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�We quantify the benefits of controlled charging of plug-in hybrid electric vehicles.
� Costs are determined using an economic dispatch and unit commitment model.
� The model is based on New York ISO and allows for capacity expansion.
� We find controlled charging can significantly lower system costs.
� Controlled charging benefits are larger with high wind penetration.
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a b s t r a c t

Electric power systems with substantial wind capacity require additional flexibility to react to rapid
changes in wind farm output and mismatches in the timing of generation and demand. Controlled vari-
able-rate charging of plug-in electric vehicles allows demand to be rapidly modulated, providing an alter-
native to using fast-responding natural gas plants for balancing supply with demand and potentially
reducing costs of operation and new plant construction. We investigate the cost savings from controlled
charging of electric vehicles, the extent to which these benefits increase in high wind penetration scenar-
ios, and the trade-off between establishing a controlled charging program vs. increasing the capacity of
generators in the power system. We construct a mixed integer linear programming model for capacity
expansion, plant dispatch, and plug-in hybrid electric vehicle (PHEV) charging based on the NYISO sys-
tem. We find that controlled charging cuts the cost of integrating PHEVs in half. The magnitude of these
savings is �5% to 15% higher in a system with 20% wind penetration compared to a system with no wind
power, and the savings are 50–60% higher in a system that requires capacity expansion.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Electricity generation is responsible for over 40% of US CO2

emissions [1], and producing electricity from traditional fossil fuel
sources also creates other emissions that harm human health and
the environment, such as NOx and SO2. Integrating low-emission
power options, such as wind and solar power, will play a key role
in reducing harmful emissions. Many states have recognized the
need for more renewable energy production, and twenty-nine
states have adopted renewable energy portfolio standards (RPS)
requiring between 10% and 40% of generated power to come from
renewable sources [2]. As one of the fastest growing electricity
sources in the United States [3], wind can be expected to meet a
large proportion of the renewable portfolio standards. To compen-
sate for the increased amounts of these inherently–variable
sources of electricity, the power grid requires additional flexibility
to manage fluctuations in generation. For systems incorporating
high levels of wind power, ramping natural gas combustion turbine
plants in response to changes in output from variable resources has
typically provided this flexibility. Recent research has shown that
ramping gas turbines to manage the variability of wind power
can increase NOx emissions and reduce the greenhouse gas bene-
fits associated with wind power production [4].

Plug-in electric vehicles (PEVs), including plug-in hybrid elec-
tric vehicles (PHEVs) and battery electric vehicles (BEVs), create
additional electricity demand, resulting in additional air emissions
from power plants [5,6]. But they have also been proposed as a
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means for increasing grid flexibility in order to integrate renew-
ables, with much emphasis on the possibility of using the vehicles
for grid storage via a bidirectional electrical connection between
the vehicle and the electricity grid, referred to as vehicle-to-grid
(V2G). For example, Lund and Kempton calculate the cost-savings
and emissions-savings from adding V2G capabilities to the power
system, given simplified ramping constraints for the power gener-
ation fleet [7]. However, it has been shown that the market for V2G
in the energy market [8] and ancillary services market [9] is small,
arbitrage potential is limited, and participation can significantly re-
duce battery life by increasing the total energy processed by the
battery [9]. V2G systems also require a substantial investment in
power electronics, control software, and additional grid infrastruc-
ture. As an alternative, electricity demand can be partially man-
aged by modulating the charging rate of PEVs – for example,
following variations in wind supply. Such an approach does not in-
crease the energy processed by the battery, and it is possible that
such an approach could actually extend battery life by lowering
average charge rates and thus heat generation [10]. Controlled
charging can also take advantage of the high levels of wind gener-
ation that commonly occur at night in the US. At these times other
load is likely to be low, and coal plants would likely need to be
cycled, adding costs and emissions that could be saved with smart
charging of PEVs. Alternatively, ramping of thermal plants could be
reduced by building excess wind capacity, curtailing wind energy
when it is not needed, and taking it when most cost effective for
the system.

Previous work has shown the benefit of controlled charging in
power systems with wind power. Dallinger et al. show that excess
renewable energy in periods of low load can be significantly re-
duced through optimized charging in California and Germany
[11], and Foley et al. find that off-peak charging can save vehicle
owners nearly 30% of the charging costs [12]. Wang et al. evaluate
different charging strategies of plug-in hybrid vehicles in the Illi-
nois power system and find significant cost savings with controlled
charging. They assume the rest of the power system is static and
use a simple scaling of existing wind data to model new wind con-
struction [13], exaggerating variability by ignoring the complex ef-
fects of plant size and geographic diversity on mitigating wind
generation correlation [14]. Sioshansi and Denholm analyze a sys-
tem based on the Electric Reliability Corporation of Texas (ERCOT)
in its current form, with 10% wind generation, to calculate the
additional benefit of V2G over controlled charging, again allowing
only operation of existing power plants to vary [15]. They find that
V2G could decrease system costs by around 0.5%. Instead of hold-
ing existing capacity fixed as in these studies, we consider a case in
which new capacity needs to be built to meet required system re-
serve margins. As discussed by De Jonge et al. it is important to
consider the capacity expansion in the context of all the opera-
tional constraints of the power plants [16].

Other work has focused on how controlled charging can be
used as balancing power in systems with high wind penetration
by modeling forecasting error for wind and load instead of eval-
uating detailed operating constraints. A study by the Pacific
Northwest National Laboratory estimates the number of vehicles
necessary to provide a complete response to the balancing signal
[17], capturing the high frequency behavior of the wind and
vehicle charging but ignoring other types of flexibility already
present in the grid. Druitt and Früh also focus on how controlled
electric vehicle charging can provide balancing power at high
wind penetrations [18]. They use a simplified scheduling of con-
ventional generation, which ignores many operating constraints,
and develop a model based on historic prices to estimate eco-
nomic effects.

We seek to evaluate the potential cost savings from controlled
charging in scenarios with vs. without additional wind power in
order to understand whether PEVs can provide cost savings in
systems with increased levels of wind power, or whether con-
trolled charging only limits the impact of the vehicles themselves
on the system. We focus on PHEVs, which do not require changes
in current driving patterns, since PHEVs can operate using gasoline
for long trips. The interaction of PHEV charging with the grid is
complex, and a complete understanding requires evaluating the
power system in a range of circumstances and at a variety of time
scales. We examine the benefit of controlled charging of PHEVs rel-
ative to convenience charging (vehicle charges at maximum rate
upon arrival), delayed charging (vehicle begins charging at maxi-
mum rate just in time for its next use), and no charging (no PHEVs)
under alternative scenarios of high vs. low wind penetration in the
power generation fleet, high vs. low PHEV penetration in the vehi-
cle fleet, and high vs. low initial power generating capacity. For this
analysis, we develop a capacity expansion and unit commitment
with economic dispatch optimization model with detailed plant
constraints. We use hourly data for wind and load and assume per-
fect information (no forecast error) to focus on capacity expansion
and unit commitment decisions. We then compare results using a
15-min resolution to test the importance of sub-hourly trends. We
study a period of 20 days selected to be representative of the year.
We do not evaluate the entire range of power plant fleets that exist
in the US but instead focus on comparing the difference between a
system with sufficient capacity and one requiring investment in
new capacity.

