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1 Introduction

Factorable programming techniques are used widely in global optimization for
bounding nonconvex functions [16,28,32]. These techniques iteratively decompose a
nonconvex factorable function, optionally through the introduction of variables and
constraints for intermediate functional expressions, until each intermediate expres-
sion can be outer-approximated by a convex feasible set, typically a convex hull. This
decomposition is invoked only to the extent that all intermediates in the hierarchy of
functions thus generated can be convexified via known techniques. With the excep-
tion of univariate functions, at the time of this writing, there exists a small number
of nonconvex functions for which convex and concave envelopes are known and lend
themselves to practical implementations. This includes various functional types with
polyhedral convex envelopes [1,3,17,18,27,29], fractional term [30,31], (n − 1) con-
vex functions with indefinite Hessians [7], and products of convex and component-wise
concave functions [9,10].

In this paper, we examine whether nested functional decompositions of factorable
programs can be replaced by, or enhanced via, the use of functional transformations.
In essence, in addition to convexifying simple intermediate expressions, we exploit
convex transformability of more complex component functions of factorable programs
as a tool in the generation of bounding functions for global optimization algorithms.
Transformation techniques have been proposed in the global optimization literature to
convexify signomial functions [11–15]. In particular, one can underestimate a signo-
mial by applying term-wise power and exponential transformations to all or a subset of
variables, followed by a relaxation of the inverse transformations. Our transformation
scheme differs from existing methods in that it is applicable to general nonconvex
mathematical programs and exploits pseudoconvexity of component functions to gen-
erate relaxations that are provably tighter than existing relaxations.

Convex-transformable functions have been studied extensively in the generalized
convexity literature [2,26]. This literature has focused mostly on deriving necessary
and sufficient conditions under which a certain nonconvex optimization problem can
be transformed to a convex one. Furthermore, in the economics literature, there has
been a line of research to identify whether a given convex preference ordering can be
represented in terms of the upper level sets of a concave utility function [4,8]. This latter
question can be restated in terms of whether a quasiconcave function can be converted
to a concave one via a one-to-one transformation. While quite rich and interesting, the
theory of convex-transformable functions has found limited applications in nonconvex
optimization because the vast majority of nonconvex optimization problems are not
convex transformable. However, the family of convex-transformable functions sub-
sumes many functional forms, such as products and ratios of convex and/or concave
functions, that appear frequently as building blocks of nonconvex expressions. There-
fore, exploiting convex-transformability of component functions to construct outer
approximations for the intermediate expressions of factorable programs can lead to
relaxations that are tighter than those obtained by existing approaches.

The mere incorporation of functional transformations in global optimization of fac-
torable programs may be viewed as obvious. However, the use of these transformations
gives rise to interesting questions regarding suitable forms of transforming functions
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as well as the sharpness of the resulting relaxations, especially in comparison to exist-
ing relaxations for factorable programs. This paper addresses several questions of this
nature. First, in Sect. 2, we review preliminary material from the generalized convexity
literature and obtain some properties of convex-transformable functions. We introduce
a new relaxation method for convex-transformable functions in Sect. 3. In Sect. 4, we
derive the tightest, in a well-defined sense, transforming functions for signomial terms,
propose a new method for overestimating signomials, and present theoretical compar-
isons of the proposed relaxation versus a conventional one. In Sect. 5, we generalize
the results of Sect. 4 to a large class of composite functions involving products and
ratios of convex and/or concave functions. As another important application of the
proposed convexification method, in Sect. 6, we consider the class of log-concave
functions. Finally, in Sect. 7, we use simple examples to illustrate the integration of
the proposed relaxation within the factorable programming framework and examine
its impact on the convergence rate of a branch-and-bound based global solver.

2 Convex-transformable functions

In this section, we derive some elementary properties of convex-transformable
(G-convex) functions. The proofs are direct and not based on the equivalence of
different classes of generalized convex functions. Analogous results for concave-
transformable (G-concave) functions can be established in a similar manner. Through-
out the paper, φ represents a nonconvex continuous function defined over a convex
set C ⊆ R

n . The set of extreme points of C will be denoted by vert(C), while the
relative interior of C will be denoted by ri(C). By G, we will denote a continuous
univariate function that is increasing on Iφ(C), where Iφ(C) is the image of C under
φ. The convex envelope of φ over C, denoted by convCφ, is defined as the tightest
convex underestimator of φ over C. Similarly, concCφ stands for the concave enve-
lope of φ over C and is equal to the negative of the convex envelope of −φ over C.
When the domain is clear from the context, we may drop the subscript C from convCφ
(or concCφ). We begin by recalling the definition of G-convex functions.

Definition 1 ([2]) A continuous function φ : C → R is said to be convex-
transformable or G-convex if there exists a continuous increasing function G defined
on Iφ(C) such that G(φ) is convex over C.

Throughout the paper, we exclude the trivial case where G(t) = t , for all t ∈ Iφ(C).
Namely, we assume that the G-convex function φ is not convex. We now derive
sufficient conditions for G-convexity of composite functions. We will consider scalar
composition, vector composition and composition with an affine mapping in turn.

Proposition 1 Let φ : C → R be G-convex and let f be an increasing function on
D ⊆ R, where D ⊇ Iφ(C). Then, the composite function h(x) = f (φ(x)) is G̃-convex
on C, where G̃ = G( f −1).

Proof By assumption, f and G are both increasing over Iφ(C). Thus, the inverse
function of f , denoted by f −1 exists and the function G̃ = G( f −1) is increasing over
the range of h. By G-convexity of φ, G̃(h) is convex on C. ��
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Proposition 2 Let f : D → R
n be a vector of functions f j , j ∈ J = {1, . . . , n},

where D ⊆ R
m is a convex set. Let J̄ contain the elements of J for which f j is not

affine. Assume that f j is convex for j ∈ J1 ⊆ J̄ and concave for j ∈ J2 = J̄\J1.
Let φ : C → R be G-convex, where C is a convex set in R

n such that C ⊇ I f (D).
Assume that φ(y1, . . . , yn) is nondecreasing in y j , j ∈ J1 and is nonincreasing in
y j , j ∈ J2. Then, h(x) = φ( f (x)) is G-convex on D.

Proof We prove the case where J = J1. The proof for the general case is similar. Let
x1 ∈ D, x2 ∈ D. By assumption, all components of f are convex, φ is nondecreas-
ing over I f (D) and G is increasing over Iφ(C). Thus, the following holds for every
λ ∈ [0, 1]:

G(φ( f (λx1 + (1 − λ)x2))) ≤ G(φ(λ f (x1)+ (1 − λ) f (x2))). (1)

From G-convexity of φ over I f (D), it follows that:

G(φ(λ f (x1)+ (1 − λ) f (x2))) ≤ λG(φ( f (x1)))+ (1 − λ)G(φ( f (x2))). (2)

Combining (1) and (2), we obtain:

G(φ( f (λx1 + (1 − λ)x2))) ≤ λG(φ( f (x1)))+ (1 − λ)G(φ( f (x2))),

which is the definition of G-convexity for the composite function h(x) over D. ��
Proposition 3 Consider the functionφ over a convex set C ⊆ R

n. Let T : x → Ax+b
denote an affine transformation, where A ∈ R

n×m, x ∈ D ⊆ R
m and b ∈ R

n. Assume
D is a convex set and Ax + b ∈ C for all x ∈ D. Then, φ(Ax + b) is G-convex on D,
if φ is G-convex on C.

Proof Follows directly from Proposition 2 by letting f = Ax + b. Since all compo-
nents of f are affine functions, no monotonicity assumption on φ is required. ��

Next, we present the concept of least convexifying transformation, which was first
introduced by Debreu [4] in the economics literature to define least concave utility
functions. In Sect. 3, we will show that least convexifying transformations are of
crucial importance for convexifying nonconvex problems.

Definition 2 ([4]) Ifφ is G∗-convex and, for every G for whichφ is G-convex, GG∗−1

is convex on the image of the range of φ under G∗, then G∗ will be referred to as a
least convexifying transformation for φ.

Remark 1 Least convexifying transformations are unique up to an increasing affine
transformation, i.e., if G1 and G2 are both least convexifying forφ, then G2 = αG1+β,
for some α > 0 and β ∈ R.

Next, we make use of Propositions 1 and 2 to derive least convexifying transfor-
mations for composite functions.

Proposition 4 Let φ : C → R be G-convex with a least convexifying transformation
denoted by G∗. Consider an increasing function f defined on D ⊇ Iφ(C). Then, a
least convexifying transformation for h(x) = f (φ(x)) is given by G∗( f −1).
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Proof By Proposition 1, h is Ĝ-convex with Ĝ = G∗( f −1). We claim that Ĝ is
least convexifying for h. Assume the contrary and denote by G̃ a least convexifying
transformation for h. By Definition 2, ĜG̃−1 is convex. Let Ḡ = G̃( f ). It follows
that Ḡ (φ) is convex. It is easy to show that Ḡ G∗−1 = (ĜG̃−1)−1 and therefore
is concave; contradicting the least convexifying assumption on G∗. Consequently,
G∗( f −1) is least convexifying for h. ��
Corollary 1 Let φ : C → R be G-convex with a least convexifying transformation
denoted by G∗. Let D be a convex set in R

m such that Ax + b ∈ C for all x ∈ D,
where A is a real n×m matrix. Then, G∗ is least convexifying for φ(Ax + b).

Proof Follows directly from Proposition 3 by noting that the inverse image of a convex
set under an affine transformation is convex (cf. Theorem 3.4 in [20]). ��

In the sequel, we only consider the case where both φ and G are twice continu-
ously differentiable (C2) functions on open convex subsets of R

n and R, respectively.
Necessary and sufficient conditions for convex transformability of C2 functions were
first derived by Fenchel [5]. We summarize the main results in Propositions 5 and 6.

Proposition 5 ([2]) Let φ : C → R be a differentiable G-convex function and let G
be differentiable over Iφ(C). Then, φ is pseudoconvex on C.

Proposition 6 ([2]) Let φ : C → R and G be C2 functions. Then, φ is G-convex if
and only if the Hessian of G(φ) is positive semidefinite for every x ∈ C.

Since G is increasing and φ is G-convex, we have G ′(t) > 0 over ri(Iφ(C)). Letting
ρ(x) = G ′′(φ(x))/G ′(φ(x)), and defining the augmented Hessian of φ as:

H(x; ρ) = ∇2φ(x)+ ρ(x)∇φ(x)∇φ(x)T , (3)

the condition of Proposition 6 implies that, for a G-convex function, there exists a
function ρ(x) defined on C such that H(x; ρ) is positive semidefinite for all x ∈ C.
Furthermore, if the function ρ0(x) defined by

ρ0(x) = sup
z∈Rn

{
− zT ∇2φ(x)z(

zT ∇φ(x))2 : ‖z‖ = 1, zT ∇φ(x) 
= 0

}
(4)

is bounded from above for every x ∈ C, then H(x; ρ) is positive semidefinite for every
ρ(x) ≥ ρ0(x) over C. By Proposition 5, points where ∇φ(x) = 0 are minimizers of
φ. Thus, the Hessian of φ is positive-semidefinite at these points and, as a result,
ρ(x) can take any nonnegative value. Moreover, it can be shown that (cf. Proposition
3.16 in [2]), for a C2 pseudoconvex function φ, the restriction of its Hessian to the
subspace orthogonal to ∇φ is positive semidefinite. Hence, the nonzero assumption
on zT ∇φ(x) in (4) is without loss of generality. From the definition of ρ0, we can
compute G∗(t) as:

d

dt
ln

(
dG∗(t)

dt

)
= g(t), (5)

where g(t) = supx∈C{ρ0(x) : φ(x) = t}.
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As corollaries of the above results, we next derive several properties of the trans-
forming function G that we will use in subsequent sections.

