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ABSTRACT 
Electrified vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric 
vehicles (BEVs), have the potential to reduce greenhouse gas (GHG) emissions from personal 
transportation by shifting energy demand from gasoline to electricity. GHG reduction potential 
depends on vehicle design, adoption, driving and charging patterns, charging infrastructure, and 
electricity generation mix. We construct an optimization model to study these factors by 
determining optimal design of conventional vehicles (CVs), hybrid electric vehicles (HEVs), 
PHEVs, and BEVs and optimal allocation of vehicle designs and charging infrastructure in the 
fleet for minimum lifecycle GHG emissions over a range of scenarios. We focus on vehicles with 
similar size and acceleration to a Toyota Prius under urban EPA driving conditions. We find that 
under today’s U.S. average grid mix, the vehicle fleet allocated for minimum GHG emissions 
includes HEVs and PHEVs with ~30 miles (48 km) of electric range. Allocating only CVs, 
HEVs, PHEVs, or BEVs will produce 86%, 1%, 0%, or 13+% more life cycle GHG emissions, 
respectively. Unlike BEVs, PHEVs do consume some gasoline; however, PHEVs can power a 
large portion of vehicle miles on electrical energy while accommodating infrequent long trips 
without need for a large battery pack, with its corresponding production and weight implications. 
Availability of workplace charging for 90% of vehicles optimistically reduces optimized GHG 
emissions by 0.5%. Under decarbonized grid scenarios, larger battery packs are more 
competitive and reduce life cycle GHG emissions significantly. Future work will relax modeling 
assumptions and address life cycle cost and cost-effectiveness of GHG reductions.
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1. INTRODUCTION 
Climate change and peak oil are among the most pressing issues faced by the world, and both are 
complicated by concerns about energy security. In the U.S., the transportation sector accounts for 
33% of GHG emissions [1] and over 60% of petroleum consumption [2]. Reducing GHG 
emissions and fuel consumption in this sector is crucial. Electrified transportation can help to 
address both of those issues by shifting transportation energy use from gasoline to electricity, 
especially when that electricity comes from low-carbon generation sources [3]. A barrier to 
widespread adoption of personal electrified vehicles, especially BEVs, is the “chicken and egg” 
problem: manufacturers do not want to make vehicles that have no market, consumers do not 
want vehicles that have no refueling infrastructure, and no one wants to invest in refueling 
infrastructure for vehicles that do not exist [4]. Policymakers can help break this cycle by putting 
incentives in place. For instance, the Obama administration has set a target of one million plug-in 
vehicles on the road by 2015 and has provided incentives to manufacturers and consumers as 
well as support for research and development [5]. However, to promote cost effective GHG 
reductions, it is important to understand which outcomes should be incentivized, and this study is 
a step towards addressing this issue by analyzing best possible outcomes. 
 Several studies have examined potential transportation electrification scenarios from 
various perspectives. For example, the Electrification Coalition, in their 2009 Electrification 
Roadmap, suggests a goal, based on energy security goals and a GHG target of 450 ppm carbon 
dioxide equivalent (CO2eq), of powering 75% of personal vehicle miles traveled (VMT) by 
electricity by 2040 [6]. To reach this goal, they suggest that 25% of new vehicle purchases 
should be “grid-enabled” by 2020, and 90% by 2030. The Electric Power Research Institute and 
the National Resources Defense Council found in a 2007 study that PHEVs have substantial 
potential for reducing GHG emissions and air pollution [7]. However, a 2009 Argonne National 
Laboratory report finds that electrified vehicles are likely to have “little or no” market 
penetration by 2050 without government subsidies, and government subsidies of $7,500/vehicle 
could increase penetration of PHEVs, leading to a 22% reduction in GHG emissions by 2050 
compared to their base case [8]. Studies have concluded that GHG reductions from plug-in 
vehicles are not likely to be cost effective in the near term [8, 9, 10]. 
 Several trade-offs must be considered to determine the best scenarios. One of the major 
design decisions for PHEVs and BEVs is selecting the battery size. A larger battery pack enables 
the vehicle to travel a longer distance on electricity alone (the all-electric range, or AER) without 
the use of gasoline, which reduces operation-associated GHG emissions over the vehicle life 
under today's average grid mix. However, a larger battery pack costs more upfront, has 
production implications, and may reduce vehicle efficiency due to its weight [11]. Availability of 
charging infrastructure at the workplace and/or in public locations can enable a longer effective 
AER with a smaller battery pack. Availability of such infrastructure also affects charge timing, 
which has implications for plant dispatch and resulting GHG emissions [3, 12, 13, 14]. In this 
study, we take a limited scope, ignoring charge timing and focusing on the effect of private home 
and workplace charging availability on vehicle allocation and battery sizing in vehicle design.  
 Prior studies compare and select among a small set of fixed vehicle configurations based 
on selected commercially available vehicles or a small set of simulated vehicle alternatives [3, 
11, 12, 14, 15]. However, interactions among engine sizing, motor sizing, and battery sizing can 
be important in comparing vehicle characteristics, and optimal battery sizing represents a 
compromise among drivers with different travel patterns. We follow Shiau et al. 2010 and pose 
an optimization problem to determine the best configuration of vehicles in the design space in 
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order to compare the best design of each CV, HEV, PHEV, and BEV model under performance 
constraints that ensure vehicles are comparable [9]. We further incorporate charging 
infrastructure decisions that determine which of the electrified vehicles should be only charged at 
home versus charged both at home and at the workplace. We then address three questions: (1) 
What mix of vehicles can minimize GHG emissions? (2) What is the GHG reduction potential of 
workplace charging infrastructure? and (3) What effect does workplace charging have on optimal 
vehicle allocation and battery sizing? We describe our approach in Section 2, present results in 
Section 3, address model limitations and future work in Section 4, and provide discussion and 
conclusions in Section 5. 