In the remaining sections we present our detailed methods, re-
sults, and conclusions. We find that controlled charging does help
to reduce system costs by about 2% in the scenarios examined with
10% PHEV penetration. However, the additional benefit of con-
trolled charging in high wind-penetration scenarios is much smal-
ler. Thus the benefits of controlled charging are general to power
systems and not specific to wind integration under the scenarios
examined. We also examine the tradeoff between adding new
capacity to the system versus controlled charging in order to
accommodate high wind penetration scenarios, finding that con-
trolled charging reduces the number of combined cycle gas plants
that would otherwise be built.
2. Methods

2.1. Model overview

We pose a mixed integer linear programming (MILP) capacity
expansion model with hourly unit commitment and dispatch,
plus hourly vehicle availability and charging rates, to find the
optimal combination of new power plants and controlled vehicle
charging to meet demand at lowest costs subject to operation
constraints. Capacity expansion optimizes which power plants
should be added to the system, if any. Unit commitment and dis-
patch determine which plants will be on in each time period and
the level of output for each. As part of the cost minimization, the
model also determines the charge rate in each hour for each set
of available vehicles, where the set of vehicle driving profiles
are selected to be representative of the US vehicle population.
The model treats the penetration of plug-in vehicles that must
be charged as exogenous, and the grid operator can choose a per-
centage of the vehicles to participate in a controlled charging pro-
gram for a given annual payment. We vary the number of
vehicles present in the system and the amount of the annual pay-
ment to vehicle owners in a sensitivity analysis. The model con-
strains electricity generation to match the load in each time
step, while keeping all plants within their operating constraints
and satisfying a wind penetration goal that defines a minimum
percentage of overall power generation that must be supplied



Fig. 1. System overview – energy is provided by conventional power plants and
wind plants and must meet the demand from plug-in vehicles and non-vehicle load
in each time step.
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Fig. 2. Installed capacity of the actual capacity of the NYISO power plant fleet,
Capacity Expansion Scenario, and the Fixed Capacity Scenario.
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by wind1,2. Fig. 1 shows a graphical representation of the frame-
work used.

2.2. Power plant fleets

We construct two different power plant fleet scenarios using
power plant fleet characteristics from the New York Independent
System Operator (NYISO) area: the first scenario with sufficient
existing capacity to meet vehicle and non-vehicle load (Fixed
Capacity Scenario); and the second where capacity expansion is re-
quired regardless of PHEV penetration (Capacity Expansion Sce-
nario). Because NYISO has significant amounts of hydroelectric
power for which operational data is unavailable, we construct
the Capacity Expansion Scenario by eliminating the hydro capacity
from NYISO and using only existing nuclear, coal, oil, and natural
gas capacity as the initial state of the fleet. For the Fixed Capacity
Scenario we replace the hydro capacity with fossil fuel plants
roughly proportional to the existing fossil fuel mix. Individual
plant data were not available for all fossil fuel plants in NYISO,
so the fleet was chosen from a sample of similar plants in NYISO,
ERCOT and PJM with available data. The plants were selected using
an optimization that minimizes the difference between actual fleet
characteristics and the selected fleet characteristics.

minimize
X

s
KTOT

s � xTOT
s

��� ���þw1

X
s

X
c2Cs

KBIN
sc � xCBIN

sc

��� ���
þw2

X
s

X
h2Hs

jHsh � xHRBIN
sh j

where total capacity of plants of each plant types is KTOT
s for the actual

fleet and xTOT
s for the selected fleet. The number of plants in each

capacity bin c 2 Cs for fuel type s is KBIN
s for the actual fleet and

xCBIN
sc for the selected fleet, and similarly the capacity of plants in each

heat rate bin h 2Hs for fuel type s is Hsh for the actual fleet and xHRBIN
sh

for the selected fleet. The distributions of plant capacities and heat
rate were defined using four evenly spaced bins for each plant type.
The optimization variables are how many of each of the sample plants
are included in the selected plant fleet and xTOT

s , xCBIN
sc , and xHRBIN

sh are
calculated from this selected fleet. We found that relative weights
of w1 = 300, and w2 = 100, respectively for these three factors in the
1 As the cheapest renewable energy source by levelized cost, wind is likely to make
up the bulk of power installed to meet RPS. Some RPS policies include specific set-
asides for solar power, but these are very small: 0.2–2.5% [2]. For this paper, we model
a system in which wind is the only renewable available.

2 The model took between 5–10 h to run on an Intel i& processor running CPLEX
using 20 day period with hourly data. Running the 15-min sensitivity cases over 20
days had a wide range of solve times, going up to 80 h for each charging scenario.
Because solve time for MILP problems is nonlinear with the number of variables, it
was not feasible to use smaller time steps or more days for all of the sensitivity cases
analyzed.
objective function gave a good fleet representation for these fuel
types. The fuel types that could be modeled in this way for NYISO
were bituminous coal plants, natural gas combined cycle, natural
gas combustion turbine, and oil/gas steam, whereas nuclear was
modeled as a single capacity and heat rate. The resulting fleets are
shown by plant type in Fig. 2. Because of the missing data, the fleets
used in this analysis are not meant to exactly replicate the New York
system, but rather serve as a test system with realistic plant distribu-
tions matched to a realistic load. Average ramp rates and minimum
generation levels by generation type, along with the individual plant
heat rates and total capacity for the sample of plants used, were taken
from Ventyx [19], and the distribution of power plant capacities and
heat rates for NYISO were taken from the National Electric Energy
Data System (NEEDS) [20]. A comparison of the resulting characteris-
tics for the Fixed Capacity Scenario and actual NYISO fleet is shown in
Table 1. We are able to obtain a similar fleet according to measurable
characteristics. The only large difference is the average age of the nat-
ural gas combustion turbine plants due to the available data to
choose from. The simulated fleet is newer, but because the average
heat rate remains very close to that of the actual fleet, there should
not be a large impact on total operational cost. The newer gas plants
may be somewhat more flexible, but on the hourly time scale, com-
bustion turbine plants have excess ramping capability.’’

2.3. Plug-in hybrid electric vehicle fleet

We model a fleet of plug-in hybrid electric vehicles using the
National Household Travel Survey (NHTS) data set [21], which con-
tains data for one day of driving for approximately 900,000 differ-
ent passenger cars across the United States. We use time of arrival
and departure from home and distance traveled from all vehicles in
the dataset, weighted by vehicle to be nationally representative, to
compute uncontrolled electricity demand in the convenience
charging (charge upon arrival at home) and delayed charging
(charge just before departure) cases. The controlled-charging sce-
narios use 20 representative driving profiles for computational
tractability. Weighted profiles were selected to match the charac-
teristics of the overall data set (see Appendix A for more details).
The PHEVs we study operate in charge-depleting mode until the
battery reaches its minimum state of charge or all the miles are
driven (sometimes called extended-range electric vehicles (EREVs),
like the Chevy Volt). Any remaining miles are driven in charge-sus-
taining (extended-range) mode, powered by the gasoline engine3.
3 We do not consider blended-operation PHEVs, like the PHEV Prius, which use a
lend of gasoline and electricity in charge depleting mode. In our model, which
cuses on electricity consumption, a blended-operation PHEV would function

quivalently to a higher-efficiency EREV PHEV, since the partial use of gasoline
ffsets some electricity use in charge depleting mode.
b
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e
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Table 1
Comparison between the coal, natural gas, and oil/gas steam plants in the actual NYISO fleet and the simulated fleet in terms of capacity installed, number of units, average heat
rate, and online year.