Corollary 2 Let the G-convex function φ : C → R be nonconvex. Then, G is non-
concave over Iφ(C). In particular, G(t) is locally strictly convex at any t̂ = φ(x̂) for
which φ is not locally convex at some x̂ ∈ C.

Proof From (4) it follows that, if ∇2φ(x̂) is not positive semidefinite at x̂ ∈ C, then
ρ0(x̂) > 0. Thus, g(t) and d2G∗(t)/dt2 are both positive at t = t̂ = φ(x̂). By
Definition 2, every G which convexifies φ is strictly convex at t̂ . ��

The above result can be further refined for the class of merely pseudoconvex func-
tions, defined as follows.

Definition 3 Let φ : C → R be pseudoconvex. If φ is not locally convex at any x ∈ C,
then φ will be referred to as a merely pseudoconvex function.

Corollary 3 Let φ : C → R be G-convex with a least convexifying function denoted
by G∗. If φ is merely pseudoconvex over C, then G∗ is strictly convex over Iφ(C).
Proof Follows directly from Corollary 2. ��

The converse of the above corollary does not hold, in general, due to taking the
supremum in the computation of g(t) in (5).

3 Convexification via transformation

In this section, we consider the problem of outer-approximating the set

Φ := {(x, t) ∈ C × I : φ(x) ≤ t} , (6)

where the nonconvex function φ : C → R is G-convex and I ⊇ Iφ(C) denotes a
closed interval over which G(t) is increasing. This is the typical form of an interme-
diate constraint introduced within the factorable decomposition in the construction
of relaxations of nonconvex optimization problems [32,33]. More specifically, φ(x)
is assumed to be part of the initial nonconvex expression and t denotes an auxiliary
variable introduced for the purpose of separable reformulation.

Proposition 7 Let φ : C → R be G-convex with Ḡ (t) denoting a concave overesti-
mator for G(t) over I. Then, the following is a convex relaxation of the set Φ:

Φ̃ := {(x, t) ∈ C × I : G(φ(x)) ≤ Ḡ (t)
}

(7)

Proof Since G is increasing over I, the set Φ can be equivalently written as
Φ = {(x, t) ∈ C×I : G(φ(x)) ≤ G(t)}. By Corollary 2, G(t) is nonconcave.
Therefore, to obtain a convex outer approximation of Φ, G(t) should be replaced by
a concave overestimator. Denoting such a relaxation by Ḡ (t), it follows that Φ̃ is a
convex relaxation for Φ. ��

From (7), it follows that the quality of the proposed relaxation depends on the
form of G and the tightness of Ḡ . For a given transforming function G, by definition,
concIG(t) ≤ Ḡ (t) for all t ∈ I. Thus, setting Ḡ (t) = concIG(t) provides the
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tightest relaxation in (7). Next, we investigate the criteria for choosing the transforming
function G.

Proposition 8 Let φ : C → R be G1-convex and G2-convex. Consider the following
convex outer approximations of the set Φ defined by (6):

1. Φ̃1 = {(x, t) ∈ C × I : G1(φ(x)) ≤ concIG1(t)},
2. Φ̃2 = {(x, t) ∈ C × I : G2(φ(x)) ≤ concIG2(t)}.

Let F(u) = G2(G
−1
1 (u)) be defined over the image of I under G1. Then,

(i) If F is concave, Φ̃2 ⊆ Φ̃1;
(ii) If F is convex, Φ̃1 ⊆ Φ̃2;

(iii) Otherwise, neither Φ̃1 nor Φ̃2 globally dominates the other.

Proof By definition, G2(t) = F(G1(t)). Since G1 and G2 are both increasing
over I, F is also increasing over the range of G1. Hence, Φ̃1 = {(x, t) ∈ C×I :
F(G1(φ(x))) ≤ F(conc G1(t))} or, equivalently, Φ̃1 = {(x, t) ∈ C×I : G2(φ(x)) ≤
F(conc G1(t))}. Further, Φ̃2 = {(x, t) ∈ C×I : G2(φ(x)) ≤ conc F(G1(t))}. Since
F is increasing, F(G1) ≤ F(conc G1). When F is concave, F(conc G1) is a concave
function. By definition, concI F(G1) is the tightest concave function that majorizes
F(G1) over I. It follows that conc F(G1) ≤ F(conc G1) and, as a result, Φ̃2 ⊆ Φ̃1.
Similarly, for Part (ii), G1(t) = F−1(G2(t)) and, since F−1 is a concave increasing
function over the range of G2, it can be shown that Φ̃1 ⊆ Φ̃2. Finally, it follows from
the first two parts that, if F is neither convex nor concave, then neither of the two
relaxations is globally dominant. ��
Remark 2 In Parts (i) and (ii) of Proposition 8, the set inclusion relations are often
strict. For example, if G1 and G2 are both convex, and F is concave, then concI F(G1)

is the affine underestimator of the concave function F(concG1). This implies that
Φ̃2 ⊂ Φ̃1.

Remark 3 Employing a similar line of arguments, for a G-concave function φ, the
conditions of Proposition 8 can be stated as: (i) if F is concave, Φ̃1 ⊆ Φ̃2, (ii) if F is
convex, Φ̃2 ⊆ Φ̃1, (iii) otherwise, neither Φ̃1 nor Φ̃2 globally dominates the other.

Using the result of Proposition 8 and the concept of least convexifying transforma-
tions introduced in Sect. 2, we now show that the tightest relaxation of the form (7)
has a well-defined mathematical description as given by the following corollary.

Corollary 4 For a G-convex function φ : C → R, the tightest relaxation of the
form (7) is obtained using G = G∗ and Ḡ = concIG∗.

Proof Assume the contrary and denote by G̃ the transforming function that yields
the tightest relaxation of the set Φ defined by (7). Let F = G̃(G∗−1). By Part (i)
of Proposition 8, it follows that F is concave. However, by Definition 2, if G∗ is
least convexifying for φ, then F is a convex function. Hence, G∗ provides the tightest
convex outer approximation of Φ. ��

By Proposition 1, if φ : C → R is G-convex and f is increasing over the range
of φ, then h(x) = f (φ(x)) is G̃-convex on C, where G̃ = G( f −1). Next, we show
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that, under certain assumptions, a recursive outer approximation of h(x) defined by
φ(x) ≤ u and f (u) ≤ t is equivalent to the direct convexification of h(x) ≤ t .
Therefore, in such cases, detecting G̃-convexity of the composite function h(x) is
not necessary for bounding, as this property is automatically exploited within the
factorable decomposition. In the following, we denote by Proj(x,t)Φ̃ the projection of

the set Φ̃ onto the space of the variables (x, t).

Proposition 9 Let φ : C → R be G-convex and let f be increasing over D ⊇ Iφ(C).
Define h(x) = f (φ(x)) and Φ = {(x, t) ∈ C×Ih(C) : h(x) ≤ t}. Consider the
following relaxations of the set Φ:

1. Φ̃1 =
{
(x, t) ∈ C×Ih(C) : G̃(h(x)) ≤ conc G̃(t)

}
,

2. Φ̃2 = {(x, u, t) ∈ C×Iφ(C)×Ih(C) : G(φ(x)) ≤ conc G(u), conv f (u) ≤ t
}
,

where G̃ = G( f −1). Then, Φ̃1 = Proj(x,t)Φ̃2 if one of the following conditions holds:

(i) f is convex on D;
(ii) f is concave on D and G is convex on D.

Otherwise, Φ̃1 ⊆ Proj(x,t)Φ̃2.

Proof Since f and G are both increasing over the range of φ, and G(u) = G̃( f (u)),
the set Φ̃1 can be equivalently written as:

Φ̃1 =
{
(x, t) ∈ C×Ih(C) : G(φ(x)) ≤ conc G( f −1(t))

}
.

Furthermore, since f is univariate and increasing over D, we have (conv f )−1 =
conc( f −1). Thus, we can project out u from Φ̃2 to obtain

Proj(x,t)Φ̃2 =
{
(x, t) ∈ C×Ih(C) : G(φ(x)) ≤ conc(G(conc f −1(t)))

}
.

Now, we consider three cases:

– If f −1 = conc( f −1), then Φ̃1 = Φ̃2. This condition holds if and only if f is
convex on the range of φ.

– If f is concave on D and G is convex on D, then both f −1 and G( f −1) are convex
on Ih(C). As a result, all corresponding concave envelopes are affine functions.
It is simple to show that aff(G( f −1)) = aff(G(aff( f −1))), where aff(·) denotes
the corresponding affine overestimator. This implies that Φ̃1 = Proj(x,t)Φ̃2.

– Suppose that neither (i) nor (ii) holds. By assumption, f is nonconvex. It follows
that G( f −1) ≤ G(conc( f −1)). By Corollary 2, G is a nonconcave function. Thus,
G(conc( f −1)) ≤ conc(G(conc( f −1))). Clearly, Ĝ = conc(G(conc( f −1))) is a
concave function. By definition of the concave envelope, conc(G( f )−1) ≤ Ĝ.
Hence, Φ̃1 ⊆ Proj(x,t)Φ̃2. ��

Remark 4 For a G-concave functionφ, conditions of Proposition 9 can be equivalently
stated as: if (i) f is concave on D or (ii) f is convex on D and G is concave on D,
then Φ̃1 = Proj(x,t)Φ̃2.
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From (7), it follows that the function φ̃G(x) := inf{t : (x, t) ∈ Φ̃} is a convex
underestimator for φ over C. Suppose that Ḡ (t) is increasing over I. Then, φ̃G(x)
can be equivalently written as φ̃G(x) = inf{t : (x, t) ∈ C×I, Ḡ −1(G(φ(x))) ≤ t}.
Consequently,

φ̃G(x) = Ḡ −1(G(φ(x))). (8)

Let δG : C → R denote the gap between φ(x) and φ̃G(x), i.e.,

δG(x) = φ(x)− φ̃G(x). (9)

Substituting for φ̃G(x), we obtain δG(x) = {t − Ḡ −1(G(t)) : t = φ(x), x ∈ C}. If
G(t) is convex over I = [t, t̄] and Ḡ (t) = concIG, then (8) simplifies to:

φ̃G(x) = (G(φ(x))− G(t)
) ( t̄ − t

G(t̄)− G(t)

)
+ G(t). (10)

Moreover, in this case δG is a concave function of t and is given by:

δG(t) = t −
(

t̄ − t

G(t̄)− G(t)

)
G(t)+

(
G(t)t̄ − G(t̄)t

G(t̄)− G(t)

)
. (11)

In the following sections, we employ the proposed relaxation scheme to convexify
several classes of generalized convex functions and characterize their gap functions.
For generalized concave functions, φ(x), we will construct concave overestimators,
denoted by φ̃G , with corresponding gap functions defined as:

δG(x) = φ̃G(x)− φ(x). (12)

The gap functions in (9) and (12) will be compared against similarly defined gap func-
tions δM (x) between φ(x) and under- and over-estimators obtained by an alternative
method M . We denote by δG

tot the total relaxation gap introduced by φ̃G :

δG
tot =

∫
C

δG(x).

