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Abstract 
 
We develop a simulation model that aims to evaluate the effect of thermal management on battery life. The model consists of two sub-
models: a thermal model and a battery degradation model. The temperature rise in the battery is calculated using the thermal model, 
and a temperature profile is obtained under pre-defined driving, charging and stand-by scenarios.  The temperature profile and the 
energy requirement required to achieve a driving profile act as inputs to the degradation sub-model, which is used to predict the 
battery life. The degradation model is derived from models and test data available in literature, and the model is constructed for air-
cooled cylindrical LiFePO4 cells based on the Hymotion Prius-conversion configuration. Preliminary results suggest that peak 
temperatures have the greatest impact on degradation: Thermal management increases life substantially in climates with high peak 
temperatures (Pheonix) and for more aggressive driving cycles (US06), while thermal management has less influence in climates with 
lower peak temperatures (Miami) and with gentle driving cycles (UDDS). Use of cabin air vs. outside air for thermal management has 
minor impact on battery life for the control strategy used, but thermostat control settings are important for lowering peak temperatures 
and extending battery life.   

Introduction1

Plug-in hybrid electric vehicles (PHEVs) have the potential to reduce operating cost, greenhouse gas (GHG) emissions, and petroleum 
consumption in the transportation sector. One of the most important factors affecting the commercialization of PHEVs is the battery 
cost, which should be reduced for PHEVs to be cost competitive with other vehicles [2-5]. While reducing the cost, other requirements 
should also be satisfied such as power, energy, weight, size, and life. Often, improving one of these factors causes an adverse effect in 
others.  

 

If the battery reaches end of life (EOL) before vehicle life, there would be need for battery replacement, which raises the costs for the 
consumer substantially since the battery is the most expensive part of the vehicle for many electrified vehicles. Although different 
design choices can lead to different battery EOL criteria [6], EOL is typically defined as the time when 20% capacity loss or 30% 
internal resistance growth is reached. According to the goals set by US Advanced Battery Consortium (USABC), a PHEV battery is 
targeted to have 15 years of calendar life and 300,000 cycles of cycle life2

One of these stress factors that strongly affects degradation rate is temperature. The relationship between degradation and temperature 
can be formulated by an Arrhenius type behavior where degradation rate increases exponentially with temperature

 [7]. To achieve these goals, it is necessary to improve 
battery life by managing the stress factors that affect battery life.  

3

Hall et al. [11] tested NCA cells used in satellite applications and found that the main degradation mechanism is the lithium loss due to 
the formation of a layer between cathode and electrolyte called solid electrolyte interface (SEI). In the same study, it was also shown 
that during storage impedance growth has a t1/2 dependence, where t represents time, and during cycling a component linear with time 
is added to this behavior.  The same type of storage behavior of impedance growth in this chemistry was also reported by Thomas et 
al. [9] in which the temperature dependence of impedance growth rate was modeled using an Arrhenius type of equation. The Gen 2 

 [8-10]. However, 
the exact relation depends on the specific electrochemistry and design of the battery. Therefore, there is no single life model that 
models all different chemistries. Degradation data obtained so far is experimental data from the literature. These data are obtained 
mostly by performing experiments on cells rather than whole battery packs, and they show a wide variety depending on the cell 
electrochemistry, capacity and power characteristics. Two chemistries that have been extensively tested in the public literature are 
LiNixCoyAl(1-x-y)O2 (NCA) and LiFePO4 (LFP) chemistries. 

                                                           
1 Portions of this paper were adapted from [1] with permission. 

2 Calendar life is the battery life at storage, and cycle life is the number of discharge and charge cycles the battery can survive before it 
reaches end of its life. 

3 Arrhenius equation formulates the relation between the rate of a chemical reaction and temperature 
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Performance Evaluation Final Report [12] by Advanced Technology Development Program showed that the capacity loss in this 
chemistry depends not only on temperature but also on SOC exponentially.  