Type Actual MW Sim. MW Ref. # units Sim. # units Actual ave HR
(BTU/kW h)

Sim. ave HR
(BTU/kW h)

Actual ave
online year

Sim. ave
online year

Coal 2767 2767 32 31 10,507 10,738 1970 1962
NGCC 8124 8124 103 103 8555 8584 1996 1995
NGCT 4885 4885 215 215 14,971 14,945 1976 1992
Oil/gas steam 11,723 11,723 32 32 11,341 11,763 1964 1963
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This allows all drivers to retain their existing driving patterns,
regardless of the electric range of the vehicle. The base-case vehicle
is modeled after the Chevy Volt with a 16 kW h hour lithium ion bat-
tery of which 10.4 kW h are useable. We assume the vehicles only
charge after their last trip of the day and must be fully charged by
their first trip of the next day if controlled by the system operator
in the controlled charging program. The charging program alters
the rate of charge for each vehicle but does not withdraw power
from the battery. Charging for a portion of a time step is equivalent
to charging for the entire time step at a lower rate. We model differ-
ent levels of program costs, ranging from $0–$400/vehicle/year.
These assumed costs would have to cover both payments to the
vehicle owners as well as any infrastructure costs. with the system
operator determining how many vehicles will be paid for participa-
tion (the zero fee case allows the system operator to capture all of
the cost savings). We perform a sensitivity analysis to examine sup-
ply solutions at different participation fee levels and leave as future
work an estimate of the vehicle owner demand curve. We also per-
form sensitivity analysis to examine a range of vehicle characteris-
tics, shown below in Table 2, as well as different vehicle
penetration levels and payment to vehicle owners. The growth rate
of PHEV penetration is very uncertain, but the governor of New York
was quoted as saying ‘‘the number of plug-in electric vehicles on the
road in New York State could increase from less than 3000 today to
30,000–40,000 in 2018 and one million in 2025,’’ [22] which would
be around 10% of the approximately 9 million passenger vehicles in
New York in 2008 [23]. Additionally, EIA estimates that PHEV’s could
account for 2–18% of all vehicles in the US in 2025 depending on
what policies are adopted [24].
2.4. Wind power data

We use modeled wind production data for all potential land-
based wind sites in New York reported in the Eastern Wind Inte-
gration and Transmission Study (EWITS) dataset [25]. EWITS lists
all the sites in the Eastern Interconnect that would be needed in or-
der to reach a 30% RPS and contains ten-minute modeled wind
Table 2
Ranges of values used to reflect the uncertainty in the characteristics of the future
plug-in vehicle fleet. The base case for the battery size comes from the Chevy Volt,
allowing for roughly 35 miles of driving on electric power, with minimum and
maximum battery sizes allowing for 5 miles and 60 miles of electric driving,
respectively. Vehicles with larger and smaller batteries are assumed to have the
same ratio of useable kWh to total kWh as the base case (65%). The range of charge
rates come from the three standard levels of electric vehicle charging. Level 1
charging can be achieved from a normal household 120 V plug and is used as the
minimum. Level 2 charging requires a 240 V outlet, such as those used by larger
household appliances, but is more convenient for vehicle owners and is used as the
base case. Level 3 charging requires higher voltage and current levels than typically
available on the household level but is possible at future service stations and is the
upper bound on vehicle charge rates. Total fleet size in New York is 9 million
passenger vehicles, and the range of 1–15% plug-in vehicle penetration represents
90,000–1,350,000 plug-in electric vehicles.

Vehicle fleet characteristics Minimum Base case Maximum

Battery size 5 kW h 16 kW h 24 kW h
Maximum charging rate 1.2 kW 7.4 kW 30 kW
Plug-in vehicle Penetration 1% 10% 15%
plant output for these sites for 3 years from 2006 to 2008. We con-
vert the ten-minute power data to hourly resolution for model
tractability by averaging the six data points given for each hour.
We then add wind sites from the EWITS data set to our model in
order of highest capacity factor. We investigate wind penetration
rates that range from 0% to 20% to allow for additional wind plants
to be built in all scenarios without making use of offshore wind, as
it is uncertain that offshore wind sites will be widely utilized by
2025.

We use modeled wind data instead of measured output data
from existing wind sites so that wind capacity can be expanded
beyond existing levels. Because wind production is dependent
on local weather patterns and geography, existing empirical wind
data cannot be easily scaled up to include new sites. The EWITS
dataset is the only existing public sources for a time series simu-
lation of wind production for potential wind sites in this area of
the country.

2.5. Load data

We use five minute power demand data for the New York ISO in
2006, again converted to hourly resolution by averaging the twelve
data points given for each hour. As load is predicted to remain
within 1% of its current level by 2025 [26], this 2006 data is used
as non-vehicle load without any scaling. It is important to use load
and wind data from the same time and place to account for tempo-
ral and geographical correlations. While this paper focus on a mod-
el based on the characteristics of the New York System, the method
developed could later be applied to other systems around the
country. This additional analysis, however, is beyond the scope of
this paper.

To ensure a reasonable computation time, we chose four differ-
ent periods of five days each to capture the different shape of the
load curve in different seasons and include the year’s peak load,
while keeping the average load over the four periods equal to the
average load of the year, 19 GW. Six of the 20 days are weekend
days. Given the wind plants needed to meet the 20% penetration
over the course of the entire year (when run as must-take), the
wind generation from the modeled wind plants in these four peri-
ods is both sufficient to meet the wind penetration goal (scaled
within the twenty days) without building additional wind plants,
and has an average power within 10% of the annual average wind
power. Within each of the four periods, plant operating constraints
apply. The model’s capacity expansion variables apply simulta-
neously across all four periods, along with the percent of PHEVs
with controlled charging.

2.6. Optimization

The optimization model minimizes capital and operating costs:

minimize
X

i2W[N
cBLD

i yBLD
i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

New Plant Construction

þ cEVnEVxEV
CTRL|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Payments to PHEV Owners

þ
X

t2T

X
i2C

xSUC
it þ xSDC

it þ cF
i hixG

it

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cost of Plant Operations
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where N is the set of new conventional power plants; E is the set of
existing conventional power plants; C ¼N [ E is the combined set
of existing and new conventional power plants; W is the set of
(new) wind plants; T is the set of time steps in the sample period;
cBLD

i is the annualized cost for construction of plant i; yBLD
i is the bin-

ary variable determining whether or not plant i is constructed; cEV is
the annual payment to each vehicle owner participating in the con-
trolled charging program; nEV is the total number of PHEVs; xEV

CTRL is
the percentage of PHEVs are that are controlled; xSUC

it and xSDC
it are

the start-up and shut-down costs, respectively, of plant i in time
step t, cF

i is the fuel cost of plant i, hi is the heat rate of plant i,
and xG

it is the power output of the plant i in time step t. We vary
the value of the annual payment to each participating vehicle owner
with a sensitivity analysis to understand the willingness to pay of
the system operator. The willingness to accept controlled charging
by vehicle owners is unknown and is outside the scope of this
paper.

The constraints are typical for economic unit commitment and
dispatch models with plug-in vehicles, but they are adapted to al-
low for additional binary variables to represent new power plant
construction and a variable for the percentage of plug-in vehicles
participating in the controlled charging program. The overall sys-
tem must meet the existing non-vehicle load plus the vehicle load
of both the controlled and uncontrolled vehicles in every time step:

xW
t þ

X
i2C

xG
it ¼ Lt þ

X
j2V

xEV
jt þ 1� xEV

CTRL

� �
nEVmUCTRL

t 8t 2T

where xW
t is the amount of wind energy used in time step t, xEV

jt is
the total amount of energy consumed to charge all vehicles of pro-
file j in time step t, V is the set of all PHEV profiles, and vUCTRL

t is the
fixed amount of uncontrolled charging that occurs for vehicle pro-
file j in time step t. The wind penetration goal must be met over
the 20 days:

X
t2T

xW
t P ERPS

X
t2T

xW
t þ

X
i2C

xG
it

 ! !

where ERPS is the percent wind energy required by the penetration
goal. In addition to meeting the load, the system must also provide
sufficient spinning and non-spinning reserves:

X
i2C

xSR
it þ xNSR

it

� �
P RTR xW

t þ
X
i2C

xG
it

 !
8t 2T

X
i2C

xSR
it P RSR xW

t þ
X
i2C

xG
it

 !
8t 2T

where xSR
it and xNSR

it are the spinning reserves and non-spinning re-
serves provided by plant i in time step t, and RSR and RTR are the
spinning and total reserve requirements as a percentage of the gen-
eration. The system must also meet the 15% reserve margin above
peak load recommended by NERC for power systems with predom-
inantly thermal generators [27]:X
i2E

ki þ
X
i2N

kiyBLD
i P ð1þ RRMÞLPEAK

where RRM is the reserve margin, LPEAK is the peak load for the year,
and ki is the capacity of plant i. Every power plant has its own set of
operating constraints. All the conventional plants have a maximum
output capacity:

xG
it þ xSR

it 6 yON
it ki 8i 2 C; 8t 2T

where yON
it is the binary variable indicating whether or not plant i is

on in timestep t. xSU
ik and xSD

ik are continuous start-up and shut-down
variables for each plant that are restricted to be between 0 and 1
and forced to be only 0 or 1 by their relationship to yON
it and the

start-up and shut-down costs:

xSU
it � xSD

it ¼ yON
it � yON

iðt�1Þ 8i 2 C; 8t 2T nT1

xSUC
it P cSU

i xSU
it 8i 2 C; 8t 2T

xSDC
it P cSD

i xSD
it 8i 2 C; 8t 2T

where cSU
i and cSD

i is the cost for one start-up and shut-down for
plant i respectively and T1 is the first time step for each five day
sequence. Each plant has a minimum generation level (when on) mi:

xG
it P miyON

it 8i 2 C; t 2T

They are also subject to ramp rate limitations:

xG
it þ xSR

it 6 xG
iðt�1Þ þ rUP

i yON
iðt�1ÞDþmi yON

iðtÞ � yON
iðt�1Þ
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i yON
iðtÞD�mi yON

iðt�1Þ � yON
iðtÞ

� �
6 xG

it 8i 2 C; 8t 2T nT1

where rUP
i and rDWN

i are the maximum amount the plant can ramp
up or down in a time step respectively and D is the length of a time
step. Plants have to stay on for a minimum number of time steps dON

i

once turned on and off a minimum number of time steps dOFF
i once

turned off:

Xt

k¼t�dON
i þ1

xSU
ik 6 yON

it 8i 2 C; dON
i 6 t 6 TEND

Xt

k¼ti�dOFF
i þ1

xSD
ik 6 ð1� yON

it Þ 8i 2 C; dOFF
i 6 t 6 TEND

TEND is the last time step in the associated five day contiguous se-
quence. The wind power plants have a generation potential at each
time step based on the wind behavior modeled in the EWITS
database:

xW
t 6

X
i2W

pity
BLD
i 8t 2T

where pit is maximum amount of wind that could be generated by a
wind plant i in time step t. Wind curtailment is not explicitly penal-
ized in the objective function, and anywhere from zero to of the full
potential wind generation may be used in each time step, as long as
the penetration goal is satisfied. Because the initial capacity of wind
is the minimum number of wind plants that can generate enough
wind energy over the 20 day time period to meet the penetration
goal, if the system operator chooses to curtail, additional wind
capacity must be installed to make up for the lost energy, incurring
additional capital costs.

Vehicle charging levels must not exceed the power limit of the
circuitry:

xEV
jt 6 ljpjtwjnEVxEV

CTRL 8j 2V; t 2T

where lj is the maximum charge rate for the vehicle j, pjt is the per-
cent of the time step t that the vehicle is parked at home at the end
of the day and thus available to charge, and wj is percent of total
electric vehicles that are of profile j. The charging must keep the
battery between its minimum and maximum states of charge:

bLO
j bjwjnEVxEV

CTRL 6 xE
jt 6 bHI

j bjwjnEVxEV
CTRL 8j 2V; t 2T

where bLO
j is the minimum SOC and bHI

j is the maximum SOC, both
expressed as percentages, bj is the total size of the battery, and xE

jt is
the total amount of energy contained in the batteries of all the
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vehicles of profile j during time step t. Vehicles are driven in charge
depleting mode (using electricity as the sole propulsions source)
until the battery has reached its minimum state of charge or all
the miles for the day have been driven, which is calculated ahead
of time. The energy stored in the batteries of each vehicle profile de-
pends on how much energy they had in the last period, the charg-
ing, and the discharging due to driving:

xE
jt ¼ xE

jðt�1Þ þ xEV
jt D� djtwjnEVxEV

CTRLg
ELEC 8j 2V; t 2T

where s is the length of the time step and djt the distance in miles
driven in electric mode. Every car is required to have the battery
filled by the first trip of the next day:

xE
jt P bjwjnEVxEV

CTRL 8j 2V; t 2TAM
j

where TAM
j is the set of time steps each day when vehicle profile j

leaves for the first trip of the day. Tables for all the variables and
parameters as well as how the formulation was altered for the
15 min time step case can be found in Appendix B.
Fig. 3. Seasonal dispatch in the Fixed Capacity Scenario given 10% vehicle penetration an
charging in the hourly model, and controlled charging in the fifteen minute model.
The optimization variables for this problem include
xE

jt; x
EV
CTRL; x

EV
jt ; x

G
it ; x

SD
it ; x

SDC
it ; xNSR

it ; xSR
it ; x

SU
it ; x

SUC
it ; xW

t ; y
BLD
i ; yON

it .
3. Results and discussion

We find that controlled charging of PHEVs reduces peak load
and can reduce wind curtailment. A sample dispatch for the 20%
wind penetration case is shown in Fig. 3, both with and without
controlled charging in the Fixed Capacity Scenario (where the
initial power plant fleet capacity is sufficient to meet all load).
The figure shows that controlled charging significantly lowers the
peak demand in the first three periods and reduces wind curtail-
ment and coal plant ramping.

3.1. Cost savings

Our main results, summarized in Table 3, suggest that con-
trolled charging can reduce system costs. Given a 10% penetration
of PHEVs (totaling 900,000 PHEVs), controlled charging reduces
d a 20% wind penetration for uncontrolled charging in the hourly model, controlled



Table 3
Comparison of cost savings from controlled PHEV charging in the Fixed Capacity Scenario and Capacity Expansion Scenario for a 0% and 20% wind penetration, given different
charging scenarios: Uncontrolled Charging, which uses the entire set of vehicles from the NHTS and begins as soon as the vehicle arrives home for the day; Delayed Charging,
which also uses the entire set of vehicles from the NHTS and begins charging as late as possible before the vehicle leaves for the next day’s trip while still achieving maximal
charge; and Controlled Charging, which uses the weighted set of 20 representative vehicles and optimally charges each vehicle as part of the dispatch optimization, given a $0
payment to vehicle owners for participation. The maximum savings are calculated as the difference between the Uncontrolled and Controlled Charging system costs. The system
costs for each system without plug-in hybrid electric vehicles are given as a reference, and reduction in vehicle integration costs is found by dividing the difference in costs
between uncontrolled charging vs. controlled charging with difference in costs between uncontrolled charging vs. no vehicles.

Fixed capacity scenario (starting capacity:
34,700 MW)

Capacity expansion scenario (starting
capacity: 27,500 MW)

0% Wind
penetration

20% Wind
penetration

0% Wind
penetration

20% Wind
penetration

A. System costs with no PHEVs (reference) 3.56 $billion/year 4.42 $billion/year 4.05 $billion/year 4.89 $billion/year
B. System costs with uncontrolled charging 3.69 $billion/year 4.53 $billion/year 4.20 $billion/year 5.04 $billion/year
C. System costs with delayed charging 3.65 $billion/year 4.49 $billion/year 4.18 $billion/year 4.98 $billion/year
D. System costs with 100% controlled charging and $0 payment to vehicle

owners
3.62 $billion/year 4.46 $billion/year 4.10 $billion/year 4.93 $billion/year

Maximum cost savings with controlled charging [B–D] 65 $million/year 69 $million/year 97 $million/year 110 $million/year
Operational cost savings%, capital cost savings% 100%, 0% 100%, 0% �27%, 127% 30%, 70%
Reduction in vehicle integration costs with controlled charging

[(B–D)/(B–A)]
54% 63% 66% 73%
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power generation costs by $65–$110 million dollars a year com-
pared to the uncontrolled charging scenario, representing 1.5–
2.3% of total system costs and 54–73% of the cost of integrating
PHEVs. Controlled vehicle charging allows for shifting generation
to cheaper plants and to off-peak hours. As shown in Table 3, con-
trolled charging is most valuable in the Capacity Expansion Sce-
nario, as the controlled charging program offers the opportunity
to change which types and how many new power plants are built,
in addition to influencing plant operation. In the Fixed Capacity
Scenario, the additional vehicle load can be accommodated with-
out building any new capacity, as the system is already operating
with more capacity than required by the 15% reserve margin. In
all cases, delayed charging is able to capture some, but not all, of
the cost reductions offered by controlled charging. It is interesting
to note that, regardless of the capacity scenario, when there is a
20% wind penetration, controlled charging offers 6–13% greater
cost reduction compared to the same system without wind. Thus,
most of the cost savings can be captured even when there is no
wind in the system, and savings are somewhat higher but not dra-
matically higher in a system with significant wind generation. A
detailed breakdown of the costs for each payment level in each sce-
nario can found in Appendix C.