2. APPROACH 
We pose an optimization problem to minimize life cycle greenhouse gas emissions over a fleet of 
vehicles by jointly determining (1) the optimal design of each CV, HEV, PHEV, and BEV; (2) 
the optimal allocation of each vehicle design to vehicles in the fleet based on annual VMT; and 
(3) the optimal allocation of home and workplace charging infrastructure to electrified vehicles 
in the fleet. We also incorporate vehicle design constraints to ensure that vehicles have 
comparable performance characteristics and vehicle allocation constraints that allow BEVs to be 
assigned only if the BEVs have sufficient range to accommodate the vehicle’s driving distance 
on most days. This formulation represents a best-case scenario for minimizing greenhouse gas 
emissions with vehicle technology; market outcomes would likely deviate. 
 The general form of the optimization problem that we would like to solve is 
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where s is the average daily VMT for a specific vehicle in the fleet; fS(s) is the probability 
density function of average daily VMT over the fleet; J={1,2,…,n}is the set of indices for all 
vehicle alternatives; fOj(xj,s) is the annual life cycle GHG emissions of vehicle j defined by the 
vehicle design vector xj when driven an average of s miles per day (daily variation is discussed 
later); gD

j(xj) is the vector of vehicle design constraints; gA
j(xj,s) is the vector of allocation 

constraints; and pj is the size of vector xj. This optimization formulation models two questions: 
(1) the best vehicle from the set J for each average daily VMT s that minimizes life cycle GHG 
emissions while satisfying the corresponding allocation constraints and (2) the design variables 

xj that define each vehicle j∈J. 
 This problem formulation presents two key difficulties for mathematical optimization: (1) 
the objective function contains an integral, and (2) the objective function contains a minimization 
function, which has derivative discontinuities. To avoid these difficulties, we reformulate the 
problem using numerical integration and binary selection variables. First, we select a finite upper 

limit for the integral sMAX and partition [0,sMAX] into equal adjacent segments i∈{1,2,...,m}, each 

of size sMAX/m. We introduce binary selection variables, αij∈{0,1}, for each segment i and 

vehicle alternative j that define which vehicle is assigned to each segment (Σjαij = 1: only one 
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vehicle alternative can be selected for each segment), and we further partition each segment into 

K = sMAX/m∆ sub-segments of size ∆ for numerical integration using the trapezoidal rule. The 
resulting formulation is 
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We relax the binary αij variables into the continuous domain, αij∈ℜ, 0 ≤ αij ≤ 1, to ease 

computation. For any fixed x* = [x1, ..., xn]
*, the optimization formulation in (2) is linear in αij, 

so we expect that the optimal solution set will always contain a corner solution, and that all 
corner solutions will be binary in this formulation. 
 In our application, the set of vehicle alternatives J is partitioned into CVs, HEVs, PHEVs 

and BEVs, so that J = JCV ∪ JHEV ∪ JPHEV ∪ JBEV. The decision variable vector xj = [xEj, xMj, xBj]
T 

for each vehicle j∈J includes xE = gasoline internal combustion engine (ICE) peak power (kW), 
xM = electric motor peak power (kW), and xB = battery size (number of cells) for each vehicle j, 