The LiFePO4 chemistry is promising due to its safety and longer life characteristics [13-15]. Liu et al. [16] showed that, similar to the 
NCA chemistry, the main mechanism of degradation in LiFePO4 batteries is active lithium loss during the formation of the SEI layer. 
They also showed that there is not an appreciable impedance growth in this chemistry. Peterson et al. [17] tested LiFePO4 chemistry 
cells manufactured by A123 Systems at a single ambient temperature and reported that degradation rate is not dependent upon the 
depth of discharge (DOD). Wang et al. [10] performed similar tests at various temperatures and showed that capacity loss can be 
related to temperature and charge (Ah) processed. They modeled the temperature dependence with an Arrhenius type of equation and 
dependence on Ah-processed by an Ah0.552 behavior. Li et al. [18] tested and evaluated the degradation in cells by considering the 
effects of coupling between stress factors. They analyzed the effects of temperature, charge/discharge rate, end of charge voltage and 
end of discharge voltage, and they showed that there is a coupling effect between each of these factors. Coupling is related to stress 
levels, and there exists a critical stress level at which coupling can be neglected. Finally, A123 Systems provides specifications for 
capacity loss with cycling and storage at different temperatures for their LiFePO4 chemistry ANR26650M1 cells [19, 20]. 

Thermal management techniques can be classified depending on the purpose (cooling only versus heating and cooling), depending on 
the source (passive if ambient or cabin air is used without additional pre-conditioning, active if a dedicated heating/cooling device is 
built-in the system to pre-condition the air before entering into the pack) and depending on the cooling medium (air versus liquid) 
[21]. Ma et al. [22] calculated temperature increase in a PHEV battery pack using a finite element thermal model. Kim and Paseran 
[23] compared alternative thermal management techniques in maintaining battery temperature within predefined limits and concluded 
that it is possible to obtain a better heat removal rate by using liquid cooling, but its disadvantages, like increased cost and complexity, 
as well as maintenance requirements need to be considered before selecting a liquid cooling system.  

To the authors’ knowledge, the studies that combine battery degradation and thermal management to study the effects of thermal 
management on battery life are rare.  Gross and Clark [24] aimed to analyze the effect of thermal management on battery life in a 
battery electric vehicle (BEV). They used a generic formulation for degradation which they assumed to be applicable to all battery 
chemistries. Experimentally driven estimates for heat transfer rates were used to calculate the change in battery temperature, and 
passive and active cooling of batteries were compared. They found that active cooling improves battery life by 4.4% to 6.5%, where 
values vary depending on the region. 

In this study, we aim to analyze the effects of thermal management on battery life using an integrated thermal management and battery 
degradation simulation for an air cooled PHEV battery pack of cylindrical LiFePO4/graphite cells. The main question being addressed 
is: “How much improvement can be obtained in battery life with simple air cooling?”. A daily driving and storage scenario is posed 
and applied under different weather conditions in two cities, Miami and Phoenix .We analyze the effects of different parameters on 
this improvement by simulating various driving and cooling cases. The model used in this study was first introduced in [1].  
 
Modeling 

1. Thermal Management Model 

In this study, a battery pack with the specifications of a A123 Systems Hymotion Li-ion battery pack is modeled. The pack consists of 
14 modules, connected in series. Each module has 44 cylindrical cells, and the cells are connected with a 4 parallel by 11 series 
configuration [22]. The pack is cooled by a fan drawing air to the battery as shown in Figure 1. The flow of air is divided in parallel so 
that same amount of air passes through each module in the pack [22]. Therefore, it is enough to model and simulate one single module 
to obtain the temperature profile of the whole pack.  

 

Figure 1. Air cooling thermal management system [21] 

 

 



The rate of heat generated inside a single module can be shown as:  

𝑄̇GEN = 𝑁𝐼2𝑅 (1) 

In this equation I represent the current drawn from each cell and R is the internal resistance of the cell. Internal resistance is a function 
of temperature and state-of-charge (SOC). N is the total number of cells inside a single module.  