There are limitations to these results. On one hand, they may
overestimate the value of controlled charging by assuming perfect
knowledge of vehicle trips and wind generation. Ensuring full
charge of vehicles each day when vehicle trips and wind genera-
tion are uncertain may require safety margins that limit the flexi-
bility of controlled charging, and implementable controllers with
limited information about future states will have lower savings
than optimal solutions under perfect information. On the other
hand, controlled charging may provide additional value to the grid
when accounting for the forecasting error of wind generation, as
vehicle charging can be changed on time scales much faster than
the ramping constraints of conventional power plants. Addition-
ally, while we allow charging only at home, availability of work-
place or public charging might increase the flexibility and value
of controlled charging (though the availability of low cost plants
will continue to encourage most charging at night at home). Except
for the wind power, we assume that power plants are not limited
by availability because with a limited number of sample days it
is difficult to predict which plants might be offline. This assump-
tion could overestimate the flexibility in the system and therefore
under-estimate the benefits of controlled charging. However, with
the exception of nuclear plants, none of the plant types run 100% of
the time, so we do not expect cost estimates to be substantially
affected by plant downtime. This assumption also does not change
the value in the Capacity Expansion Scenario, as reserve margins
do not take availability into account but only reference peak load
and total capacity. We also do not consider the costs maintaining
wind farms or replacing them if they fail. While these costs could
significantly increase the total costs of wind farms, it should signif-
icantly impact the interaction of vehicle charging and wind. Elec-
tric vehicles would not change any of these costs and if less wind
is on the system it could only decrease the modest difference be-
tween the value of controlled charging with high vs. low wind pen-
etrations. Additionally, we ignore transmission constraints, which
may over- or under-estimate this value depending on the distribu-
tion of PHEVs and other flexible resources in congested areas of the
grid. It is possible that controlled charging of PHEVs could provide
additional value by mitigating transmission congestion, but they
may be unable to absorb wind energy if separated from wind re-
sources by congested areas of the grid. The results from this model
do give a good estimate of the operational cost savings possible
considering time scales greater than an hour. And because the cost
reductions result largely from shifting peak load, they should re-
main relatively unchanged with more detailed models.

We examined the sensitivity of the cost savings to several dif-
ferent important input assumptions, the first of which is the hourly
time scale. We optimized grid operations over the same twenty-
day period with a fifteen minute time scale using a modified ver-
sion of the optimization model designed to handle larger problems,
without capacity expansion, by optimizing each day’s dispatch
sequentially, as described further in Appendix B. This allowed for
manageable runtimes even with four times as many variables per
day, while obtaining solutions close to the optimal solution of
the original model. Total system costs for a 10% vehicle penetration
with uncontrolled charging were �2% higher in the fifteen minute
model given a 0% wind penetration, and �7% higher given a 20%
wind penetration compared to the hourly model. Higher system
costs are expected especially in the high wind case because there
is more total ramping to accommodate the shorter time scale
examined. The cost reductions associated with controlled charging
are slightly lower in the fifteen-minute model, as shown in Fig. 4.
The higher time resolution of the data leads to a lower peak de-
mand in the uncontrolled charging case. This effect overwhelms
any additional cost reductions that might occur at fifteen-minute
time resolution due to additional flexibility, and indicates that
the cost reduction estimates at hourly resolution are optimistic.
Both time resolutions produce similar trends between 0% and
20% wind penetration given the same initial generation capacity.



Fig. 4. Annual cost savings due to controlled charging for different models given 0%
and 20% wind penetration.
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These results suggest that the hourly time scale used in the base
case is likely sufficient resolution – it does not miss a major source
of benefits from controlled charging at higher resolution. Although
it is possible that even shorter time scales may allow for controlled
charging to provide more benefit through participation in the reg-
ulation market, this requires more extensive communication infra-
structure, and this market is expected to saturate with a relatively
small number of vehicles [9]. In addition, the fifteen minute load
control framework is similar to many existing demand response
programs that use one-way radio controlled switches and cycle
loads roughly every 15 min [28].

We also investigated the sensitivity of the results to changes in
the parameters of the PHEV fleet. The potential cost savings from
controlled charging is approximately linear with the penetration
of PHEVs, as shown in Fig. 5. Regardless of the vehicle penetration,
controlled charging is worth more in scenarios with high wind
penetration and capacity expansion. In the Capacity Expansion Sce-
nario with 20% wind penetration, the cost reduction is slightly
higher than the linear trend at the 15% vehicle penetration because
controlled charging prevents construction of an additional gas
plant. The Fixed Capacity Scenario with 20% wind penetration
has a slightly higher cost reduction at 10% vehicle penetration than
the linear trend because it has the most switching away from gas
turbine generation.
Fig. 5. Sensitivity of the maximum annual system cost savings possible through
100% controlled electric vehicle charging compared to uncontrolled charging for a
range of vehicle penetrations from 0% to 15% of a 9 million passenger vehicle fleet.
Increasing the maximum charge rates has diminishing returns,
as shown in Fig. 6. Level 1 charging restricts the peak power that
occurs with uncontrolled charging, so controlling the charging is
much less valuable. In the uncontrolled charging scenarios,
increasing to Level 3 charging from Level 2 charging only mini-
mally increases the peak load because the total amount all vehicles
can be charged is limited by battery size and total driving distance.
As battery size increases, the vehicles are able to drive more miles
per day in charge depleting mode. This increases the value of con-
trolled charging to the system somewhat, as the uncontrolled peak
load becomes more and more expensive. However, this benefit is
limited because the more miles traveled in charge depleting mode,
the less flexibility there is to move charging to a later time, since
much of the time spent parked is needed for charging. Examining
a range of 5 kW h batteries to 24 kW h batteries, we see cost reduc-
tions differ from the base case by $1–$35 million dollars per year
depending on the scenario due to the competing effects discussed
above.
3.2. Capacity and generation mix

Fig. 7 summarizes plant capacity and generation results for four
cases. In the Fixed Capacity Scenario with no wind, controlled
charging reduces generation from gas-combined cycle and oil/gas
steam plants and increases generation from coal plants slightly,
bringing coal plants to very high utilization levels. The lack of both
the cheap energy from wind and its variability means that any coal
capacity is utilized nearly continuously with very few startups and
shutdowns. Not surprisingly, in the Fixed Capacity Scenario under
a 20% wind penetration, controlled charging results in reduced
generation from all fossil fuel plants types, replacing it with wind
generation.