where xM = xB = 0 ∀ j∈JCV and xE = 0 ∀ j∈JBEV. The objective function fOj(xj,s) for annualized 
life cycle GHG emissions (kg CO2eq/vehicle-year) is 
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where vV is the GHG emissions from production of the base vehicle excluding engine, motor, 
and batteries; d is driving days per year; sLIFE is the life of the vehicle, including the engine and 
motor (and, for simplicity, the battery), in miles; vE(xEj) is the GHG emissions from production 
of the engine; vM(xMj) is the GHG emissions from production of the motor; vB is the GHG 

emissions per kWh of battery production; κB is the battery cell energy capacity in kWh; vC is the 
GHG emissions from producing one charger; qCj is the number of chargers allocated to vehicle j; 
lc is the charger life in years, which we assume is equal to the life of the vehicle; vG is the life 
cycle GHG emissions from gasoline consumption per gallon; sG(xj,s) is the average distance for 

which the vehicle is powered by gasoline (charge sustaining mode) on a driving day; ηG(xj) is the 
vehicle gasoline efficiency in miles per gallon (mpg); vELEC is the life cycle GHG emissions from 
electricity consumption per kW; sE(xj,s) is the average distance for which the vehicle is powered 

by electricity (charge depleting mode) on a driving day; ηE(xj) is the vehicle electrical efficiency 
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in mi./kWh; and ηC is the charging efficiency. We focus on the all-electric control strategy and 
ignore PHEVs with blended control strategies. In Eq. (3), the motor, battery, charger, and 
electricity terms drop out for CVs; the charger and electricity terms drop out for HEVs; and the 
engine and gasoline terms drop out for BEVs. Table 1 summarizes the model parameters and 

defines base case and sensitivity values for each. We discuss the functions ηG(xj) and ηE(xj) in 
Section 2.1 and the functions fS(s), sE(xj,s), and sG(xj,s) in Section 2.3. The GHG emissions from 
production of the engine, vE(xEj) = 16.1xE + 589, is calculated from an engine cost scaling 
equation in Shiau et al. 2010 [9], adjusted to 2002 dollars using the Consumer Price Index (CPI) 
[16], and then converted to engine production GHG emissions (including supply chain) using the 
EIO-LCA 2002 U.S. producer price model, Sector #336300: Motor vehicle parts manufacturing, 
which includes NAICS sector 33631: Motor Vehicle Gasoline Engine and Engine Parts 
Manufacturing [17]. The GHG emissions from production of the motor, vM(xMj) = 21.0xM + 411, 
is calculated from a motor cost scaling equation in Shiau et al. 2010 [9], adjusted to 2002 dollars 
using the CPI [16], and then converted to motor production GHG emissions using the EIO-LCA 
2002 U.S. producer price model, Sector #335312: Motor and generator manufacturing [17]. 

TABLE 1  Model notation and parameter values for the base case and the sensitivity analysis 

 Description Unit Base Value Range Ref 

Variables 
xB Number of battery cells - 0 ∀ j∈JCV; 

168 ∀ j∈JHEV;  

200-1000 ∀ j∈JPHEV; 

200-9000 ∀ j∈JBEV 

 

xE Peak engine power kW 126 ∀ j∈JCV;  

57 ∀ j∈JHEV 

30-60 ∀ j∈JPHEV  

xM Peak motor power kW 0 ∀ j∈JCV;  

52 ∀ j∈JHEV;  

50-110 ∀ j∈JPHEV; 

70-250 ∀ j∈JBEV 

 

αij Binary selection variable for 
each segment i and vehicle 
alternative j 

-  {0,1}  

Functions 
fS(s) PDF of annual VMT over the 

fleet 
 §2.3   

sAER(xj) All-electric range of vehicle 
alternative j 

mi. §2.1 12-60 ∀ j∈JPHEV; 

15-301 ∀ j∈JBEV 

 

sE(xj,s) Average distance powered by 
electricity per driving day for a 
vehicle driven an average of s 
miles per day 

mi. §2.3   

sG(xj,s) Average distance powered by 
gasoline per driving day for a 
vehicle alternative j driven an 
average of s miles per day 

mi. §2.3   

sφ(s) Driving distance of φth 
percentile day for a vehicle 
given average daily distance s 

mi. §2.3   

tE(xj) 0-60 mph acceleration time on 
electric power for vehicle j 

sec. §2.1 7.3-19 ∀ j∈JPHEV; 