Similarly, for a given method M , the total relaxation gap is defined as δM
tot = ∫C δM (x).

Furthermore, we will characterize the points at which these gap functions assume their
maximal values δG

max and δM
max. Finally, for a quantitative comparison of two alternative

convexification techniques M1 and M2, we compute the percentage gap reduction when
employing M2 instead of M1 as:

γ M2/M1(x) =
(
δM1(x)− δM2(x)

)/
δM1(x)× 100 %, (13)
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for all x ∈ C. Similarly, the percentage reduction in maximum gap is defined as:

γ M2/M1
max =

(
δM1

max − δM2
max

)/
δM1

max × 100 %, (14)

and the percentage reduction in total gap is as follows:

γ
M2/M1

tot =
(
δ

M1
tot − δ

M2
tot

)/
δ

M1
tot × 100 %. (15)

Remark 5 By relation (6), to construct a transformation relaxation Φ̃, lower and upper
bounds on the function φ should be provided. Clearly, the quality of these bounds
affects the sharpness of the resulting relaxation. Since, by assumption, G(φ) is a convex
function over C ⊂ R

n , a sharp lower bound on φ can be readily obtained by solving
a convex optimization problem. It is known that the maximum of a convex function
over a compact convex set C is attained over an extreme point of C (cf. Theorem I.1.
in [6]). In this paper, and in the context of spacial branch-and-bound in general, we
are interested in the case where the set C is a hyper-rectangle. It then follows that, to
compute a sharp upper bound onφ, it will suffice to evaluate this function at all vertices
of this rectangle. The latter operation can be carried out highly efficiently in practice,
where these intermediate functions rarely involve more than ten variables, even when
they appear in very large-scale high-dimensional global optimization problems.

4 Signomials

Throughout this section, we consider the signomial term φ = ∏i∈I xai
i , ai ∈ R\{0},

for all i ∈ I = {1, . . . , n}. Define the subsets I1 = {i ∈ I : 0 < ai < 1},
I2 = {i ∈ I : ai ≥ 1}, and I3 = {i ∈ I : ai < 0}. We consider the function φ
over the domain

C = {x ∈ R
n : xi > 0, ∀i ∈ I3, xi ≥ 0,∀i ∈ I\I3

}
. (16)

First, we identify conditions under which φ is convex (resp. concave) transformable
and derive its least convexifying (resp. concavifying) transformation. Subsequently,
we employ the method described in Sect. 3 to construct a concave overestimator for
φ and compare its tightness with a widely used conventional approach.

4.1 G-convexity and least convexifying transformations

First, we consider the case where the signomial term φ is convex transformable.

Proposition 10 Consider φ = ∏
i∈I xai

i , ai ∈ R\{0} over the set C defined by (16).
The function φ is G-convex if and only if ai < 0 for all i ∈ I\{ j} and

∑
i∈I\{ j} |ai | <

a j <
∑

i∈I\{ j} |ai | + 1. Moreover, a least convexifying transformation for φ is given
by

G∗(t) = t
1∑

i∈I ai . (17)
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Proof By Proposition 6, if φ is G-convex, its augmented Hessian given by:

H(i, j) =
{

ai (ai − 1 + ρaiφ)φ/x2
i , if i = j

ai a j (1 + ρφ)φ/(xi x j ), otherwise
, ∀i, j ∈ {1, . . . , n}, (18)

is positive semidefinite for every ρ(x) ≥ ρ0(x) for all x ∈ ri(C). Let Kkl denote the
index set of rows (columns) of H present in its lth principal minor of order k, where
l ∈ L = {1, . . . , (nk)}. By definition, H is positive semidefinite if and only if all of its
principal minors given by:

Dkl = (−1)k+1
∏

i∈Kkl

ai

x2
i

⎛
⎝(ρφ + 1)

∑
i∈Kkl

ai − 1

⎞
⎠φk, ∀k ∈ I, l ∈ L (19)

are nonnegative for all ρ ≥ ρ0. We have the following cases:

(i) ai < 0 for all i ∈ I . By (19), H is positive semidefinite when (ρφ +
1)
∑

i∈Kkl
ai ≤ 1 for all Kkl . By assumption,

∑
i∈Kkl

ai < 0 and φ > 0. Thus,
this condition holds for all ρ ≥ 0, implying that φ is convex.

(ii) ai > 0 for all i ∈ S ⊆ I . First, consider the case where |S| ≥ 2. Consider any
two principal minors Dkl and Dk′l ′ of H , with k and k′ denoting even and odd
numbers, respectively, such that Kk′l ′ ⊂ Kkl ⊆ S. By (19), Dkl is nonnegative
if ρ ≤ 1

φ
(1/
∑

i ai − 1) for all i ∈ Kkl , whereas Dk′l ′ is nonnegative if ρ ≥
1
φ
(1/
∑

i ai −1) for all i ∈ Kk′l ′ . Since, by construction
∑

i∈Kkl
ai >

∑
i∈Kk′l′ ai ,

it follows that no ρ meets these requirements. Next, consider the case where
|S| = 1. Let a j denote the positive exponent. By Part (i), if j /∈ Kkl , then
Dkl is nonnegative. Thus, consider any Dkl such that j ∈ Kkl . By (19), Dkl is
nonnegative when (ρφ+ 1)

∑
i ai ≥ 1, for all i ∈ Kkl . Obviously, this condition

holds only if
∑

i∈Kkl
ai > 0. Hence, H is positive semidefinite for all ρ such

that:

ρ ≥ 1

φ

(
1∑

i∈I ai
− 1

)
. (20)

If
∑

i∈I ai ≥ 1, then (20) holds for every ρ ≥ 0, and φ is convex. Hence, φ

is G-convex for 0 <
∑

i∈I ai < 1 with ρ0 = 1/φ
(

1∑
i∈I ai

− 1
)

. From (5), it

follows that:

d

dt
ln

(
dG∗(t)

dt

)
=
(

1∑
i∈I ai

− 1

)
1

t
,

It is then simple to verify that G∗ is given by (17). ��
We now address the cases where the signomial term φ is concave transformable.

Proposition 11 Consider φ = ∏
i∈I xai

i , ai ∈ R\{0} over the set C defined by (16).
The function φ is G-concave if and only if one of the following holds:
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(i) ai > 0 for all i ∈ I and
∑

i∈I ai > 1,
(ii) a j < 0 for some j ∈ I such that

∑
i∈I\{ j} ai < |a j |.

Moreover, a least concavifying transformation forφ is given by (17) when condition
(i) is met and by

G∗(t) = −t
1∑

i∈I ai , (21)

when condition (ii) is met.

Proof By Proposition 6, if φ is G-concave, then all kth order principal minors of its
augmented Hessian given by:

Dkl =(−1)k
∏

i∈Kkl

ai

x2
i

⎛
⎝(ρφ−1)

∑
i∈Kkl

ai +1

⎞
⎠φk, ∀k ∈ I, l ∈ L =

{
1, . . . ,

(
n

k

)}

(22)

are nonnegative if k is even, and are nonpositive otherwise, where the index set Kkl is
defined in the proof of Proposition 10. The following cases arise:

(i) ai > 0 for all i ∈ I . Then, H is negative semidefinite if and only if:

ρ ≥ 1

φ

(
1 − 1∑

i∈Kkl
ai

)
, ∀Kkl . (23)

If
∑

i∈I ai ≤ 1, then the above condition is satisfied for all ρ ≥ 0, implying φ is
concave. Let

∑
i∈I ai > 1. It follows that (23) holds for all ρ ≥ ρ0 with:

ρ0 = 1

φ

(
1 − 1∑

i∈I ai

)
. (24)

Substituting (24) in Eq. (5) and solving for G∗, we obtain (17).
(ii) ai < 0 for all i ∈ S ⊂ I . Using a similar argument as in part (ii) of Proposition 10,

it can be shown that, if |S| ≥ 2, then φ is not G-concave. Thus, suppose that
|S| = 1. Let a j denote the negative exponent. For any principal minor Dkl such
that j /∈ Kkl , by part (i), we conclude that condition (23) should hold. Thus,
let j ∈ Kkl . In this case, the product

∏
i∈Kkl

ai in (22) is negative. It follows
that

∑
i∈Kkl

ai < 0 for all Kkl containing the index j , which in turn implies∑
i∈I\{ j} ai < |a j |. Imposing this condition, it can be shown that the expressions

for ρ0 and G∗ are given by (24) and (21), respectively. Note that the minus sign
in (21) follows from the negativity of

∑
i∈I ai . ��

Necessary and sufficient conditions for pseudo-convexity (-concavity) of signomi-
als were derived by Schaible [24] using the basic definition of pseudoconvexity. Since
pseudoconvexity is a necessary condition for G-convexity, we could have examined
only instances satisfying those conditions. However, our proofs do not require knowl-
edge of these conditions and the characterization of G∗ follows naturally.
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4.2 Exploiting G-concavity for upper bounding signomials

Next, we employ Proposition 11 to develop a new relaxation scheme for upper bound-
ing signomials over a hyper-rectangle Hn in the nonnegative orthant. The factorable
scheme overestimates signomials by first introducing a new variable for each univariate
term xai

i , i ∈ I . Next, convex univariates are overestimated by their affine envelopes.
Finally, the resulting multilinear expression is outer-linearized using a recursive inter-
val arithmetic scheme (rAI) [32]. It is known that (see [21,29]), when restricted to
a box in the nonnegative orthant, the rAI scheme provides the concave envelope of
a multilinear term. Consequently, the choice of a particular ordering in the recursive
relaxation does not affect the quality of the overestimator; e.g., the following fac-
torable decompositions of w = x1x2x3 are equivalent: (i) t = x1x2, w = t x3, (ii)
t = x2x3, w = x1t , and (iii) w = x1x3, t = wx2. Nonetheless, it is important to
note that this result follows from the supermodularity of a multilinear term over the
vertices of a box in the nonnegative orthant [29]. Hence, a similar conclusion for the
convex envelope of a multilinear term is not valid unless lower bounds on all variables
are zero [21].