When the fan is on, the forced air flow over the cells removes some of the heat generated. The overall heat transfer coefficient h is 
calculated by: 

ℎ = 𝑁Nu𝑘 𝐷⁄  (2) 

where 𝑁Nu is the Nusselt number, k is thermal conductivity of air and D is the cell diameter. The cell configuration inside the pack is 
neither fully aligned nor fully staggered. However, it has mostly a staggered arrangement and therefore in this study the correlation in 
Equation 3 by Zhukauskas [25] for “flow across staggered bank of tubes” is used to estimate the Nusselt number. The assumed pack 
configuration is shown in Figure 2.  

𝑁Nu = 𝐶𝑁Re,max
𝑚 𝑁Pr0.36�𝑁Pr 𝑁Pr,s⁄ �1 4⁄

 (3) 

𝑁Re,max is the Reynolds number calculated at maximum air velocity, C and m are constants obtained empirically and tabulated for 
𝑁Re,max, and  𝑁Pr is the Prandtl number. 𝑁Re,max and 𝑁Pr are calculated at the film temperature, 𝑇𝑓, which is defined as: 

𝑇𝑓 ≡ (𝑇s + 𝑇i) 2⁄         (4) 

where 𝑇s is the cell surface temperature and  𝑇i is inlet air temperature (which is equal to the cabin air temperature). 𝑁Pr,s is calculated 
at 𝑇s.  

 

Figure 2. Staggered cell arrangement inside a module (Used with permission [1]) 

Once h is calculated, the rate of heat transfer from the battery can be computed as: 

𝑄̇TR = 𝑁ℎ𝜋𝐷∆𝑇𝑙𝑚𝐿                (5) 

L is the length of a cell and ∆𝑇𝑙𝑚 is the log mean temperature difference defined as: 

∆𝑇𝑙𝑚 =
(𝑇𝑠 − 𝑇𝑖) − (𝑇𝑠 − 𝑇𝑜)

ln �𝑇𝑠 − 𝑇𝑖
𝑇𝑠 − 𝑇𝑜

�
     (6) 

  

𝑇𝑜 is the temperature of air leaving the battery, and can be calculated by using the relation given in Equation 7, which can be obtained 
by equating the heat transferred from the cell surfaces to air (Equation 5) to the heat carried away by air (𝑚𝑎𝑖𝑟𝑐𝑎𝑖𝑟∆𝑇𝑎𝑖𝑟): 



�
𝑇𝑠 − 𝑇𝑜
𝑇𝑠 − 𝑇𝑖

� = 𝑒𝑥𝑝 �−
𝜋𝐷𝑁ℎ

𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑁𝑇𝑆𝑇𝑐𝑎𝑖𝑟
�    (7) 

           

where, 𝑁𝑇 is the number of cells in transverse direction, 𝑆𝑇  is the transverse pitch shown in Figure 2, 𝑉𝑎𝑖𝑟  is the air speed, 𝜌𝑎𝑖𝑟 is air 
density and 𝑐𝑎𝑖𝑟  is air constant specific heat. 

For the no-thermal-management case and for the times when the fan is turned off the generated heat will be removed by natural 
convection and conduction. However, for simulation purposes it is assumed that the heat removed in these cases is negligible 
compared to the heat generated. In addition, it is assumed that battery temperature drops to the ambient temperature immediately after 
the vehicle comes to rest.  

After rates of heat generation and heat transfer are calculated, the rate of change of T at each time step can be computed as: 

𝑇̇ = (𝑄̇GEN − 𝑄̇TR) (𝑚 ∙ 𝑐𝑝)�  (8) 

where m is the module mass and 𝑐𝑝 is the module thermal capacity.  