6-36.5 ∀ j∈JBEV  

 

tG(xj) 0-60 mph acceleration time on 
gasoline power for vehicle j 

sec. §2.1 6.7-14.6 ∀ j∈JPHEV  
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 Description Unit Base Value Range Ref 

vE(xEj) Engine production GHGs for 
vehicle alternative j 

kg 
CO2eq 

§2 

2620 ∀ j∈JCV; 

1510 ∀ j∈JHEV 

1070-1560 ∀ j∈JPHEV  

vM(xMj) Motor production GHGs for 
vehicle j 

kg 
CO2eq 

§2 

1500 ∀ j∈JHEV 
1460-2720 ∀ 

j∈JPHEV; 

1880-5660 ∀ j∈JBEV 

 

ηE(xj) Electrical efficiency of vehicle j mi. / 
kWh 

§2.1 4.98-5.39 ∀ j∈JPHEV; 

2.34-5.75 ∀ j∈JBEV 

 

ηG(xj) Gasoline efficiency of vehicle j mi. / gal §2.1 

29.5 ∀ j∈JCV; 

60.1 ∀ j∈JHEV; 

55.9-61.8 ∀ j∈JPHEV  

Parameters 
bB Scaling factor for number of 

battery cells 
- 1/1000   

bE Scaling factor for peak engine 
power 

- 1/57   

bM Scaling factor for peak motor 
power 

- 1/52   

d Driving days per year days / 
year 

243.82   

K Number of integration steps per 
segment 

- sMAX / m∆ 
(1000) 

  

lc Charger life years sLIFE/sd   

m Number of segments for vehicle 
allocation 

- 20   

n Size of set J (number of 
vehicles in choice set) 

- 10 1-10  

qC Number of chargers allocated to 
vehicle j  

chargers {1,2}
 

  

sLIFE Vehicle life mi. 150,000   

sMAX Maximum daily VMT 
considered in the model 

mi. 200   

tMAX Maximum allowed 0-60mph 
acceleration time 

sec. 10.5   

vBj 

 

GHG emissions from li-ion 

battery production ∀ j ∈ JPHEV 

∪ JBEV 

kg 
CO2eq / 

kWh 

120  [3] 

GHG emissions from NiMH 

battery production ∀ j ∈ JHEV 

kg 
CO2eq / 

kWh 

230  [3] 

vC GHG emissions from producing 
a charger 

kg 
CO2eq 

536 (§2.2)   

vELEC GHG emissions from electricity 
generation 

kg 
CO2eq / 

kWh 

0.752 0.066-0.9 [3, 9] 

vG GHG emissions from gasoline kg 
CO2eq / 

gal 

11.34  [9] 
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 Description Unit Base Value Range Ref 

vV GHG emissions from vehicle 
production excluding batteries 

kg 
CO2eq 

5965  [3] 

βabc PSAT metamodel coefficients - §2.1   

βf Shape parameter of Weibull 
distribution of VMT over the 
fleet 

- 1.372   

∆ Integration step size mi. 10-2   

ηC Vehicle charging efficiency % 88%  [9] 

κBj 
 

Energy capacity of one li-ion 

battery cell ∀ j∈JPHEV ∪ JBEV 

kWh / 
cell 

0.0216  [9] 

Energy capacity of one NiMH 

battery cell ∀ j∈JHEV 

kWh / 
cell 

0.00774  [9] 

λf Scale parameter of Weibull 
distribution of VMT over the 
fleet 

 38.22   

σj Battery swing for vehicle 

j∈J\{JCV}  

% 80%  [9] 

 
 The design constraint vector gD

j(xj) ensures that each vehicle satisfies comparable 
performance criteria. These include a maximum 0-60 miles per hour (mph) acceleration time 
tMAX = 10.5 seconds for all vehicles, in both gasoline and electric mode: g1

D
j(xj) = tG(xj) - tMAX ≤ 

0 ∀ j ∈ JCV ∪ JHEV ∪ JPHEV, g1
D

j(xj) = 0 ∀ j ∈ JBEV, g2
D

j(xj) = tE(xj) - tMAX ≤ 0 ∀ j ∈ JPHEV ∪ 

JBEV, and g2
D

j(xj) = 0 ∀ j ∈ JCV ∪ JHEV, where tG(xj) and tE(xj) are the 0-60 mph acceleration time 
of vehicle xj in gasoline and electric mode, respectively, as discussed in Section 2.1. We also 
incorporate simple bounds 30kW ≤ xEj ≤ 60kW, 50kW ≤ xMj ≤ 110kW, and 200 cells ≤ xBj ≤ 

1000 cells ∀ j ∈ JPHEV and xEj = 0 kW, 70 kW ≤ xMj ≤ 250 kW, and 200 cells ≤ xBj ≤ 9000 cells ∀ 

j ∈ JBEV to avoid extrapolation beyond our simulation data. Finally, the allocation constraints 

g
A

j(xj,s) = sφ(s) - sAER(xj) ≤ 0 ∀ j ∈ JBEV, and gA
j(xj,s) = 0 ∀ j ∈ J\JBEV ensure that BEVs are only 

allocated to vehicles if φ percent of days have VMT lower than the vehicle's range. We discuss 

the sAER(xj) function in Section 2.1 and the sφ function in Section 2.3.  