Denote by x i and x̄ i the lower and upper bounds on xi , i ∈ I , respectively. Intro-
duce auxiliary variables ηi ∈ [η

i
, η̄ i ], where η

i
= x ai

i , η̄ i = x̄ ai
i for all i ∈ I\I3 and

η
i
= x̄ ai

i , η̄ i = x ai
i for all i ∈ I3. A standard factorable relaxation φ̃S is as follows:

φ̃S = tn

ti = min

{
ti−1η i

+ t̄i−1ηi − t̄i−1η i
η̄ i ti−1 + ηi t i−1 − η̄ i t i−1

}
, ∀i ∈ I\{1}

ηi = xai
i , ∀i ∈ I1

ηi = x̄
ai
i −x

ai
i

x̄ i −x i
(xi − x i )+ x ai

i , ∀i ∈ I\I1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(25)

where t1 = η1, t i = ∏i
j=1 η j

and t̄i = ∏i
j=1 η̄ j for all i ∈ I . If the signomial

term is component-wise convex over a box, i.e., I1 = ∅, then it has a polyhedral
concave envelope. In [29], the authors show that a component-wise convex signomial
can be converted to a supermodular function by an invertible linear transformation (see
Example 3.22 in [29]). It is then simple to verify that the factorable scheme defined
by (25), provides the concave envelope of φ in this case. We will henceforth assume
that I1 
= ∅.

Now, suppose that φ is G-concave. Let ξ = ∑
i∈I ai and I = [φ , φ̄ ], where

φ = ∏
i∈I η i

and φ̄ = ∏
i∈I η̄ i . By Propositions 7 and 11, and relation (10), the

following is a concave overestimator for φ:

φ̃G =
(
φ

1
ξ − φ

1
ξ

)⎛⎝ φ̄ − φ

φ̄
1
ξ − φ

1
ξ

⎞
⎠+ φ . (26)

By Proposition 11, G∗(φ) is concave over the range of φ. Thus, by (12), the gap
between φ̃G and φ is a concave function of φ and its maximum value is given by:

123



A. Khajavirad et al.

δG
max = (ξ − 1)

ξ
ξ
ξ−1

⎛
⎝ φ̄ − φ

φ̄
1
ξ − φ

1
ξ

⎞
⎠

ξ
ξ−1

−
(
φ̄ φ
) 1
ξ

⎛
⎝ φ̄ 1− 1

ξ − φ
1− 1

ξ

φ̄
1
ξ − φ

1
ξ

⎞
⎠ . (27)

Next, we compare the relative tightness of the relaxations obtained by the factorable
and transformation approaches.

Proposition 12 Consider the G-concave signomial φ = ∏
i∈I xai

i with I1 
= ∅ over
a box Hn ⊂ C, where C is defined by (16). Then, φ̃S globally dominates φ̃G, if Part
(ii) of Proposition 11 is satisfied.

Proof To prove this result, we will show that the optimal value of the following
problem

max
x∈Hn

(
φ̃S − φ̃G

)
(28)

is zero, if Part (ii) of Proposition 11 is valid. Consider an optimal solution (x, η, t) of
the above problem. By (25), at this point we have

ti−1η i
+ t̄i−1ηi − t̄i−1η i

= η̄ i ti−1 + ηi t i−1 − η̄ i t i−1, ∀i ∈ I\{1}. (29)

Define t̃i = (ti − t i )/(t̄i − t i ) for all i ∈ I, x̃i = (xai
i − x ai

i )/(x̄
ai
i − x ai

i ) for all
i ∈ I1, x̃i = (xi − x i )/(x̄ i − x i ) for all i ∈ I2, and x̃i = (x̄ i − xi )/(x̄ i − x i )

for all i ∈ I3. From (29) it follows that t̃i−1 = x̃i and t̃i = t̃i−1, for all i ∈ I\{1}.
Letting λ = x̃i for some i ∈ I , yields φ̃S = (φ̄ −φ )λ+φ . Let a j denote the negative

exponent. Substituting for λ into φ̃G , we obtain φ̃G = (φ̄ − φ ) f̃ (λ) + φ , where

f̃ (λ) = ( f (λ)− φ 1/ξ )/(φ̄ 1/ξ − φ 1/ξ ), and

f (λ) =
⎧⎨
⎩(x̄ j − λΔx j

)a j
∏
i∈I1

(
η

i
+ λΔηi

)∏
i∈I2

(
x i + λΔxi

)ai

⎫⎬
⎭

1/ξ

,

where Δηi = η̄ i − η
i

and Δxi = x̄ i − x i , for all i ∈ I . Now, we show that f (λ) is
convex in λ. It is simple to check that the second derivative of f (λ) can be written as:

f ′′(λ) = f (λ)

ξ2

⎧⎪⎨
⎪⎩
⎛
⎝∑

I1

Δηi

η
i
+ λΔηi

+
∑

I2

aiΔxi

x i + λΔxi
− a jΔx j

x̄ j − λΔx j

⎞
⎠

2

−ξ
⎛
⎝∑

I1

Δη2
i

(η
i
+ λΔηi )2

+
∑

I2

aiΔx2
i

(x i + λΔxi )2
+ a jΔx2

j

(x̄ j − λΔx j )2

⎞
⎠
⎫⎬
⎭ .

(30)

The only negative expression in (30) is g = −ξa jΔx2
j /(x̄ j −Δx jλ)

2. Since ξ < 0 and

|ξ | < |a j |, if we replace g by g̃ = −(a jΔx j/(x̄ j −Δx jλ))
2, we obtain a lower bound
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for f ′′(λ). However, g̃ cancels out when expanding (30), which implies that f ′′(λ) ≥ 0.
Since ξ < 0, we have φ̄ 1/ξ ≤ f (λ) ≤ φ 1/ξ . It follows that f̃ (λ), λ ∈ [0, 1], is a

nonnegative concave function with f̃ (λ) = λ at λ = 0 and λ = 1. It follows that the
optimal value of (28) is zero. Hence, we have φ̃S ≤ φ̃G for all x ∈ Hn . ��

We will henceforth assume that ai > 0 for all i ∈ I and I1 
= ∅. Next, we analyze
the maximum gap between φ̃S and φ; i.e., the optimal value of the following problem:

max
x∈Hn

(
φ̃S − φ

)
. (31)

By (25), at any optimal point of the above problem, the equalities given by (29) are
valid. First, consider xk = x̄ k for k ∈ K ⊂ I . It follows that tk = tk−1η̄ k for all
k ∈ K . Substitute the latter expression for tk in (25) to compute tn and factor out the
constant term α = ∏

k∈K η̄ k . Define I ′ = I\K , and n′ = |I ′|. The maximum gap in
this case is equal to the maximum of the following problem:

max
x∈Hn′ α

(
ϕ̃S − ϕ

)
, (32)

where ϕ =∏i∈I ′ xai
i , and ϕ̃S denotes the corresponding factorable overestimator. As

we argue later, for our cases of interest, any optimal solution of this problem is a local
maximum of (31). Similarly, if xk = x k for k ∈ K ⊂ I , then the maximum gap is
equal to the maximum of (32) with α =∏k∈K η k

, and ϕ and ϕ̃S as defined before. For
now, suppose that the maximum of (31) is attained at an interior point. Using a similar
argument as in the proof of Proposition 12, it follows that, at a point of maximum gap,
x̃i = λ for all i ∈ I , where x̃i is defined in the proof of Proposition 12. Let βi = x i/x̄ i

for all i ∈ I . It follows that the maximum of (31) is attained at the optimal solution
of the following univariate concave maximization problem:

max
0≤λ≤1

(
1−
∏
i∈I

β
ai
i

)
λ+
∏
i∈I

β
ai
i −

∏
i∈I1

((
1−βai

i

)
λ+βai

i

)∏
i∈I2

((1−βi )λ+βi )
ai .

(33)

Proposition 13 Consider the G-concave signomialφ =∏i∈I xai
i over a box Hn ⊂ C,

where C is defined by (16). Suppose that ai > 0 for all i ∈ I,
∑

i∈I ai > 1, and I1 
= ∅.
Then, δG

max < δS
max if one of the following conditions is met:

(i) x i = 0 for all i ∈ I ;

(ii)
(

x i
x̄ i

)ai = x j
x̄ j

= β for all i ∈ I1 and for all j ∈ I2.

Proof Case (i). Define ξ ′ = |I1| +∑I2
ai . Letting βi = 0 for all i ∈ I in (33), we

obtain:

δS
max = ξ ′ − 1

ξ
′ ξ ′
ξ ′−1

φ̄ . (34)
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Consider again the case where xk = x̄ k for some k ∈ K ⊂ I . As argued earlier, the
maximum gap in this case is given by (34) provided that ξ ′ is computed over I ′ = I\K .
Since δS

max is an increasing function of ξ ′, the maximum gap for this case is strictly
less than the value given by (34) and therefore corresponds to a local maximum of
(31). Furthermore, if xk = 0 for some k ∈ I , then α in (32) as well as the maximum
gap go to zero. Letting φ = 0 in (26), we obtain:

δG
max = (ξ − 1)

ξ
ξ
ξ−1

φ̄ . (35)

By (34) and (35), δG
max < δS

max when ξ < ξ ′ or, equivalently,
∑

i∈I1
ai < |I1|. Since

ai < 1 for all i ∈ I1, this condition holds if I1 
= ∅.
Case (ii). Substituting βai

i = β j = β for all i ∈ I1 and j ∈ I2 in (33) yields:

max
0≤λ≤1

(
1 − βξ

′)
λ+ βξ

′ − ((1 − β)λ+ β)ξ
′
.

It is then simple to verify that, the maximum gap in this case is equal to

δS
max = φ̄

⎧⎪⎨
⎪⎩
(ξ ′ − 1)

ξ
′ ξ ′
ξ ′−1

(
1 − βξ

′

1 − β

) ξ ′
ξ ′−1

− β

(
1 − βξ

′−1

1 − β

)⎫⎪⎬
⎪⎭ . (36)

Now, assume xk = x̄ k for k ∈ K ⊂ I . It can be shown that δS
max in (36) is an increasing

function of ξ ′. Thus, the point x under consideration is a local maximum. A similar
conclusion is immediate when xk = x k, k ∈ K ⊂ I . It is simple to check that (36)
can be equivalently written as:

δS
max = (ξ ′ − 1)

ξ
′ ξ ′
ξ ′−1

⎛
⎝ φ̄ − φ

φ̄
1
ξ ′ − φ

1
ξ ′

⎞
⎠

ξ ′
ξ ′−1

−
(
φ̄ φ
) 1
ξ ′
⎛
⎝ φ̄ 1− 1

ξ ′ − φ
1− 1

ξ ′

φ̄
1
ξ ′ − φ

1
ξ ′

⎞
⎠ . (37)

From (27) and (37), it follows that, if I1 
= ∅, then δG
max < δS

max. ��
We conclude that the transformation method exploits the concavity of the uni-

variate terms xai
i , i ∈ I1 to provide a tighter overestimator of φ, whereas, in the

standard method, only the cardinality of the set of concave terms is accounted for. As
an example, consider φ = x0.5