2. Battery Life Model 

In this study, the focus is on LiFePO4 chemistry. The main reasons of this choice are: (1) the cells used in the actual Hymotion battery 
pack are of this chemistry, (2) this chemistry is extensively studied in public literature [10, 16-18], and (3) this chemistry has 
negligible impedance growth [16,17], therefore the battery life model can be simplified by considering only capacity loss criteria.  

Although it has not been proved yet, cycling and storage capacity loss mechanisms are usually assumed to be decoupled [8]. In this 
study, we follow the same assumption and calculate the cycling and storage fade separately, summing them up to find the total fade.  

Both cycling and storage capacity fade are modeled using manufacturer data. A123 Systems provides constant charge/discharge 
capacity loss versus number of cycles for their LiFePO4/graphite based ANR26650M1 cells [19]. The curves are given for three 
different temperatures. However, since the data are given for constant charge/discharge, they are converted to a measure that can be 
applicable to real driving conditions, where discharge behavior is dynamic and involves changing duty cycles. Therefore, in this study, 
the number of cycles given in the specifications is converted to Ah-processed (IPR), which can be considered as the integral of the 
absolute value of current over time. The model is constructed using an Arrhenius type of relation for temperature and a power function 
relation for Ah-processed (IPR)z. It has been shown that z has a value near 0.5 [10]. Using a least-squares fit the model given in 
Equation 9 is obtained: 

𝐶CYC = 𝐴 ∙ exp�−𝐵 �𝑅gas ∙ 𝑇�⁄ � (𝐼PR)0.55 (9) 

where 𝐴 = 1.1443 × 106 and 𝐵 = 4.257 × 104.  

Similarly, to obtain a capacity loss model for storage fade, the manufacturer’s data, which give the capacity loss with time at various 
temperature values, are used [20].  In the given data, the percent capacity loss was observed to vary linearly with the logarithm of time 
in days. Therefore, the model form given in Equation 10 is used to estimate the storage fade. The constant parameters given in the 
formula are again obtained using least squares regression.  

�  𝐶STO = (0.23𝑇 − 67)log10(𝑡) − (0.3𝑇 − 88.95),𝑇 ≤ 45℃  
 𝐶STO  = (0.23𝑇 − 67)log10(𝑡) − (0.013𝑇 + 2.36),𝑇 > 45℃ 

� (10) 

Data and fits for both cycling and capacity fades are given in Figures 3 and 4.  



 

Figure 3 – Capacity fade with cycling-Data and fit (Used with permission [24]) 

 

Figure 4 – Capacity Fade at Storage-Data and Fit (Used with permission [24]) 

Simulations 

1. Procedure 

Using the thermal and life models, daily simulations for a vehicle use and storage profiles are performed. These simulations are 
summarized in Figure 5. Battery life is calculated by computing capacity loss in two parts: cycling capacity loss, which corresponds to 
the loss during driving and charging, and storage capacity loss.  

To calculate cycling degradation, driving and charging power demand at each time step are given as inputs to the thermal model. The 
thermal model calculates the rate of change of battery temperature by computing heat generated inside and heat transferred from the 
battery for two separate cases: (1) the battery is being cooled by an air cooling thermal management system, and (2) there is no 
thermal management system to cool the battery.  In these calculations, the initial battery temperature is assumed to be equal to ambient 
temperature. The net heat transfer is used to calculate the change in battery temperature. Temperature is an input to the cycle life 
model, which computes capacity loss at each time step using temperature, time and current drawn from the battery as inputs. Battery 
current is obtained based on the driving and charging profile.  The cycling life model also takes the previous capacity loss history into 
account during calculations. The set of calculations performed at each time step are given in Equations 11 and 12. 