2.1 Vehicle Performance Model 

To estimate the electrical ηE(xj) and gasoline ηG(xj) efficiencies and the acceleration 
performances tG(xj) and tE(xj) of vehicle j defined by design variables xj, we utilize Argonne 
National Laboratory’s Powertrain System Analysis Toolkit (PSAT) vehicle simulation software 
[18] and construct a cubic metamodel fit to a discrete set of simulation points in the design space 
xj using the Urban Dynamometer Driving Schedule (UDDS) driving cycle [19]. We use the 2004 
Toyota Prius model as the baseline vehicle and our HEV model, and we construct our PHEV 
model by substituting Li-ion batteries for the Prius Nickel metal hydride (NiMH) batteries and 
increasing the pack size. One kilogram of structural weight is added to the vehicle per kilogram 
of battery, engine, and motor to support the weight of those components [11]. We base our CV 
model on a scaled Honda Accord powertrain, adjusted to have a Toyota Prius vehicle body for 
fair comparison to the HEV, PHEV, and BEV [9]. Our BEV model has a generic BEV drive train 
modified to use the same body, motor, and batteries as the PHEV. We ignore the possibility of 
using different battery designs on BEVs vs. PHEVs. 
 Because the performance of CVs and HEVs are independent of s, we identify the optimal 
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designs for these vehicles a priori. For the CV, xj = [126 kW, 0 kW, 0 cells], ηG(xj) = 29.5 mpg 

and tG(xj) = 11.0 seconds. For the HEV, xj = [57 kW, 52 kW, 168 cells] with ηG(xj) = 60.1 mpg, 
and tG(xj) = 11.0 seconds. For the PHEV and BEV cases, we construct cubic metamodels fit to an 
array of points tested within the bounds of the design space. The resulting models, of the form 

Σa,b,c∈{0,1,2,3}|a+b+c<3 βabc (bExE)a (bMxM)b (bBxB)c, where bE = 1/57, bM = 1/52, and bB = 1/1000 are 
scaling factors, have coefficients fit using least squares regression listed in Table 2 (for BEVs, 
the terms involving xE drop out). The error for all metamodels is within 0.7 seconds, 0.05 mpg, 
and 0.1 mi./kWh over the set of data points used for fitting. 

 Based on the metamodel for electrical efficiency ηE(xj) for PHEVs and BEVs, we 

calculate the AER sAER(xj) = ηE(xj)κBjxBjσj, where σj is the battery swing (state of charge 
window) for vehicle j. The effective AER is the AER multiplied by the number of chargers, qCj 
(i.e. number of charges per day). 

TABLE 2  Metamodel coefficients 

 ηE(xj) 

∀ j∈JPHEV  

ηG(xj) 

∀ j∈JPHEV 

tE(xj) 

∀ j∈JPHEV 

tG(xj) 

∀ j∈JPHEV 
ηE(xj) 

∀ j∈JBEV 

tE(xj) 