1 x0.7
2 over [0, 1]2. The transformation and factorable

overestimators are compared in Fig. 1 at various cross sections. As can be seen, the
transformation overestimator does not globally dominate the factorable overestimator.
Namely, φ̃G is tighter in the interior, especially around the normalized center of the
domain (i.e., x̃1 = x̃2 = · · · = x̃n = 0.5), while φ̃S is tighter near the boundaries and
is exact at the boundaries. Thus, it is mostly advantageous to include both relaxations
in computational implementations.
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Fig. 1 Comparison of factorable and transformation overestimators for φ(x) = x0.5
1 x0.7

2 over [0, 1]2 at

various cross sections. The nonconcave function φ is shown in solid black, its factorable relaxation φ̃S in
dotted blue, and the proposed relaxation φ̃G in dashed red (color figure online)

In the following, we denote by φ̃B the point-wise minimum of the transformation
and factorable overestimators; i.e., φ̃B = min{φ̃G, φ̃S}. Maximum gap reductions,
γ

B/S
max , and total gap reductions, γ B/S

tot , as defined by (14) and (15), respectively, are
listed in Table 1 for a number of G-concave signomials with n = 2, 3 over different
domains. We have chosen different domain configurations to show that, while the
result of Proposition 13 is valid under certain restrictive assumptions on lower and
upper bounds, the proposed overestimator leads to similar gap reductions for the
general case, in practice. On average, combining the transformation and factorable
relaxations, reduces the maximum and total gaps of the factorable overestimator by
55 and 29 %, respectively. In all these examples, it turned out that δB

max = δG
max < δS

max,
and δB

tot < min{δG
tot, δ

S
tot}. The empirical results show that, while for signomials with

ξ/n � 1, we often have δG
tot � δS

tot, for signomials with larger exponents, the total gap
of the transformation method may become larger than the total gap of the factorable
method. We will revisit this issue later in this section. We should also remark that the

Table 1 Maximum gap reduction, γ B/S
max (%), and total gap reduction, γ B/S

tot (%), due to adding G-concavity
transformations to factorable relaxations for overestimating G-concave signomials

Exponents Domain of definition

[0, 1]2 [0.5, 4]2 [0.1, 2]×[1, 2] [0.1, 5]2 [0, 2]×[1, 5]
{0.4, 0.7} 86, 70 72, 63 79, 58 83, 66 79, 58

{0.3, 1.0} 62, 30 40, 14 54, 25 48, 19 52, 21

{0.6, 0.8} 51, 23 44, 17 25, 5 47, 20 32, 9

Exponents Domain of definition

[0, 1]3 [0.5, 4]3 [1, 5]2×[0, 2] [0, 5]×[1, 4]2 [0, 4]×[1, 2]×[0, 3]
{0.3, 0.4, 0.5} 83, 65 76, 52 65, 38 67, 35 76, 54

{0.2, 0.6, 0.7} 62, 27 48, 16 27, 5 42, 6 50, 17

{0.4, 0.5, 0.7} 55, 23 45, 13 24, 3 29, 3 40, 12
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maximum gap of the transformation method is not always smaller than the maximum
gap of the factorable method. For example, consider φ = (x1x2)

0.9 over [1, 2]×[3, 4].
Then, we have δS

max = 0.172 < δG
max = 0.184.

Now, consider the G-concave signomial φ = x0.5
1 x0.6

2 x0.7
3 over the unit hypercube.

The factorable overestimator of φ is given by

φ̃S = min
{

x0.5
1 , x0.6

2 , x0.7
3

}
,

with δS
max = 0.385 and δS

tot = 0.155. Employing the transformation method, we obtain
the following overestimator for φ:

φ̃G =
(

x0.5
1 x0.6

2 x0.7
3

)1/1.8
,

with δG
max = 0.213, and δG

tot = 0.178. As can be seen, while the transformation
method results in a 45 % reduction in the maximum relaxation gap, the total gap
increases by 15 %, as the factorable overestimator is much tighter near the boundaries.
This undesirable volume increase becomes more significant for signomials in higher
dimensions and/or with larger exponents. Next, consider an alternative relaxation
scheme which is a combination of factorable and transformation approaches. Denote
by t1 the concave overestimator of x0.5

1 x0.6
2 , obtained by the transformation method,

and let t2 = x0.7
3 . It follows that the concave envelope of t1t2 provides the following

overestimator for φ:

φ̃RT = min

{(
x0.5

1 x0.6
2

)1/1.1
, x0.7

3

}
,

with δRT
max = 0.267, and δRT

tot = 0.116. Thus, φ̃RT reduces the maximum and total
gaps of the factorable relaxation φ̃S by 31 and 25 %, respectively. Finally, letting
φ̃B = min{φ̃RT , φ̃S}, i.e.,

φ̃B = min

{(
x0.5

1 x0.6
2

)1/1.1
, x0.5

1 , x0.6
2 , x0.7

3

}
,

yields δB
max = δRT

max = 0.267, and δB
tot = 0.995 δRT

tot . With the goal of reducing both
maximum and total relaxation gaps, and benefiting from the transformation method to
overestimate signomials that are not concave transformable, we propose a recursive
transformation and relaxation (RT) scheme. Define the sets of subsets

S :=
⎧⎨
⎩Sk ⊆ I1 :

∑
i∈Sk

ai ≤ 1, Sk ∩ S j = ∅, ∀k, j

⎫⎬
⎭ , (38)
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and

T :=
⎧⎨
⎩T j ⊆ I1 :

∑
i∈T j

ai > 1, T j ∩ Tk = ∅, ∀k, j

⎫⎬
⎭ . (39)

In addition, assume that S∪T forms a partition of I1. Let ξ j =∑i∈T j
ai for all T j ∈ T ,

and let K = |S|, J = |T |, N = K + J + |I\I1|. Introduce tm ∈ [∏Sk
η

i
,
∏

Sk
η̄ i ]

for all Sk ∈ S, m = 1, . . . , K , tm ∈ [∏
T j
η

i
,
∏

T j
η̄ i
]

for all T j ∈ T , m =
K + 1, . . . , K + J , and tm ∈ [η

i
, η̄ i ] for all i ∈ I\I1, m = K + J + 1, . . . , N . We

define the RT overestimator of φ as follows:

φ̃RT =rN

rm =min

{
r̄ m−1tm + tmrm−1 − r̄ m−1tm
r m−1tm + t̄mrm−1 − r m−1 t̄m

}
, m = 2, . . . , N

tm =∏i∈Sk
xai

i , ∀Sk ∈ S, m = 1, . . . , K

tm =
(∏

i∈T j
x

ai
ξ j
i −t

1
ξ j
m

)(
t̄m−tm

t̄

1
ξ j

m −t

1
ξ j
m

)
+tm, ∀T j ∈T , m = K +1, . . . , K + J

tm = x̄
ai
i −x

ai
i

x̄ i −x i
(xi − x i )+ x ai

i , ∀i ∈ I\I1, m = K + J + 1, . . . , N ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

where r1 = t1, r m = ∏m
j=1 t j and r̄ m = ∏m

j=1 t̄ j for all m ∈ {1, . . . , N }. Each
G-concave signomial associated with a subset T j is overestimated via transformation
as defined by (26). Convex terms are relaxed by affine envelopes, and the resulting
multilinear is overestimated by its concave envelope. Obviously, for a given signomial
φ, there are various ways of defining subsets S and T . If

∑
i∈I1

ai ≤ 1, then T = ∅,
and we set S = {S1}, where S1 = I1. We will henceforth suppose that

∑
i∈I1

ai > 1.
Next, we demonstrate the effect of this partitioning on the maximum gap between
φ̃RT and φ, and define a variable grouping to obtain the least maximum gap.

Proposition 14 Let φ = ∏
i∈I xai

i , where ai > 0, xi ∈ [0, x̄ i ] for all i ∈ I , and∑
i∈I1

ai > 1. Consider an RT relaxation of φ as defined in (40). Let ξ̂ = K +∑
T j ∈T ξ j +∑i∈I2

ai . Then, the maximum gap between φ̃RT and φ is given by:

δRT
max = ξ̂ − 1

ξ̂
ξ̂

ξ̂−1

φ̄ . (41)

Proof Let x i = 0 for all i ∈ I in (40). By the second equation of (40), at any point
of maximum gap between φ̃RT and φ, we have r̃m−1 = tm/t̄m and r̃m = r̃m−1, for
all m = 2, . . . , N , where r̃m = rm/r̄ m . Using the last three of (40), tm can all be
eliminated and the above relations can be rewritten in terms of x̃i = xi/x̄ i for all
i ∈ I to yield
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∏
m∈Sk

x̃am
m =

⎛
⎝ ∏

m∈T j

x̃am
m

⎞
⎠

1/ξ̂ j

= x̃i , ∀Sk ∈ S, T j ∈ T , i ∈ I2.

Letting r̃N = λ, it follows that
∏

i∈Sk
x̃ai

i = λ, for all Sk ∈ S,
∏

i∈T j
x̃ai

i = λξ̂ j ,

for all T j ∈ T , and
∏

i∈I2
x̃ai

i = λ
∑

i∈I2
ai . Hence, at any point of maximum gap

φ = λξ̂ φ̄ , where ξ̂ is defined in the statement of the proposition. As a result, the
maximum gap between φ̃RT and φ can be found by solving the following univariate
concave maximization problem

max
λ∈[0,1] φ̄

(
λ− λξ̂

)
,

It is then simple to check that δRT
max is given by (41). ��

Under the conditions of Proposition 14, the least maximum gap is attained when
ξ̂ is minimum. The value of ξ̂ depends on the form of the sets S and T . Next, we
characterize a partitioning of the set A := {ai : i ∈ I1} that minimizes ξ̂ . We assume
|Sk | ≤ 2 for all Sk ∈ S and |T j | ≤ 2 for all T j ∈ T . We denote by Π a partitioning
of the set A with its corresponding ξ̂ denoted by ξ̂ (Π).

Proposition 15 Let A = {ai : i ∈ I1} and
∑

i∈I1
ai > 1. Without loss of generality,

suppose that the elements of A are in ascending order. Consider a partition of I1 =
S ∪ T as defined by (38) and (39), with |Sk | ≤ 2, ∀Sk ∈ S and |T j | ≤ 2, ∀ T j ∈ T .
Then, a partition of A that minimizes ξ̂ is given by:

Π∗ = {{a1, a2m}, {a2, a2m−1}, . . . , {am, am+1}} , (42)

if |A| = 2m (even), and by Π∗ ∪ {a2m+1}, if |A| = 2m + 1 (odd).

