33 0  0.37 (0.17) ** 

 x13*x41 0  -0.24 (0.17) 

 x13*x43 0  0.17 (0.17) 

 x21*x31 0  -0.72 (0.17) *** 

 x21*x33 0  0.19 (0.17) 

 x21*x41 0  -0.44 (0.18) ** 

 x21*x43 0  0.64 (0.17) *** 

 x23*x31 0 

 

-0.17 (0.17) 

 x23*x33 0 

 

0.28 (0.17) 

 x23*x41 0 

 

-0.60 (0.17) *** 

 x23*x43 0 

 

-0.55 (0.17) *** 

 x31*x41 0  -0.14 (0.17) 

 x31*x43 0  0.29 (0.18) 

 x33*x41 0  -0.10 (0.17) 

 x33*x43 0  0.03 (0.17) 

In
 S

am
pl

e LL -2155.48 -2121.25 -2033.80 
EAL 33% 34% 35% 
HR 30% 40% 47% 

MASE - - - 

H
ol

d 
O

ut
 LL -718.49 -706.15 -680.34 

EAL 33% 34% 35% 
HR 19% 47% 45% 

MASE 16% 16% 14% 
*** p ≤ 0.01, ** p ≤ 0.05, * p ≤ 0.1 

 
The Mixed Logit Estimation by Maximum Simulated 

Likelihood script developed by Train [35] was used to solve for 
the fixed β coefficients, no random coefficients are present. The 

part-worth model results presented in Table 10 show that both 
the main and interaction effects models performed better than 
the null model. Some of the interactions in this survey were 
found to be statistically significant, and the presence of 
interactions slightly improved predictive capability measured 
via MASE. The remaining error is still higher than in the 
simulated examples. We believe this is a result of the complex 
vehicle shape as well as the heterogeneity of respondent 
preferences for vehicle shape. Future work will examine 
randomized surveys with real respondents for the simpler shape 
(vase) as well as explore alternative formulations for 
representing vehicle preference shape (higher order 
interactions, random coefficients, etc.).  

CONCLUSION 
In this work the role of interaction effects in visual conjoint 

was explored through three examples. The first take away from 
this work is that the importance of interactions is dependent not 
only on the consumer but also on the model. Interactions are 
present if preference for one aspect of a shape depends on the 
value of another. However, the line angle example showed how 
model specification decisions could reduce or exaggerate the 
impact interactions have on a model. The vase example 
illustrated how there is no performance advantage associated 
with including interactions in a situation where consumers’ 
preference in based solely on main effects (as modeled).. 

The next issue discussed in this work is survey design. On 
average the D-efficient surveys performed far better than the 
null models. Still, we were able to find examples of surveys 
that were 100% efficient but resulted in vastly different 
performance. Modelers should keep this in mind when settling 
on survey designs. Using test data is one way to determine 
which survey design is best for a given study. 

Finally, in the absence of prior knowledge of whether or 
not interactions are important given a model parameterization, 
we recommend using randomized designs to complete visual 
conjoint studies. This approach requires more data but is 
capable of estimating all interactions and averaging out any 
bias associated with how the design profiles are organized into 
choice sets. 
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