∀ j∈JBEV 

β300 0.008 2.214 1.457 3.334   

β030 0.154 1.087 -5.496 -2.266 0.004 -0.328 

β003 0.353 5.578 -28.456 -20.257 0.000 -0.015 

β210 -0.005 -0.815 0.913 0.414   

β120 -0.005 0.510 -0.881 -3.524   

β201 -0.025 1.562 -1.050 -0.286   

β102 0.000 2.212 -0.308 -10.111   

β021 -0.057 -0.613 2.044 1.951 -0.006 0.096 

β012 -0.043 0.254 15.610 10.309 -0.004 0.050 

β111 -0.016 -0.159 0.336 5.808   

β200 -0.001 -8.906 -4.634 -6.932   

β020 -0.805 -6.095 31.478 15.800 -0.022 4.015 

β002 -0.656 -15.208 34.017 39.198 0.041 0.052 

β110 0.057 0.089 1.153 7.901   

β101 0.080 -3.274 1.169 6.582   

β011 0.342 2.498 -32.057 -30.119 0.101 -1.600 

β100 -0.191 2.622 3.405 -6.734   

β010 1.189 9.285 -54.473 -26.385 -0.266 -15.659 

β001 -0.347 5.837 9.570 -4.098 -0.835 4.637 

β000 4.960 57.680 44.231 32.102 6.337 25.435 

2.2 Charging Infrastructure Scenarios 
We consider the following two charging scenarios: (1) only home slow charging (120 or 240 
volts AC, up to 3.3 kW [20]), and (2) home slow charging with additional dedicated workplace 
slow charging (at the same power level): we do not consider additional charging methods such as 
fast charging, battery swapping, smart charging, or vehicle to grid power. We implement these 
two charging scenarios in the model by partitioning JPHEV and JBEV each into two subsets JPHEV = 

JPHEV(1) ∪ JPHEV(2) and JBEV = JBEV(1) ∪ JBEV(2), where the numbers indicate 1 charger (home) or 2 
chargers (home + work). Each 2-charger partition is identical to the corresponding 1-charger 
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partition (equal design variables) except that qC = 2 instead of 1. This allows each vehicle design 
to be assigned to some drivers with one charger and also to other drivers with two chargers. To 
find vC, the GHG emissions from producing one charger, we use the EIO-LCA 2002 U.S. 
producer price model [17] and assume that a charger is reasonably represented by $1000 (2008 
dollars, adjust to 2002 dollars using the CPI [16]) of purchases from Sector #33441A: Electronic 
capacitor, resistor, coil, transformer, and other inductor manufacturing. 

2.3 Driving Patterns 
To estimate the probability density function fS(s) of annual VMT, we fit a Weibull distribution, 
shown in Figure 1, to the weighted average daily distance traveled (based on odometer readings) 
from the U.S. from the 2001 National Household Travel Survey (NHTS) [21]. The distribution 

takes the form ( )
1

S exp

f f

f

f f f

s s
f s

β β
β

λ λ λ

−     
 = −           

 where λf = 38.22 and βf = 1.372. This 

distribution accounts for the variability in average daily VMT across the U.S. vehicle fleet 
(across vehicle), but does not account for variability in VMT of the same vehicle across days 
(within vehicle). NHTS data do not contain information on within-vehicle variability, since each 
household was only surveyed on one day, so we use detailed trip data collected for 133 vehicles 
in Minnesota in 2004-2005 to estimate this variability across days [22]. Since the average annual 
VMT is similar across the two data sets (11,800 miles in NHTS odometer readings [21] and 
11,900 miles in the Minnesota data set [22]), we believe the Minnesota data set is reasonably 
representative for providing an estimate of U.S. within-vehicle variability.  
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FIGURE 1  Weibull fit to odometer average daily distance from NHTS 2001 data [16] 

 
 We represent the variability in daily driving distances across days by first removing days 
in which the vehicle was not driven, leaving an average of d = 243.8 driving days per year (we 
observed no clear trend in d vs. s, so d is assumed constant across s) [22]. Next, we fit a curve 
through the mean distance on driving days: µ(s)=1.110s+13.33. Finally, a family of exponential 

distributions is defined with random variable σ indicating distance driven on a particular day. 
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The cumulative distribution function (CDF) of σ is set to ( )V

σ
1 exp

1.110 13.33
F

s

σ
σ

− 
= −  

+ 
 so 

that the mean of σ for a given s is equal to µ(s). In practice, the shape of the distribution of daily 
distance driven in the Minnesota data set varies across vehicles, including unimodal and 
multimodal distributions. However, the exponential assumption provides a reasonable rough 
approximation of the general trend in daily variability while offering a closed form CDF to 
facilitate estimation of the portion of miles driven beyond a PHEV's all-electric range (and the 
distance on the vehicle's 95th percentile day, for comparison to a simple linear fit to the 95th 
percentile day distance data). Using a linear fit to the data, the 95th and 99th percentile daily 
driving distances can be calculated as s95%(s) = 2.62s + 40.3 miles and s99%(s) = 3.61s + 108 
miles, respectively. By using the s95% function as a minimum AER constraint for allocating 
BEVs, we ensure that the BEV has sufficient range to accommodate 95% of driving days for a 
vehicle with the given annual VMT. We can also perform sensitivity analysis on this constraint 
using the s99%(s) function and the µ(s) function. Figure 2 shows both of these functions, along 
with the 95th and 99th percentiles of the family of exponential distributions, for comparison. 
While the exponential assumption deviates somewhat from the 95th percentile trend, the 
approximation is optimistic toward electrification. 