𝑇𝑡 = 𝑇𝑡−1 + 𝑇̇𝑡−1�𝑄̇𝑡−1TR , 𝑄̇𝑡−1GEN � ∙ ∆𝑡  (11) 

�𝑄̇𝑡−1
TR = 𝑄̇𝑡−1TR (𝑇∞,𝑉air,𝜌air, 𝑐air,𝐴cell)

𝑄̇𝑡−1GEN = 𝑄̇𝑡−1GEN(𝐼𝑡−1,𝑅𝑡−1)
� 

𝐶𝑡CYC = 𝐶𝑡−1CYC + ∆𝐶𝑡−1CYC�𝐶𝑡−1CYC, 𝐼𝑡−1,𝑇𝑡−1,∆𝑡�  (12) 

In these equations, subscript t refers to time step t. T is the battery temperature,  𝑇̇ is the change in battery temperature which is 
assumed to be constant over ∆t, 𝑄̇GEN is rate of the heat generated in the battery, 𝑄̇TR is the rate of heat removed from the battery, 
𝑇∞ is the cabin air temperature entering into pack, 𝑉air, 𝜌air  and 𝑐air are air speed, density and constant specific heat respectively, 𝐴cell 
is the heat transfer area of a cell,  𝐶CYC is percent cycling capacity loss, I is the current drawn from the battery, and R is internal 
resistance. 

Daily storage fade (capacity loss when the battery is at rest) is evaluated using the calendar life model, assuming that the battery is at 
ambient temperature when it is at rest. The total capacity fade at the end of the day is the sum of cycling and capacity fade. 
Simulations corresponding to duration of one week are performed at each seasonal ambient temperature. It was observed from one 
week simulations that capacity fade is not constant on daily basis, but there is a power function relationship between the number of 
days and capacity loss, where the power is equal to ½. Using this fact, capacity fade profile during the simulated one week period is 
extrapolated to estimate fade during the remainder of the season. Battery life is defined as the number of years passed until a total 
capacity loss of 20% reached. The evaluated system and the calculations performed at each block of the simulation are detailed in the 
following sections. 

 

Figure 5 - Schematic view of simulations to calculate battery life (Used with permission [1]) 

2. Daily Usage Profile  

In this study, the simulated vehicle is assumed to have the specifications of a PHEV conversion of a 2004 Toyota Prius, which is 
assumed to make a 14.9 mile trip per day. Each trip is followed by a constant current charging period. After charging, the vehicle is at 
rest until the next trip the next day. This daily profile is simulated for two different cities: Miami and Phoenix. Seasonal average 
temperatures of each city are used as daily ambient temperature. The average temperatures used in simulations are given in Table 1. 

Table 1. Seasonal Average Temperatures in Simulated Cities [oC] (Used with permission [1]) 

 Winter Spring Summer Fall 
Miami 22 26 27.5 25 
Phoenix 15 26 33 17 

 
3. Cases Tested 

Using the simulation procedure and daily usage profile described above, various case studies were performed to see the sensitivity of 
the results to different parameters in the model.  

To see the effect of driving cycle on battery life and on the benefits of thermal management, two different driving cycles were tested: 
the Urban Dynamometer Driving Schedule (UDDS) and the US06 cycle [26]. These driving cycles were shown to provide a 
reasonable lower and upper bound in terms of the fuel consumption compared to GPS data collected in southeast Michigan [27]. 
These two driving cycles were selected for simulations based on this fact, considering that energy limits demanded from the battery 



will also reflect to the battery life. The dynamic power profile needed to achieve the 14.9 miles trip with given driving cycles is 
obtained by calculating the traction and resistance forces, as described in Peterson, 2010 [17]. 

The fan can draw ambient or cabin air to cool the battery. Both of these options might have advantages or disadvantages relative to 
one another. For example, using ambient air may not be a very efficient way of cooling in hot days. Using conditioned cabin air will 
provide better efficiency for the thermal management system (although not necessarily for the overall vehicle system). However, there 
is a possibility that the cabin is initially hotter than ambient air due to the vehicle’s greenhouse effect when sitting in the sun or that 
the driver never conditions the cabin. Therefore, two different cases were compared for both driving cycles. In the first case, it is 
assumed that the fan draws cabin air and the driver always keeps the cabin air at 24oC; therefore the temperature of the air entering to 
the battery is always 24oC. In the second case, it is assumed that the fan uses ambient air, where the air inlet temperature is equal to 
the season’s average ambient temperature. In the base case simulations, the Hymotion pack fan is assumed to have the same on-off 
control strategy as the Prius HEV: the fan is not turned on until the battery temperature reaches 35oC and then it turns off again if the 
battery temperature falls to 33oC [28]. Various fan on-off temperatures were also tested in Miami, and battery life was obtained for 
each set of on-off temperatures.  