Proof First, we address the case where |A| = 2m. Consider a partition Π =
{d1, . . . , dm} of the set A, where di = {a j , ak} for some j, k ∈ I1 and i = 1, . . . ,m.
We are interested in finding partition improving strategies, i.e., given di1 = {a j1 , ak1}
and di2 = {a j2 , ak2} in Π , we are looking for exchanges that result in new sub-
sets d ′

i1
= {a j1, ak2} and d ′

i2
= {a j2 , ak1} that provide a partition Π ′ of A such

that ξ̂ (Π ′) ≤ ξ̂ (Π). It is simple to show that, if di1 , di2 ∈ S or di1 , di2 ∈ T ,
then ξ̂ (Π ′) ≥ ξ̂ (Π). Let di1 , di2 ∈ S. Two cases arise: (i) if d ′

i1
, d ′

i2
∈ S, then

ξ̂ (Π) = ξ̂ (Π ′); (ii) if d ′
i1

∈ T and d ′
i2

∈ S, then ξ̂ (Π ′) > ξ̂(Π). A similar conclusion
is immediate, if di1 , di2 ∈ T . Thus, without loss of generality, suppose that di1 ∈ S
and di2 ∈ T . It can be shown that an exchange is improving, if and only if one of the
following holds:

1. d ′
i1
, d ′

i2
∈ S;

2. d ′
i1

∈ S, d ′
i2

∈ T such that ak1 ≤ ak2 ;
3. d ′

i1
, d ′

i2
∈ T .
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We claim that, given any partition Π of A and Π 
= Π∗, it is possible to construct
Π∗ fromΠ , through a series of improving exchanges. By (42), the partitionΠ∗ can be
uniquely characterized by the following inclusion property: given any di1 , di2 ∈ Π∗,
if a j1 ≤ a j2 , then ak2 ≤ ak1 . It follows that for any partition Π 
= Π∗, there exists
some di1 , di2 ∈ Π such that a j1 ≤ a j2 and ak1 < ak2 . Now apply the exchange
d ′

i1
= {a j1 , ak2} and d ′

i2
= {a j2 , ak1}, which satisfies the inclusion property. We show

that such an exchange is always improving. First, suppose that di1 , di2 ∈ S (resp.
di1 , di2 ∈ T ); it follows that d ′

i1
, d ′

i2
∈ S (resp. d ′

i1
, d ′

i2
∈ T ), i.e., the value of ξ̂ (Π)

remains unchanged. Without loss of generality, let di1 ∈ S and di2 ∈ T . The following
cases arise:

(i) d ′
i1
, d ′

i2
∈ S (resp. d ′

i1
, d ′

i2
∈ T ). By Case 1 (resp. Case 3) above, this exchange

is always improving.
(ii) d ′

i1
∈ S, d ′

i2
∈ T . By Case 2 above, this exchange is improving provided that

ak1 ≤ ak2 , which is satisfied by assumption.

After updating Π by replacing di1 , di2 with d ′
i1
, d ′

i2
, we apply a similar exchange

to any di1 , di2 ∈ Π that does not satisfy the inclusion property. By employ-
ing this procedure recursively, we construct the partition Π∗ from any partition
Π 
= Π∗, through a set of exchanges all of which are improving. Consequently,Π∗ is
optimal.

Now, we prove the result for the case where |A| = 2m + 1. We claim that Π̃ =
Π∗ ∪ {a2m+1} is optimal. Let Π ′ = Π̂ ∪ {ak}, where Π̂ is obtained by replacing
di = {a j , ak} ∈ Π∗ with d ′

i = {a j , a2m+1} such that ak < a2m+1, for some k ∈
{1, . . . ,m}. We show that ξ̂ (Π̃) ≤ ξ̂ (Π ′). To calculate ξ̂ (Π ′), consider the following
cases:

(i) di ∈ S. If d ′
i ∈ S, then ξ̂ (Π̃) = ξ̂ (Π ′). Otherwise, ξ̂ (Π ′) = ξ̂ (Π̃) + a j +

a2m+1 − 1. It follows that ξ̂ (Π̃) < ξ̂(Π ′).
(ii) di ∈ T . In this case we have ξ̂ (Π ′) = ξ̂ (Π̃) − ak + a2m+1, which implies

ξ̂ (Π̃) < ξ̂(Π ′).

Thus, Π̃ = Π∗ ∪ {a2m+1} is optimal. ��

Proposition 14 requires nonnegative exponents and zero lower bounds for all vari-
ables. Via numerical examples, we now demonstrate that similar gap reductions are
observed for the general case. Let φ̃B = min{φ̃S, φ̃RT }. Again, as defined in (15)
(resp. (14)), denote by γ RT/S

tot (resp. γ RT/S
max ) and γ B/S

tot (resp. γ B/S
max ), the percentage

reduction of the total gap (resp. maximum gap) when employing φ̃RT and φ̃B instead
of φ̃S , respectively. The maximum and total gap reductions for a number of signomi-
als with n ∈ {3, 4, 5} are provided in Table 2. Since, for all cases it turned out that
γ

RT/S
max = γ

B/S
max , we have listed this number as γmax in Table 2. As can be seen, replac-

ing the factorable relaxation by the RT method based on the partitioning outlined in
Proposition 15 results in average reductions of 28 and 18 % of the maximum andtotal
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Table 2 Maximum (γmax) and total (γ M/S
tot ) gap reductions for overestimating signomials. Two cases

are presented. In the first case (M = RT ), a factorable relaxation scheme is replaced by the proposed
relaxations. In the second case (M = B), the two relaxations are combined

Exponents Domain γmax (%) γ
RT/S

tot (%) γ
B/S

tot (%)

{−0.5, 0.5, 0.6} [0.1, 1]×[0, 1]2 24 21 22

[1, 2]×[0.5, 3]2 31 24 27

[0.5, 4]3 11 9 11

[1, 5]×[0, 2]2 27 28 29

[0.5, 3]×[0, 2]×[1, 4] 37 9 11

{0.4, 0.7, 0.8} [0, 1]3 31 23 24

[0.5, 4]3 30 13 15

[0.1, 5]2×[0, 2] 24 16 18

[0, 5]×[1, 4]2 31 13 18

[0, 4]×[0.5, 3]×[1, 2] 47 25 30

{0.6, 0.6, 1.2} [0, 1]3 23 12 15

[0.5, 4]2×[2, 3] 37 11 20

[0, 4]2×[1, 3] 34 18 23

[0.1, 5]2×[0, 1] 19 7 11

[0, 2]×[0.1, 4]×[0.5, 1] 38 15 23

{0.3, 0.4, 0.4, 0.8} [0, 1]4 44 33 34

[0.5, 4]4 31 16 24

[0, 4]2×[0.1, 3]2 40 23 28

[0, 1]3×[0.5, 2] 40 19 29

[0, 5]×[0, 2]2×[0, 5] 44 33 34

{0.4, 0.5, 0.6, 0.7} [0, 1]4 40 30 31

[0.5, 4]4 30 11 22

[0, 4]2×[0.1, 3]2 37 20 26

[0, 1]3×[0.5, 2] 35 15 24

[0, 5]×[0, 2]2×[0, 5] 40 30 32

{−0.5, 0.4, 0.7, 1.0} [1, 2]×[0, 4]2×[0.5, 2] 31 21 22

[1, 2]×[0, 3]2×[1, 2] 39 26 27

[0.5, 1]×[0, 1]3 25 16 17

[0.1, 1]×[0, 1]2×[0.5, 1] 17 14 15

[0.1, 2]×[0, 4]2×[0, 2] 9 9 10

{0.3, 0.6, 0.6, 0.7, 1.5} [0, 1]5 20 16 18

[0, 3]4×[1, 2] 29 21 23

[0, 5]×[0.5, 3]2×[0, 5]×[0, 1] 18 17 19

[0, 2]2×[0.1, 3]2×[0.5, 1.5] 17 13 17

[0.5, 1]×[0, 2]3×[0.5, 1] 7 12 15
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Table 2 continued

Exponents Domain γmax (%) γ
RT/S

tot (%) γ
B/S

tot (%)

{−1.0, 0.4, 0.5, 0.6, 0.8} [0.5, 1]×[0, 1]4 27 17 21

[1, 2]×[0, 4]3×[0.1, 2] 26 15 20

[1, 3]×[0, 3]×[0.5, 5]2×[0, 3] 18 22 31

[1, 4]×[0, 5]4 18 14 17

[0.1, 2]×[0, 2]2×[0.5, 4]2 3 10 12

relaxation gaps, respectively. An additional 4 % reduction of the average total gap is
obtained by combining both factorable and RT relaxations.

5 Products and ratios of convex and/or concave functions

In this section, we generalize the results of Propositions 10 and 11 using the compo-
sition rules developed in Sect. 2. This generalization will enable us to provide tight
relaxations for a large class of convex-transformable functions, including products and
ratios of convex and/or concave functions. Such functional forms appear frequently as
component functions of nonconvex factorable expressions. To demonstrate the bene-
fits of the new relaxation over the factorable scheme, we provide numerical examples
consisting of univariate and bivariate G-convex functions with the following form:

φ(x) = ( f (x))a(g(x))b, x ∈ H, a, b ∈ R,

where H denotes a box and f (x) and g(x) are convex and/or concave functions over H.
In all examples, the lower and upper bounds on f (x) and g(x) utilized in the factorable
scheme, as well as the lower and upper bounds on φ(x) utilized in the transformation
scheme are sharp (see Remark 5). Clearly, a factorable decomposition of a nonconvex
function can be obtained in various ways, and the quality of resulting relaxation is
affected by the decomposition scheme, in general. In the sequel, we compare the G-
convexity relaxation against the tightest possible factorable relaxation. The following
lemma provides a simple criterion for determining the tightest factorable relaxation
for a function of the form φ = f (x)/g(x) (see [31] for details).

Lemma 1 Consider φ = f (x)/g(x), x ∈ H ⊂ R
n, g(x) > 0. Let f l(x)

(resp. gl(x)) and f u(x) (resp. gu(x)) denote a convex underestimator and a con-
cave overestimator of f (x) (resp. g(x)) over H, and denote by f and f̄ (resp.
g and ḡ ) a lower and an upper bound on f (x) (resp. g(x)) over H. Define

φ = min{ f /g , f /ḡ }, φ̄ = max{ f̄ /g , f̄ /ḡ }. Introduce the intermediate con-
straints t1 = f (x), t2 = g(x), t3 = 1/t2, and denote by h(·) the affine overestimator
of the convex term 1/t2 over the range of t2. Consider the following convex outer
approximations of these intermediates:

(i) f l(x)− t1 ≤ 0, t1 − f u(x) ≤ 0, x ∈ H, f ≤ t1 ≤ f̄ ;

(ii) gl(x)− t2 ≤ 0, t2 − gu(x) ≤ 0, x ∈ H, g ≤ t2 ≤ ḡ ;
(iii) 1/t2 − t3 ≤ 0, t3 − h(t2) ≤ 0, g ≤ t2 ≤ ḡ , 1/ḡ ≤ t3 ≤ 1/g .
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We have the following cases:

I. Consider the following convex underestimators of φ:
1. φ̃1(x) = inf y{(x, y) : conv(t1/t2) ≤ y, inequalities (i), (i i)};
2. φ̃2(x) = inf y{(x, y) : t1 ≤ conc(t2 y), φ ≤ y ≤ φ̄ , inequalities (i), (i i)};
3. φ̃3(x) = inf y{(x, y) : conv(t1t3) ≤ y, inequalities (i), (i i i)}.

If f (x) ≤ 0 for all x ∈ H, then the above underestimators are equivalent. Other-
wise, φ̃1(x) provides the tightest relaxation.