 
FIGURE 2  Mean, 95

th
 percentile, and 99

th
 percentile driving distance on driving days for 133 vehicles versus 

average daily VMT (including non-driving days), with linear fits, and with 95
th

 and 99
th

 percentiles as 

calculated from a family of exponential distributions calibrated to match a linear fit to the mean. 

 

 Using the exponential fit, we calculate sG(xj,s), the average portion of driving day 
distance powered by gasoline, and sE(xj,s), the average portion of driving day distance powered 
by electricity: 
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We assume that the presence of workplace charging will provide a charging opportunity 
sufficient to recharge the battery at distance s/2, effectively doubling the AER on an average day 
(we ignore workplace charging for the 95th percentile day). This assumption is optimistic about 
the benefits of PHEVs and of workplace charging, since daily distance variability typically 
reflects trips taken to locations other than the workplace, rather than variable distance to the 
workplace. Because we use the UDDS driving cycle for all drivers, we also do not account for 
the correlation between driving distance and driving style (and therefore efficiency). We leave 
incorporating such considerations for future work. 

3. RESULTS 
In this section, we describe the results obtained from the optimization formulation defined in Eq. 
(2). First, we show lifecycle GHG emission results for several representative vehicle designs. 
Later, we present total GHG emission results for several scenarios in which vehicles are 
optimally designed and allocated. 
 The first graph in Figure 3 shows an example plot of GHG emissions per mile, 
fOj(xj,s)/sd, versus average daily driving distance s for two hypothetical vehicles. The lowest 
vehicle curve at any point s represents the best vehicle for that driving distance. While GHG 
emissions per VMT are independent of daily VMT for CVs, HEVs, and BEVs, daily VMT and 
charger availability affect the portion of PHEV distance traveled on electricity vs. gasoline and 
thus the resulting GHG emissions. The second graph in Figure 3 shows fOj(xj,s)fS(s), the 
population-weighted life cycle GHG emissions per vehicle-year and the integrand of the 
objective in Eq. (1), for the same representative vehicles. The area under each curve represents  

 
FIGURE 3  Left: Example GHG emissions per VMT vs. average daily VMT. Right: Example fleet-weighted 

average annual GHG emissions vs. average daily VMT (integral is average annual GHG emissions per vehicle 

per day). 
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the total annual emissions if all vehicles were of the corresponding design and charging scenario, 
and the area under the piecewise smooth curve defined by the solid lines represents total annual 
emissions if the two vehicles are allocated optimally for minimum GHGs. 
 Table 3 summarizes the optimal results for several scenarios, where we define each 
scenario relative to the base case. For each scenario, we report the total annual GHG emissions 
both in metric tons of CO2 equivalent (mt CO2eq) per vehicle per year and as a percent change 
from the base case result. We also show the vehicle designs allocated in each scenario, as well as 
the range of average daily driving distances for which each vehicle is allocated, the percent of 
the vehicle fleet represented by that vehicle, the percent of VMT represented by that vehicle, and 
the percent of total annual lifecycle GHG emissions from that vehicle. In the base case, the 
optimal solution involves a PHEV29 allocated with both home and work charging to replace 
vehicles that are driven on average 0-30 miles per day, a PHEV32 with both home and work  

TABLE 3  Optimal solutions for selected scenarios. Percentages may not sum to 100% due to rounding 

Scenario 

Min GHGs 

(mt CO2eq 

per vehicle 

year) 

% Change 

in GHGs 
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Base case 
Vehicle alternatives {CV, HEV, PHEVA, 

PHEVB, BEVA, BEVB}; {1,2} chargers 

for PHEV/BEV alternatives; U.S. avg. 

grid mix (0.752 kgCO2/kWh); φ=95% 

BEV allocation constraint 

1.94  PHEV29 2 0-30 51 23 23 

PHEV32 2 30-70 39 51 51 

HEV 0 70-200 10 26 26 

      

Vehicle 
availability 

CV only 3.61 +86% CV 0 0-200 100 100 100 

HEV only 1.96 +1% HEV 0 0-200 100 100 100 

PHEVs only 1.94 +0% PHEV29 1 0-20 1 5 5 

PHEV29 2 110-200 34 11 10 

PHEV31 2 20-110 65 84 85 

BEVs only (with φ=mean 
allocation constraint for 
feasibility) 

2.20 +13% BEV102 1 0-80 93 82 76 

BEV235 1 80-200 7 18 24 

Infrastructure 
availability 

Home charging only 1.95 +0.5% PHEV30 1 10-40 26 16 16 

PHEV 32 1 0-10, 
40-50 

51 35 35 

HEV 0 50-200 24 49 49 

Electricity 
generation mix 
(for vehicle 
charging only) 