In the Capacity Expansion Scenario, controlled charging results
in reduced plant construction: when there is no wind, fewer gas
combined cycle and coal plants are built; and for a 20% wind pen-
etration, no additional coal plants are built because of the abun-
dance of low cost and high variability wind. Instead, most
additional capacity is combined cycle gas. Given controlled charg-
ing, far fewer combustion plants are built compared to the uncon-
trolled charging scenario, and in exchange a small number of gas
turbine plants are built to meet reserve margin and ramping
requirements. These plants have higher operating costs than coal
and combined cycle plants but have the lowest capital costs.
Fig. 6. Sensitivity of the maximum annual system cost savings possible through
100% controlled electric vehicle charging compared to uncontrolled charging for
Level 1 (1.2 kW), Level 2 (7.4 kW), and Level 3 (30 kW) charging. Only Level 1 and 2
are likely to be used in residential settings in the foreseeable future.



Fixed Capacity Scenario Capacity Expansion Scenario 

0% 
Wind 

20% 
Wind 

Fig. 7. Comparison of capacity and generation data with and without controlled electric vehicle charging by generator type for each scenario. The following abbreviations are
used for the generation types: W – Wind, CT – Gas Combustion Turbine, CC – Gas Combined Cycle, O/G – Oil/Gas Steam, C – Coal, N – Nuclear. Generation axis is scaled so that
average capacity factor can be seen as percent of installed capacity bar filled with generation. Peak power production is calculated based on hourly data.
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Controlled charging in the Capacity Expansion Scenario also
shifts generation to allow for cheaper capacity expansion options.
With no wind, controlled charging slightly shifts the generation
from coal to natural gas and oil. Under a 20% wind penetration,
controlled charging reduces gas combined cycle generation and
slightly increases oil/gas steam generation to allow for reduced
construction of combined cycle plants.

In both the Fixed Capacity Scenario and the Capacity Expansion
Scenario, wind curtailment is reduced with controlled charging,
but the curtailment that occurs even without controlled charging
is a very small percentage of total wind generation, as seen by
the slight difference in wind generation between the controlled
and uncontrolled scenarios (Fig. 7). Because plants have specified
capacities and are added discretely until the wind generation po-
tential is greater than the 20% of all load required by the penetra-
tion goal over the course of a year, a small amount of wind
generation from the last plant added is extra and may be curtailed
by the system operator while still meeting the penetration goal.
Any larger amount of curtailment requires building additional
wind plants. Curtailing the extreme peaks of wind production
could help in reducing system costs by reducing the ramping and
shut downs of conventional power plants. These cost reductions
would have to exceed the capital costs of the new wind plants to
make up for the energy lost in the curtailed peaks in order to meet
the wind penetration goal. We find that regardless of the cost of
controlled charging, it is never cost effective in the cases examined
here to build extra wind plants in order to add flexibility to the sys-
tem through the option of wind curtailment.

4. Conclusions

In our test systems, controlled charging of PHEVs reduces the
costs of integrating PHEVs into the electricity system by 54–73%
depending on the scenario. Cost reductions that result from
employing controlled vehicle charging are estimated at $65–
$110 million/year, given a 10% PHEV penetration, perfect
information, no transmission constraints, and a 1-h resolution.
Cost reductions 50–60% larger can be found in our cases requiring
capacity expansion than in those without because controlled
charging reduces the need for new plant construction and provides
flexibility in deciding which plants to build. Capacity expansion
may be needed in systems where coal plants are forced to retire
due to emissions regulations or when significant load growth is
expected. Cost reductions 6–13% larger can be found in our
cases with a 20% wind penetration than in those with a 0% wind
penetration because of the additional value of controlled charging
in managing wind variability. This suggests that controlled
charging may offer some additional support for wind integration;
however, system operators should not rely on controlled vehicle
charging to dramatically cut wind integration costs. This result
holds when examining sub-hourly time resolution. However, the
potential of controlled charging in high wind penetration scenarios
could vary when considering load and wind forecasting error and
transmission constraints. Such considerations were not modeled
here due to data availability and model tractability issues. Con-
trolled charging could provide additional benefits by providing
very fast ramping capability to balance solar PV systems, and could
also not be needed as much given the flexibility of some new
renewable sources like geothermal and small scale hydro, but
these effects should be small due to the small amount of capacity
being installed.

In most of our scenarios, at 10% PHEV penetration or higher,
controlled charging provides enough system benefits to save
$100/vehicle/year for many vehicles (see cost data in Appendix
C). These savings may be sufficient to provide a large enough pay-
ment for some vehicles owners to be willing to participate in a con-
trolled charging program with an average savings of up to
0.2 cents/kW h of charging, as long as the necessary equipment
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can be obtained by the vehicle owner or system operator at low
cost. Both the installation and maintenance costs of the controlled
charging system would have to come out of the $100/vehicle/year.
The cost benefits of controlled charging scale fairly linearly with
the number of PHEVs, so if the equipment costs per vehicle are
low enough and the overhead costs of program are kept low, a con-
trolled charging program could pay for itself even at low PHEV
penetrations. We do not, however, model the vehicle owner’s will-
ingness to participate in the program, as this is a behavioral ques-
tion beyond the scope of our analysis.

Building additional wind plants beyond the penetration goal in
order to allow curtailment and mitigate extreme generation fluctu-
ation is not cost effective in our model. Although the energy lost by
curtailing peaks is minimal and therefore requires little additional
capacity to make up for it, the high capital cost of wind farms out-
weighs any benefit of flexibility to the grid.
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Appendix A. Selecting representative driving profiles

The capacity expansion, unit commitment, and dispatch model
uses driving profiles to determine the state of charge of the plug-in
vehicles in the model. Representative driving profiles are chosen
from the 2009 National Household Travel Survey (NHTS) data set,
which contains data for one day of driving from approximately
900,000 different passenger cars across the United States. These
profiles include information for each vehicle on all trips taken dur-
ing that day, including distance traveled, starting and stopping
times, and starting and stopping locations, so that plug-in hybrid
vehicle expected battery state of charge can be tracked throughout
the day with a variety of different location-dependent charging
schemes. Vehicles in the controlled charging program are allowed
to charge when parked at home after the last trip of the day and
must be fully charged by the first trip of the day. Uncontrolled
vehicles begin charging after arriving home for the last time that
day and charge at the maximum rate until fully charged or leaving
for the first trip of the next day. Each vehicle discharges its battery
throughout the day based on the number of miles driven until the
battery reaches its minimum state of charge.

In order to create a tractable controlled charging model while
maintaining a representative dynamic vehicle load for the power
system, a sample of 20 profiles were selected and optimally
weighted to best match the aggregate characteristics of the entire
900,000 profiles available in the NHTS of passenger cars. These
st match 20 optimally weighted vehicle profiles drawn from the NHTS dataset over
a small percentage of the fleet is driving at any time.

http://www.renewelec.org


Table B.1
Optimization variables.

Symbol Description Domain Units

xE
jt

Sum of usable energy remaining in all vehicles in controlled charging program of type j in time step t Rþ MW h

xEV
CTRL

Percentage of plug-in vehicles in the controlled charging program [0,100] %

xEV
jt

Sum of power to charge all vehicles in controlled charging program of type j in time step t Rþ MW

xG
it

Power generated in time step t by plant i Rþ MW

xSD
it

Shut-down variable for the minimum on/off constraints for plant i at time t. Formulation forces this to 1 (plant shutting down) or 0 (plant
not shutting down)

[0,1] NA

xSDC
it

Shut-downs for plant i in time step t Rþ NA

xNSR
it

Non-spinning reserve power for plant i in time step t Rþ MW

xSR
it

Spinning reserve power for plant i in time step t Rþ MW

xSU
it

Start-up variable for the minimum on/off constraints for plant i at time t. Formulation forces this to 1 (plant starting up) or 0 (plant not
starting up)

[0,1] NA

xSUC
it

Start-up cost for plant i in time step t Rþ NA

xW
t Total wind generation taken in time step t Rþ MW

yBLD
i

Binary decision = 1 if plant i is built, 0 otherwise {0,1} NA

yON
it

Binary decision = 1 if plant i is on at time i, 0 otherwise {0,1} NA

Table B.2
Model parameters.