II. Consider the following concave overestimators of φ:
1. φ̃1(x) = supy{(x, y) : y ≤ conc(t1/t2), inequalities (i), (i i)};
2. φ̃2(x) = supy{(x, y) : conv(y t2) ≤ t1, φ ≤ y ≤ φ̄ , inequalities (i), (i i)};
3. φ̃3(x) = supy{(x, y) : y ≤ conc(t1t3), inequalities (i), (i i i)}.

If f (x) ≥ 0 for all x ∈ H, then the above overestimators are equivalent. Otherwise,
φ̃1 provides the tightest relaxation.

We now present the main results of this section. In Propositions 16 and 17, we
present new overestimators for concave transformable products and ratios. Subse-
quently, we consider convex-transformable products in Proposition 18.

Proposition 16 Consider φ = ∏
i∈I φ

ai
i over a box, where ai > 0 for all i ∈ I and∑

i∈I ai > 1. Let φi be concave and nonnegative for all i ∈ I . Then, φ is G-concave
with G(t) = t1/ξ , where ξ =∑i∈I ai . Furthermore, φ̃G is given by:

φ̃G =
(
φ

1
ξ − φ

1
ξ

)⎛⎝ φ̄ − φ

φ̄
1
ξ − φ

1
ξ

⎞
⎠+ φ , (43)

where φ and φ̄ denote a lower bound and an upper bound on φ, respectively.

Proof Follows directly from Propositions 2 and 11. ��
Remark 6 For a given function φ and cardinality of I in Proposition 16, there are infi-
nitely many possible representations in terms of φi and ai . However, by Proposition 8,
the tightness of the transformation relaxation is determined by the value of ξ alone.
To obtain the tightest relaxation, each ai should be as small as possible, provided that
the concavity of the corresponding φi is preserved. For example, consider the function
ψ = (∑i∈I x1/p

i

)p
, p > 1, xi ≥ 0 for all i ∈ I . Let φak

k = ψ for some k ∈ I . Then,
the condition of Proposition 16 holds for any ak ∈ [1, p]. However, letting ak = 1
and φk = ψ provides the tightest relaxation.

Example 1 Consider φ(x) = (x2 −1)
(

log(x + 2)
)2
, x ∈ [−1, 1]. To construct a fac-

torable relaxation, let t1 = x2 − 1 and t2 = log(x + 2). Denote by t3 the affine overes-
timator of t2

2 over the range of t2. After convexifying t1t3 using bilinear envelopes [1],
we obtain the following underestimator for φ:

φ̃S = max
{
(log 3)2(x2 − 1), − log 3 log(x + 2)

}
.
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Fig. 2 Comparison of the
factorable and transformation
relaxations for
φ = (x2 − 1)(log(x + 2))2,
x ∈ [−1, 1] in Example 1. The
nonconvex function φ is shown
in solid black, its factorable
underestimator φ̃S in dotted
blue, and the proposed
underestimator φ̃G in dashed
red (color figure online)

1.0 0.5 0.0 0.5 1.0
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By Proposition 16, the function −φ is G-concave with G(t) = t1/3. Thus, an alterna-
tive underestimator of φ is given by:

φ̃G = −0.746
(
(1 − x2)(log(x + 2))2

)1/3
.

The factorable and transformation relaxations are compared in Fig. 2. While neither
of the underestimators is globally dominant, φ̃G reduces the total relaxation gap of φ̃S

by 43 %. Clearly, a tighter relaxation will be obtained by letting φ̃B = max{φ̃S, φ̃G}.

Example 2 Consider φ =
√

1 − x2
1 (x1 + x2)

4, x1 ∈ [−0.2, 0.9], x2 ∈ [0.5, 1.5]. We

would like to construct a concave overestimator for φ. Let t1 =
√

1 − x2
1 , t2 = x1+x2

and denote by t3 the affine overestimator of t4
2 over the range of t2. Relaxing the bilinear

term t1t3 using its concave envelope [1], we obtain:

φ̃S = min
{

0.0081
√

1 − x2
1 + 15.80(x1 + x2)− 4.74,

33.18
√

1 − x2
1 + 6.89(x1 + x2)− 16.52

}
.

By Proposition 16, φ is G-concave with G(t) = t2/9. Hence, a transformation over-
estimator of φ is given by:

φ̃G = 11.04

(√
1 − x2

1 (x1 + x2)
4
)2/9

− 3.76.

The two relaxation are compared in Fig. 3b at x2 = 1.0, and the percentage gap
reduction when using φ̃G instead of φ̃S , as defined in (13), is depicted in Fig. 3a. In
this example, φ̃G reduces the total gap of the factorable relaxation by 46 %.

Proposition 17 Consider φ = ∏
i∈I φ

ai
i over a box, where a j < 0 for some j ∈ I

and
∑

i∈I\{ j} ai < |a j |. Let φi be positive and concave for all i ∈ I\{ j}, and let φ j

be positive and convex. Then, φ is G-concave with G(t) = −t1/ξ , ξ =∑i∈I ai , and
its associated overestimator φ̃G is given by (43).

Proof Follows directly from Propositions 2 and 11. ��
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Fig. 3 Comparison of the factorable and transformation relaxations for φ =
√

1 − x2
1 (x1 + x2)

4

x1 ∈ [−0.2, 0.9], x2 ∈ [0.5, 1.5] in Example 2. In b, the nonconcave function φ is shown in solid black, its
factorable overestimator φ̃S in dotted blue, and the proposed overestimator φ̃G in dashed red. a γG/S(%).
b x2 = 1.0 (color figure online)

Remark 7 As a special case of Proposition 17, namely, when φ is a ratio of a nonneg-
ative concave function over a positive convex function, the above transformation has
been applied to convert a class of fractional programs to concave programs [25].

Remark 8 Proposition 17 requires the value of the negative exponent a j to be finite.
For example, consider the G-concave function φ = √

x exp (−x). Since exp(ax) is
convex for all a < 0, Proposition 17 cannot be used for overestimating φ. However,
as we detail in the next section, setting G(t) = log t provides a tight overestimator for
φ in this case.

Proposition 18 Consider φ = ∏
i∈I φ

ai
i over a box, where ai < 0 for all i ∈ I\{ j}

and
∑

i∈I\{ j} |ai | < a j <
∑

i∈I\{ j} |ai | + 1. Let φi be positive and concave for
all i ∈ I\{ j}, and let φ j be nonnegative and convex. Then, φ is G-convex with
G(t) = t1/ξ , ξ =∑i∈I ai , and (43) provides an underestimator for it.

Proof Follows directly from Propositions 2 and 10. ��
Remark 9 Using a similar argument as in Remark 6, it is simple to show that, for a
given function φ and cardinality of I , the tightest relaxation in Proposition 17 (resp.
Proposition 18) is obtained by setting a j and ai , i ∈ I\{ j} to the smallest (resp. largest)
possible values while preserving convexity of φ j and concavity of φi , i ∈ I\{ j}.
Example 3 Consider φ(x) = log(x + 1)/(x4 + x2 + 1), x ∈ [0.1, 4]. To construct a
concave overestimator of φ using a standard factorable method, let t1 = log(x + 1)
and t2 = (x4 +x2 +1). Employing the concave envelope of the fractional term [30,31]
to overestimate t1/t2, we obtain:

φ̃S = 10−2 min
{

0.37 log(x + 1)− 0.58(x4 + x2)+ 158.75,

100 log(x + 1)− 0.035(x4 + x2)
}
.
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Fig. 4 Comparison of the
factorable and transformation
relaxations for φ = log(x +
1)/(x4 + x2 + 1), x ∈ [0.1, 4]
in Example 3. The nonconcave
function φ is shown in solid
black, its factorable
overestimator φ̃S in dotted blue,
and the proposed overestimator
φ̃G in dashed red (color figure
online)
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By Proposition 17, φ is G-concave with G(t) = −t−1/3. Thus, we have the following
transformation overestimator for φ:

φ̃G = 0.427 − 0.076
(

log(x + 1)/(x4 + x2 + 1)
)−1/3

The two relaxations are depicted in Fig. 4. Clearly, the transformation method provides
a significantly tighter relaxation and results in a 86 % reduction in the total gap in
comparison to the factorable overestimator.

Example 4 Consider φ = 1/(1 + x2
1 + 3x2

2 ), over [−4, 4]2. Letting t1 = 1+x2
1 +3x2

2
and overestimating the convex term t2 = 1/t1 using its affine envelope, we obtain the
following concave relaxation of φ:

φ̃S = 1 − 0.015
(

x2
1 + 3x2

2

)
.

By Proposition 17, φ is G-concave with G(t) = −t−1/2. Hence, φ̃G is given by:

φ̃G = 1.14 − 0.14
√

1 + x2
1 + 3x2

2 .

The two relaxations are compared in Fig. 5. The transformation relaxation dominates
the factorable approach with δG/S

tot = 27 %.

6 Log-concave functions

Another important class of concave-transformable functions are log-concave functions
[19]. A function φ : C → R+ is logarithmically concave (log-concave) if logφ is
concave over C. It is simple to check that φ = ∏

i∈I φ
ai
i , where ai > 0 and φi is

positive and concave for all i ∈ I is log-concave and can be overestimated after
a logarithmic transformation. However, by Proposition 8, the transforming function
defined in Proposition 16 dominates the log function. Thus, in this section, we are
considering classes of log-concave functions that are not concave transformable by
means of the transformations of the previous section.
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Fig. 5 Comparison of the factorable and transformation relaxations for φ = 1/(1 + x2
1 + 3x2

2 ), over

[−4, 4]2 in Example 4. In b, the nonconcave function φ is shown in solid black, its factorable overestimator
φ̃S in dotted blue, and the proposed overestimator φ̃G in dashed red. a γG/S(%), b x1 = 0 (color figure
online)

Proposition 19 Consider the function

φ = f (x)a exp g0(x)

1 +∑i∈I exp gi (x)
, a > 0

over a convex set C ⊂ R
n. Let f (x) be concave and positive, g0(x) be concave, and

gi (x), i ∈ I be convex over C. Then, φ is log-concave. Further, let [φ , φ̄ ] ⊇ Iφ(C).
Then, a concave overestimator of φ over C is given by:

φ̃G =
(logφ − logφ )

(
φ̄ − φ

)
log
(
φ̄ /φ

) + φ . (44)

Proof Taking the log of φ, we obtain logφ = a log f (x) + g0(x) − log(1 +∑
i∈I exp gi (x)). The log-sum-exp function is convex and increasing. Thus, its com-

position with convex functions gi , i ∈ I is convex as well. It follows that logφ is
concave. Letting G(t) = log t in (8), yields (44). ��

Several important instances of log-concave functions are derived from the function
φ introduced in Proposition 19. As an example, consider I = ∅, for which φ =
f (x)a exp g(x). As another example, consider f (x) = 1, g0(x) = 1, and g(x) = x ,
which yields φ = 1/(1+exp x). Next, we examine some of these functional forms and
compare the relaxation given by Proposition 19 with a standard factorable approach.
As in Sect. 5, the lower and upper bounds on convex/concave functions employed in
the factorable relaxation, as well as the bounds on log-concave functions employed in
the transformation relaxation are sharp.