Results and Discussion 

1. Climate and Driving Cycles Comparison 

Figures 6 gives the comparison of battery life in Miami and Phoenix for two different driving cycles. The results presented in Figure 6 
show the case when there is an air cooling thermal management system issued in the vehicle with the default fan on-off control 
strategy described in the previous section. Figure 7 makes the same comparison for the case when there is no battery thermal 
management system in the vehicle at all.  

For the thermal management case, it can be observed that battery life differs slightly for both cities. The effect of driving cycle on 
battery life is significant in both cases but particularly substantial when thermal management is absent. Results show that, when there 
is no thermal management issued, driving the same distance with the US06 cycle decreases the battery life by ~60 % in Miami and by 
~54 % in Phoenix, compared to driving that distance under the UDDS cycle. Two conclusions can be drawn from these results: (1) the 
driving cycle has a significant effect on battery life, and (2) this effect can be successively reduced by using thermal management.   

 

Figure 6. Capacity fade comparison for driving with UDDS and US06- with thermal management  

The results also designate that when there is no thermal management to cool the battery, battery life in Phoenix is ~3 years shorter 
than the battery life in Miami, despite the fact that average seasonal temperatures in Phoenix are lower than or equal to the 
corresponding temperatures in Miami except during the summer season. This shows the importance of high peak temperatures on 
battery life, even if they are observed only in one fourth of the year. The effect of this high temperature season could be reduced by 
cooling the battery with air in Phoenix, where air cooling provides an estimated battery life improvement of 23%. However, in Miami 
the improvement in battery life is only 5%, corresponding to 1 year of additional battery life. This shows that the life improvement 
that can be obtained with a specific type of thermal management system, and/or the decision to upgrade a thermal management system 



depends on the region where the vehicle is being used. The results also indicate that battery thermal management is most critical for 
peak temperatures. 

 

Figure 7. Capacity fade comparison for driving with UDDS and US06- no thermal management  

2. Ambient Air Cooling / Cabin Air Cooling Comparison 

Figures 8 and 9 show that battery life increases slightly when ambient air is used instead of cabin to cool the battery. The fan control 
strategy used in these comparisons is the default on-off control strategy described above, which turns on when the battery reaches 
35oC.When ambient air is used, the fan is able to keep the battery temperature below 35oC, even using the air when its temperature is 
33oC in Phoenix. The amount of time that takes the fan to cool the battery back to 33oC increases slightly; however, its effect on 
battery life is almost negligible. If alternative thermal control strategies that work to maintain lower battery temperatures were used, 
then the source of inlet air may be more significant in determining degradation rate. 

 

Figure 8. Cooling medium comparison for driving with UDDS- Cabin air vs ambient air 



 

 

Figure 9. Cooling medium comparison for driving with US06- Cabin air vs ambient air 

 

3. Fan On-Off Temperature 

In all simulations described so far, a default fan on-off control strategy was used. To understand the effect of thermal control variables, 
various on-off control strategies were simulated for UDDS driving cycle. The cases tested are given in Table 2. Note that, case 0 
(zero) refers to the case when there is no battery thermal management system issued in the vehicle.  