Symbol Description Base value Sensitivity values Units

bj Battery capacity of vehicle j 16 5, 24 kW h
bAM Battery charge requirement in the morning 100/Max possiblea – %

bHI
j

Battery higher limit for vehicle j 100 – %

bLO
j

Battery lower limit for vehicle j 30 – %

cBLD
i

Capital cost of each new plant i EIA 2011 reference case – $/year

cEV Payment to vehicle owner for participation in controlled charging program $0 $100, $200, $300 $/vehicle/year
cF

i
Fuel cost of plant i EIA 2011 reference case – $/Btu

djt Distance driven by each vehicle of type j in time t NHTS sample – miles
ERPS RPS energy requirement 10% 0%, 20% %
hi Heat rate for plant i Ventyx – Btu/MW h
ki Size of each plant i Ventyx – MW
Lt Non-vehicle load at time t NYISO – MW
lj Charge limit of vehicle j 9.6 1.2, 30 kW
mi Minimum generation for plant i Ventyx – %
nEV Number of plug-in vehicles total 10% 1%, 15% % Of total vehicles
pwt Wind power potential at time t from each wind plant EWITS data – MW
pjt Percent of time step vehicle type j is home NHTS sample – %
RSR Spinning reserve requirement 3% – %
RTR Total reserve requirement 6% – %
RRM Reserve margin over peak load 15% – %
rDWN

i
Ramp down rate for plant i Ventyx – MW/h

rUP
i

Ramp up rate for plant i Ventyx – MW/h

vUCTRL
t Charging power to all uncontrolled plug-in hybrid electric vehicles at time t NHTS database – MW

wj Weighting factor for vehicles that are of type j NHTS sample – %
D Length of time step 1 0.25 h

dOFF
i

Minimum time off for plant i WECC – # Time steps

dON
i

Minimum time on for plant i WECC – # Time steps

gELEC Efficiency of vehicle in electric mode .3 – kW h/mile

a Vehicles which cannot be charged completely during their longest period at home are always charged for that entire time period.
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aggregate characteristics were evaluated for each hour and in-
cluded the average number of miles driven in that hour, the aver-
age cumulative number of miles driven until that hour, the percent
of vehicles at home, and the percent of vehicles parked.

20 Vehicle profiles were randomly selected from the NHTS data
set; the characteristics of the resulting fleet were compared to
those of the full NHTS data set using the distance metric below;
and this process was repeated one million times, retaining only
the set of 20 that minimizes the distance metric.

distance metric ¼
X

t

Dh2
t þ Dp2

t þ Do2
t þ Dd2

t þ
Dat

max
t
ðatÞ

0
@

1
A2

þ Dct

max
t
ðctÞ

0
@

1
A2

0
B@

1
CA
where Dht and Dpt are the difference in the percent of drivers in the
sample vs. the full data set at home and parked at time step t,
respectively, and Dat and Dct are the difference in average miles
and cumulative miles, respectively, at time step t. The distance
terms are normalized so that all six terms will be of comparable
scale. Each of the 20 vehicles was weighted by a variable wi,
i 2 {1,2, . . . ,20}, wi 2 [0,1],

P
iwi ¼ 1; wi was optimized to minimize

the distance metric above. This process was repeated 1 million
times and the best match optimally weighted profile of 20 vehicles
was retained. The weighted sample can be thought of as a case
where some selected vehicle profiles are representative of a larger
portion of the full NHTS dataset than others.As shown in Fig. A.1,
the final sample of 20 weighted profiles does not perfectly match



Table C.1
Costs given a 0% wind penetration and 10% vehicle penetration with different levels of payment to PHEV owners for controlled charging in the Fixed Capacity Scenario. Overnight
new capital costs include the cost of building wind capacity in order to meet the wind penetration goal as well as any additional plants. Annualized new capital costs represent the
cost each year given the lifetime of each plant (50 years for coal, 30 years for gas, and 20 years for wind) and a 5% discount rate.a Annualized new system costs are the sum of the
annualized new capital costs, annual vehicle program costs, and annual operating costs.

Vehicle payment ($/
vehicle/year)

Percent
controlled
(%)

Overnight new capital
cost (billion $)

Annualized new capital
costs (billion $)

Annual vehicle program
costs (million $)

Annual operating
costs (billion $)

Annualized new system
costs (billion $)

0 100 4.5 0.29 0 3.3 3.6
100 48 4.5 0.29 43 3.4 3.7
200 0 4.5 0.29 0 3.4 3.7

a The discount rate is highly uncertain because it depends on what else could have been invested in instead of the power plants. The IEA uses provides annualized costs of
power plants using both a 5% and 10% discount rate [29] while the Office of Management and Budget suggests using a 7% discount rate [30] and experts consulted suggested
rates between 3% and 10%. A higher discount rate would mean that investments in new power plants would be more expensive and therefore increase the value of controlled
charging. Future work can examine a range of discount factors to understand the sensitivity to this parameter.

Table C.2
Costs given a 20% wind penetration and 10% vehicle penetration with different levels of payment to PHEV owners for controlled charging in the Fixed Capacity Scenario.

Vehicle payment ($/
vehicle/year)

Percent
controlled
(%)

Overnight new capital
cost (billion $)

Annualized new capital
costs (billion $)

Annual vehicle program
costs (million $)

Annual operating
costs (billion $)

Annualized new system
costs (billion $)

0 100 25 2.0 0 2.5 4.5
100 0 25 2.0 0 2.5 4.5

Table C.3
Costs given a 0% wind penetration and 10% vehicle penetration with different levels of payment to PHEV owners for controlled charging in the Capacity Expansion Scenario.

Vehicle payment ($/
vehicle/year)

Percent
controlled
(%)

Overnight new capital
cost (billion $)

Annualized new capital
costs (billion $)

Annual vehicle program
costs (million $)

Annual operating
costs (billion $)

Annualized new system
costs (billion $)

0 100 10 0.65 0 3.5 4.1
100 37 11 0.74 0.03 3.4 4.2
200 7.2 12 0.77 0.01 3.4 4.2
300 0 12 0.8 0 3.4 4.2

Table C.4
Costs given a 20% wind penetration and 10% vehicle penetration with different levels of payment to PHEV owners for controlled charging in the Capacity Expansion Scenario.

Vehicle payment ($/
vehicle/year)

Percent
controlled
(%)

Overnight capital
cost (billion $)

Annualized new capital
costs (billion $)

Annual vehicle program
costs (million $)

Annual operating
costs (billion $)

Annualized new system
costs (billion $)

0 100 30 2.3 0 2.6 4.9
100 94 30 2.3 0.085 2.6 5.0
200 0 31 2.4 0 2.6 5.0
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the aggregate characteristics of all passenger vehicles. However, it
much more closely matches the aggregate data than 20 randomly
chosen profiles and according to the distance metric shown below,
it is just as close as 200 randomly chosen profiles and allows for a
feasible computation time. While we track day-to-day differences
in wind and load, we assume that vehicle travel patterns are the
same every day (due to lack of data on daily variability).
Appendix B. Optimization variables and parameters

See Tables B.1 and B.2.

B.1. Fifteen minute model

For the fifteen minute model, most of the constraints remain
the same, but everything regarding capacity expansion is removed
from the objective function and constraints. Additionally, instead
of executing the full twenty day period at once, we optimize over
a 48 h window, save the first 24 h of data as the optimal operation
for that day, move the window forward 24 h and run another 48 h
optimization. This is repeated until optimal operation has been
found for all 20 days. This shorter optimization window allows
for a greater time resolution in the data while retaining similar
run times. The new objective function used for each 48 h period
is shown below. By removing the payment to vehicle owners from
the objective function, we assume a $0/vehicle/year payment in all
cases and separately dictate xEV

CTRL as 1 or 0. For the sensitivity anal-
ysis, we are only interested in the extremes of all vehicles being
controlled or none to understand the largest possible cost savings.