Example 5 Consider the sigmoidal function φ = 1/(1 + exp(−x)), x ∈ [−6, 6].
Letting t = exp(−x) and overestimating the convex term 1/(1 + t) using its affine
envelope, we obtain the following factorable overestimator of φ:

123



Convex transformability in global optimization

Fig. 6 Comparison of the
factorable and transformation
overestimators for φ =
1/(1 + exp(−x)), x ∈ [−6, 6]
in Example 5. The nonconcave
function φ is shown in solid
black, its factorable
overestimator φ̃S in dotted blue,
and the proposed overestimator
φ̃G in dashed red (color figure
online)
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φ̃S = 0.9975 − 0.0025 exp(−x).

Clearly, the sigmoidal function is log-concave. Thus, an alternative overestimator for
φ can be obtained from (44):

φ̃G = 0.98 − 0.166 log (1 + exp(−x)) .

The two overestimators are compared in Fig. 6. The transformation overestimator
is strongly dominant and results in a 50 % reduction in the total relaxation gap in
comparison to the factorable overestimator.

Example 6 Consider φ(x) = x2
1 exp(x2 − x1), x1 ∈ [0.1, 5], x2 ∈ [−1, 1]. Let t1 =

x2−x1 and denote by t2 and t3 the affine overestimators of x2
1 and exp(t1), respectively.

Utilizing bilinear envelopes [1] to overestimate t2t3, yields:

φ̃S = min{12.54x1 + 0.0036x2 − 1.23, −8.89x1 + 8.90x2 + 53.41}.

Exploiting the log-concavity of φ, we obtain the following overestimator for φ:

φ̃G = 0.62 + 0.13(2 log x1 − x1 + x2).

The two overestimators are depicted in Fig. 7. The proposed overestimator is signif-
icantly tighter than the factorable relaxation, and results in 99.72 % reduction in the
total gap.

7 Integration within the factorable framework and effect on branch-and-bound

In this section, we utilize convex transformability in the construction of a convex relax-
ation for a general nonconvex factorable function defined over a convex set. As in the
standard factorable approach, a convex relaxation is constructed by recursively decom-
posing the nonconvex function up to the level that all intermediate expressions can
be bounded. We depart from the standard approach in that we also outer-approximate
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Fig. 7 Comparison of the factorable and transformation overestimators for φ(x) = x2
1 exp(x2 − x1),

x1 ∈ [0.1, 5], x2 ∈ [−1, 1] in Example 6. In b, the nonconcave function φ is shown in solid black, its
factorable overestimator φ̃S in dotted blue, and the proposed overestimator φ̃G in dashed red. a γG/S(%).
b x2 = 0 (color figure online)

some intermediate expressions after a convex or concave transformation. Via exam-
ples, we demonstrate that incorporation of the functional transformations introduced in
previous sections into the standard factorable framework leads to stronger relaxations
and enhances the performance of a global solver.

Example 7 Consider

φ(x) = (x + 3)

(x2 + x + 1)2
−
√

6 − x − x2(0.4x + 1)3/2, x ∈ [−2, 1.8].

This function has two local minima at x = −1.676 and x = 1.456, and one local
maximum at x = −0.481 (see Fig. 8). A standard factorable decomposition of φ is as
follows:

t1 = x + 3, t2 = (x2 + x + 1)
2
, t3 = t1/t2,

t4 =
√

6 − x2 − x, t5 = (0.4x + 1)3/2, t6 = t4t5,

φ = t3 − t6.

All convex and concave univariate terms are over- and under-estimated, respectively,
by their affine envelopes. Bilinear and fractional terms are replaced by their convex
and concave envelopes [1,30,31]. We denote the resulting convex set by φ̃S . By Propo-
sitions 16 and 17, φ is the difference of two G-concave functions. Thus, we have the
following alternative decomposition:

t ′1 = (x + 3)
/
(x2 + x + 1)

2
,

t ′2 =
√

6 − x2 − x(0.4x + 1)3/2,

φ = t ′1 − t ′2.
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Fig. 8 Comparison of the
standard and integrated
factorable relaxations of
φ = (x + 3)/(x2 + x + 1)2 −√

6 − x − x2(0.4x + 1)1.5,
x ∈ [−2, 1.8] in Example 7. The
nonconvex function φ is shown
in solid black, a standard
relaxation φ̃S in dotted blue, and
the proposed relaxation φ̃G in
dashed red (color figure online)
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Propositions 16 and 17 provide overestimators for t ′1 and t ′2. We replace the overes-
timators of t3 and t6 in the standard relaxation by the overestimators of t ′1 and t ′2,
respectively, and denote the resulting integrated relaxation by φ̃G . The standard and
integrated relaxations of φ are compared in Fig. 8. As can be seen, exploiting convex
transformability of the component functions leads to a tighter relaxation of the overall
nonconvex expression. An even tighter outer approximation is obtained by combining
both relaxations.

Example 8 Consider the following optimization problem:

(P) max
0.6 exp(−5x1)(x1 + 1.5)

(1 + exp(−5x1)+ exp(−4x2))
+ 0.4 exp(−4x2)(x2 + 2)

(1 + exp(−3x1)+ exp(−4x2))

s.t. −1 ≤ x1 ≤ 2

−1 ≤ x2 ≤ 2

The objective function of P, denoted by φ, has a local maximum at (x1, x2) =
(2.0,−0.419) with φ = 0.5325, and attains its global maximum at (x1, x2) =
(−0.4,−0.329) with φ = 0.7124. The following shows the factorable decomposi-
tion of P that is constructed by BARON [22,33]:

t1 = exp(−5x1), t2 = x1 + 1.5, t3 = t1t2, t4 = exp(−4x2),

t5 = 1 + t1 + t4, t6 = t3/t5, t7 = x2 + 2, t8 = t4t7,
t9 = exp(−3x1), t10 = 1 + t4 + t9, t11 = t8/t10,

φ = 0.6 t6 + 0.4 t11.

⎫⎪⎪⎬
⎪⎪⎭ (SR)

By Proposition 19, the objective function of P is the sum of two log-concave func-
tions. Thus, we have the following alternative decomposition for P:

t1 = exp(−5x1)(x1 + 1.5)/ (1 + exp(−5x1)+ exp(−4x2)),

t2 = exp(−4x2)(x2 + 2)/ (1 + exp(−3x1)+ exp(−4x2)),

φ = 0.6 t1 + 0.4 t2.

⎫⎬
⎭ (GR)
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Table 3 Reduction in the number of nodes and relative gap by using G-convexity relaxations in Example 8

Standard relaxation (SR) New relaxation (SR + GR)

Nt UB δrel (%) Nt UB δrel (%)

1 199.3300 99.64 1 1.0537 32.39

10 26.9659 97.36 3 1.0423 31.66

20 6.4919 89.03 7 0.8979 20.66

30 4.2242 83.14 9 0.8617 17.33

40 3.1605 77.46 11 0.7915 10.00

50 2.0880 65.88

60 1.7490 59.27

70 1.4626 51.29

80 1.2236 41.78

90 1.0543 32.43

99 0.7915 10.00

In this table, the progress of the branch-and-bound search is shown as Nt , the number of nodes solved by
the algorithm, increases. UB is an upper bound on the global maximum, and δrel denotes the relative gap
between lower (LB) and upper bounds and is given by δrel = (UB-LB)/UB ×100

In all following BARON 9.3 runs, we used the default algorithmic options of the
GAMS/BARON distribution [23], including a relative optimality tolerance of 10 % as
the termination criterion. Employing the conventional decomposition strategy SR,
BARON enumerates 99 nodes. The sequence of upper bounds as well as the percentage
relative relaxation gaps are listed in Table 3. We should remark that, one can obtain a
slightly different relaxation of P by defining:

t1 = exp(−5x1), t2 = exp(−4x2), t3 = 1 + t1 + t2, t4 = t1/t3,
t5 = x1 + 1.5, t6 = t4t5, t7 = exp(−3x1), t8 = 1 + t2 + t7,
t9 = t7/t8, t10 = x2 + 2, t11 = t9t10,

φ = 0.6 t6 + 0.4 t11.

⎫⎪⎪⎬
⎪⎪⎭ (SR′)

If we employ decomposition SR′, BARON enumerates 101 nodes, and the branch-and-
tree looks quite similar to the one when using SR. Thus, we do not include the details
here. Finally, we employ the new decomposition scheme GR to generate tighter relax-
ations for P. As can be seen in Table 3, due to adding G-convexity cuts to the factorable
relaxation,BARON is now able to terminate after exploring only 11 nodes. The new cut-
ting planes lead to a 99.83 % reduction in the root node relaxation gap and a decrease of
90 % in the total number of nodes. Similar improvements are observed when employing
tighter optimality tolerances. For instance, with relative/absolute optimality tolerance
of 0.001 %, incorporating the proposed cuts in BARON results in a 85 % reduction in
the total number of nodes enumerated. Clearly, these are preliminary results and we do
not attempt to make any conclusion about the computational benefits of the proposed
relaxation in general. The purpose of this example is to demonstrate that the sharpness
of G-convexity relaxations has the potential to significantly improve the performance
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of global solvers. A comprehensive study of the computational implications of the
proposed relaxation is the subject of future research.

We conclude this section by remarking that, for certain functional types,
G-convexity relaxations have a more complex structure than the widely used fac-
torable relaxations. This may be viewed as a disadvantage for global solvers that solve
nonlinear convex relaxations in the lower bounding step. However, for global solvers
that construct polyhedral relaxations and employ robust LP solvers to obtain bounds,
the functional form of a convex relaxation is not an issue. For instance, at each node of
the branch-and-bound tree, BARON first constructs and solves a crude LP relaxation
of the nonconvex problem (see [33] for details). Next, cutting planes corresponding
to the supporting hyperplanes of convex functions and/or convex underestimators of
nonconvex intermediates at the LP optimal solution are generated and added to the
current relaxation only if they reduce the size of the feasible region of the relaxation.
Hence, once a G-convex expression φ is recognized, the coefficients of the associated
hyperplane given by the gradient of φ̃G are computed, and the resulting cut can serve
as a valid inequality to enhance the tightness of the relaxation.

8 Conclusions

This paper demonstrates the potential benefits from exploiting generalized convexity
in the global optimization of nonconvex factorable programs. We studied convex-
transformable functions, an important class of generalized convex functions. We pro-
posed a new method to outer-approximate such functions and applied it to a number
of important functional forms including signomials, products and ratios of convex
and/or concave functions, and log-concave functions. In all instances, the transforma-
tion relaxations were shown to be considerably tighter than a widely used factorable
scheme. Via an integrated factorable framework, we showed that exploiting the con-
vex transformability of sub-expressions of a nonconvex function leads to factorable
decompositions that often provide stronger relaxations than a standard approach. This
work can be considered as a step towards bridging the gap between generalized con-
vexity and global optimization. Future research will integrate the proposed relaxations
into a global solver and study their effect on the convergence rate of branch-and-bound
algorithms.
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