Table 2. Fan on-off temperatures tested 

Cases ON Temp [oC] OFF Temp [oC] 
0 - - 
1 35 33 
2 35 30 
3 35 28 
4 30 28 
5 30 25 
6 33 28 
7 33 25 
8 35 25 

 

Battery capacity fade versus time in Miami for all fan on-off temperatures are given in Figure 10. The results indicate that given the 
same driving conditions the battery life can be increased significantly just by altering the fan on-off control strategy. However, further 
analysis is required to see the system level indications of choosing different control strategies. Also, it can be seen both on and off 
temperature settings are important for determining life. 

 

 

 



 

Figure 10. Capacity fade in Miami with UDDS- Comparison of fan on-off temperatures 

Assumptions/Model Limitations 

This paper presents the preliminary results of an ongoing study evaluating the effect of thermal management on battery life. In its 
current form the model has several limitations that should be considered when interpreting results.  

The battery life models used in this study are derived using data for a limited range of temperatures, and trends are extrapolated for 
lower temperatures. When storage life models are extrapolated to temperatures lower than 15oC, counterintuitive trends are observed. 
We selected cities to avoid temperatures below 15oC; however, because degradation rates are primarily driven by peak temperatures, 
errors in degradation rates at low temperatures may be less critical. To the authors’ knowledge, a more comprehensive battery life 
model is currently not available in public literature.   

In thermal management, providing a uniform temperature distribution across cells in the battery pack is a design criterion. In this 
study, it was assumed that the system satisfies this criterion by maintaining a negligible temperature variance across the pack. 
However, since temperature variance will cause some cells degrade faster than others, it is still necessary to check the validity of this 
assumption with more detailed simulation. In addition, natural convection and pack conduction, ignored in this study, is important 
when there is no forced air flow over the cells over long periods. Moreover, the assumption that battery temperature reaches ambient 
immediately when the vehicle is at rest underestimates storage fade. By ignoring the time taken for the battery to cool down when at 
rest, we also underestimate the benefit of thermal management over no thermal management. Therefore, it is necessary in future work 
to assess the actual temperature profile of the battery at rest and use that profile in storage fade calculations. In addition, changing air 
flow rate may affect results significantly.  

Besides model limitations, the design of the simulations can also affect results. In this study, although reasonable bounds on driving 
cycle conditions were selected for simulations, the driving profile created differs from real driving conditions both in driving style, 
average driving distance, and variation in driving distance over time. Since it was shown in the results section that driving cycle has a 
significant effect on battery life, using real world driving profiles, in which daily driving distances and speeds vary every day, is 
expected to decrease the battery life. Therefore, real-world driving profiles should be simulated to obtain more realistic battery life 
results. In addition, in the simulations described above, seasonal average temperatures are used. However, since results significantly 
depend on peak temperatures, higher resolution temperature data, such as hourly or daily temperature averages should be used in 



simulations. In future work, we intend to analyze sensitivity of results to these variables and conditions and address the model 
limitations described above. 

Summary and Conclusions 

We apply a joint thermal and degradation model of an air-cooled cylindrical LiFePO4/graphite PHEV battery pack to study the effect 
of thermal management on battery life under several climate, drive cycle, fan control, and air source scenarios. Preliminary results 
suggest that thermal management increases life by 5% to 53%, depending on the scenario. Variation in driving conditions from the 
UDDS cycle to the US06 cycle has a dramatic effect on battery life if there is no thermal management, reducing life by about 60%. 
With air cooling, US06 decreases life by only 20%. Thus, driving conditions are important for battery longevity, and thermal 
management mitigates the effects of aggressive driving. Climate also affects battery life: batteries have a 20% shorter life in Pheonix 
than in Miami (reduced to 11% with thermal management) due to higher summer peak temperatures in Pheonix even though Miami 
has higher average temperatures. Use of ambient inlet air vs. pre-conditioned cabin air for battery cooling has a minor effect on 
degradation for the base control strategy. However, variation in control parameters (fan on-off temperatures) can increase battery life 
by 53% or more.  

Future work will address the identified model limitations to improve accuracy of estimates and comparisons. 
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