Minimize the cost operating costs in each time step:

minimize
X

t2T48

X
i2C

xSUC
it þ xSDC

it þ cF
i hixG

it

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cost of Plant Operations

No additional plants are provided to be built, so the constraint
requiring plants to be built in order to be turned on is dropped.



Fig. C.1. Comparison of resulting generation mixes between the hourly and fifteen
minute model.

Table C.5
Capacity factor for each generation type given a 0% wind penetration and 10% vehicle pen
Fixed Capacity Scenario.

Vehicle payment ($/vehicle/year) Percent controlled (%) Nuclear (%) Coal (%

0 100 100 98
100 48 100 97
200 0 100 97

Table C.6
Capacity factor for each generation type given a 20% wind penetration and 10% vehicle pene
Fixed Capacity Scenario.

Vehicle payment ($/vehicle/
year)

Percent controlled
(%)

Nuclear
(%)

Coal
(%)

Oil
(%)

0 100 100 81 4.4
100 0 100 82 4.9

Table C.7
Capacity factor for each generation type given a 0% wind penetration and 10% vehicle pene
Capacity Expansion Scenario.

Vehicle payment ($/vehicle/year) Percent controlled (%) Nuclear (%) Coal (%

0 100 100 97
100 37 100 96
200 7.2 100 96
300 0 100 96

Table C.8
Capacity factor for each generation type given a 20% wind penetration and 10% vehicle pene
Capacity Expansion Scenario.

Vehicle payment ($/vehicle/
year)

Percent controlled
(%)

Nuclear
(%)

Coal
(%)

Oil
(%)

0 100 100 86 5.3
100 94 100 85 5.1
200 0 100 85 4.4
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The wind penetration target requirement is also dropped because it
can only be used across all time periods at once. Instead, we assume
that the wind penetration functions simply as a requirement to
build sufficient wind capacity so that 20% of the energy could be
generated by wind. The model uses the same set of wind farms as
used in the hourly model with 20% wind penetration. Because of
the low marginal cost of wind, most of this wind energy will be used
without a hard constraint. Constraints are added to hold the unit
commitment variables constant through a single hour so that plants
can only be turned off or turned on each hour, while generation lev-
els are free to change every fifteen minutes.

Appendix C. Additional results

C.1. Detailed cost breakdown

In Tables C.1–C.4, the operational and capital costs are broken
down for each scenario. In each case, the higher the payment that
the grid operator is assumed to pay to each individual vehicle own-
er, the lower the number of vehicles it is optimal for the grid oper-
ator to include in the charging program.

C.2. Generation mix

The generation mix remains fairly similar between the hourly
and fifteen minute model. The most noticeable differences are
the increased use of oil/gas steam turbines and combustion
etration with different levels of payment PHEV owners for controlled charging in the

) Oil/gas steam (%) Gas combined cycle (%) Gas combustion turbine (%)

7 73 12
7 73 12
8 74 12

tration with different levels of payment to PHEV owners for controlled charging in the

/gas steam Gas combined cycle
(%)

Gas combustion turbine
(%)

Wind
(%)

47 6.5 36
48 6.6 36

tration with different levels of payment to PHEV owners for controlled charging in the

) Oil/gas steam (%) Gas combined cycle (%) Gas combustion turbine (%)

7.0 54 2.8
7.0 50 2.3
6.2 49 2.4
6.1 49 2.4

tration with different levels of payment to PHEV owners for controlled charging in the

/gas steam Gas combined cycle
(%)

Gas combustion turbine
(%)

Wind
(%)

38 2.2 36
39 2.0 36
36 1.2 36



Table D
Model Assumptions. (�) Represents assumptions that we believe result in our model underestimating the benefits of controlled charging. (+) Represents assumptions that can
result in our model overestimating the benefits.

Assumption Justification Expected direction of bias of the value of controlled charging

No transmission constraints No data available (�) In our model, uncontrolled charging does not increase
congestion and controlled is given no chance to relieve this
and other congestion in the system

Perfect information for demand and
wind

Limited forecasting data available for the future wind sites,
and this would require assumptions about the structure of
future reserve markets to value the service

(�) Controlled charging may be able to help forecasting error

Hourly time steps Increasing the time step to 15 min does not qualitatively
change the results, and use of hourly time steps allows many
more scenarios to be examined. The variability of wind
decreases with frequency [14] so substantial differences at
smaller time steps are unlikely

(�) Some of the fast balancing that can be performed by
controlled charging is missed, but we expect it to be small

Battery can be charged anywhere
between 0 and its maximum
charge rate

While instantaneous changes in charge rate may be limited, at
an hourly time scale, the desired average charge rate can be
achieved without technical challenges

We do not expect this assumption to be unrealistic at the time
scales examined

We focus on extended range plug-in
hybrid electric vehicles instead of
vehicles with blended operation

Although not the case for every PHEV, the Chevy Volt depletes
the battery before extending the range with the gasoline
motor as opposed to operating in a blended mode. Like
previous studies [12,14], we assume our PHEV’s operate as an
extended range vehicle like the Chevy Volt

(+) Blended operation PHEVs result in somewhat smaller
electricity demand for the same battery size, reducing the
impact of uncontrolled charging and the potential for
controlled charging to reduce this impact. We expect this to
be a small effect, as a blended mode is more common in
vehicles with smaller batteries where daily driving patterns
are likely to use the entire battery even in blended mode.
Modeling blended-operation PHEVs requires assumptions
about vehicle control strategies, but there is no reason to
believe these small differences in electricity consumption
would qualitatively change results

Controlled charging does not
significantly reduce battery life

Degradation is complex, so we cannot be certain, but we
expect that controlled charging will not decrease battery life
and may increase it. Barre et al. review the literature on
lithium-ion battery aging mechanisms and find that cycle
number is the most important factor, but voltage,
temperature, and change in SOC can also play a factor [10].
Controlled charging does not change the number of cycles,
and because it lowers the average C-rate, may decrease
average charging voltage and temperature and therefore
potentially extend battery life. Controlled charging also
changes how long batteries remain at low SOC vs. high SOC
while plugged in. Some chemistries have been shown to
degrade faster at high SOC, so again controlled charging may
extend battery life by leaving batteries at low SOC longer
before charging rather than charging immediately upon
arrival

(�) The benefits of controlled charging may be larger if the
reduced average C-rate of controlled charging results in
extended battery life. However, it is not known whether
variation in C-rate or SOC profile may have other positive or
negative effects on battery life

20 days are used to represent the
calendar year

Necessary due to computational constraints in order to
examine a wide variety of sensitivity cases

This could shift the results in either direction, but we expect
the differences to be small since the average load and wind
match the annual averages and the peak and minimum load
conditions are captured
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turbines with the fifteen minute model, and a corresponding de-
crease in the use of combined cycle plants. Wind energy is also
used less with the fifteen minute model because we dropped the
hard wind energy constraint in order to perform each day’s optimi-
zation separately to save computation time with larger number of
time steps. Using the same wind capacity as in the Fixed Capacity
Scenario hourly model, the fifteen minute model had only 19%
wind by energy.
C.3. Capacity factors

In the Fixed Capacity Scenario, combined cycle plants have a
lower capacity factor when charging is controlled. All conventional
power plants except for nuclear which is held at 100% of its capac-
ity at all times have a lower capacity factor under 20% wind pene-
tration compared to a 0% wind penetration (see Fig. C.1 and Tables
C.5–C.8).

In low initial capacity scenarios combined cycle plants have a
higher capacity factor with controlled charging as the controlled
charging allowed for fewer combined cycle plants to be built.
Appendix D. Assumptions

Table D discusses the assumptions made in the study and the
expected direction and magnitude of bias they might give the
results.
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