Coal electricity 
(0.9 kg CO2eq/kWh) 

1.96 +1% HEV 0 0-200 100 100 100 

Natural gas electricity 
(0.47 kg CO2eq/kWh) 

1.55 -20% BEV67 1 0-10 15 2 2 

  PHEV54 2 10-40 51 35 33 

  PHEV76 2 40-200 34 63 65 

IGCC-CCS electricity 
(0.252 kg CO2eq/kWh) 

1.19 -39% BEV67 1 0-10 15 2 2 

  PHEV60 2 10-30 37 21 19 

  PHEV88 2 30-200 49 77 79 

Nuclear electricity 
(0.066 kg CO2eq/kWh) 

0.87 -55% BEV67 1 0-10 15 2 2 

  PHEV69 2 10-30 37 21 17 

  PHEV88 2 30-200 49 77 81 
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charging for vehicles that average between 30 and 70 miles per day, and an HEV above 70 miles 
per day. Figure 4 visually summarizes the fleet allocation. In the base case solution, workplace 
charging is allocated to the 90% of vehicles. The optimal design and allocation result in 1.94 mt 
CO2eq per vehicle per year. 
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FIGURE 4  GHG-emission-minimizing vehicle allocations for various scenarios, with total scenario GHG 

emissions shown in mt CO2eq in parentheses. Lighter colors represent larger battery packs. 

 
 Relative to the base case solution, GHG emissions would increase by 86% if all vehicles 
were CVs of comparable size and performance, by 1% if all vehicles were HEVs, and by 0% if 
all vehicles were PHEVs. The case with all BEVs is not feasible in this model because battery 
packs large enough to accommodate the 95th percentile trip for vehicles that average over 100 
miles/day are outside of scope. To establish an optimistic reference point, we allow the BEV-
only case to allocate BEVs whose battery pack is large enough to accommodate the average trip. 
This results in a net increase of GHG emissions by 13%. In practice, range anxiety may cause 
consumers to demand even greater range from BEVs than the 95th percentile distance in the 
absence of widespread, convenient public charging infrastructure, since accommodation of the 
95th percentile longest trip still leaves 18-19 days each year where trip distance is longer than 
vehicle range. 
 If dedicated workplace charging is not available, the optimal solution results in about a 
0.5% increase in GHG emissions with a smaller portion of PHEVs (of approximately the same 
sizes) allocated. This is because without the benefit of additional miles of electric travel provided 
by the second charge, PHEVs compete with HEVs over a smaller range of s values. This case is 
calculated under the optimistic assumption that workplace charging occurs at the halfway point 
for daily distance for each driver. Under more realistic assumptions, the benefit of workplace 
charging would be lower, suggesting that availability of dedicated workplace charging is not a 
significant factor in driving overall life cycle GHG emissions under today's electricity grid. 
 Under high-carbon coal generation, HEVs have lower lifecycle GHG emissions for all 
drivers. Under lower-carbon electricity scenarios, the optimal fleet involves larger battery packs 
and allocation of some BEVs for short-distance vehicles that do not require large battery packs to 
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meet the s95% range allocation constraint. Lifecycle GHG emissions are reduced significantly 
with increased grid decarbonization. Future marginal dispatch electricity associated with PHEV 
and BEV charging will vary by location and charge timing, but the grid scenarios examined here 
provide a bounding analysis over a wide range of grid GHG intensity. 

4. LIMITATIONS AND FUTURE WORK 
Several important limitations in the current model call for care in interpreting results. Key 
limitations include assumptions about vehicle driving and charging patterns, vehicle design 
options, and electricity generation mix. 
 One important set of assumptions relates to driving and charging patterns. Assuming that 
workplace charging allows a charge exactly halfway through daily travel is optimistic for 
PHEVs, although GHG reduction potential is marginal even under this optimistic assumption. 
Additionally, we use the UDDS driving cycle to calculate efficiency for all vehicles and do not 
account for the correlation between driving distance and driving cycle characteristics. Research 
has shown that real-world driving cycles typically require more energy than standard EPA cycles 
[23], and longer distances are likely to involve a greater portion of highway travel, where 
conventional vehicles are more competitive. We lack information on driving cycle characteristics 
in the NHTS and Minnesota data sets and are unable to account for correlation with daily VMT. 
We also do not account for other factors such as air conditioning use that affect vehicle energy 
use. We would expect these factors to make PHEVs and BEVs somewhat less attractive for long 
distances. 
 A second important set of assumptions is design options, such as the use of a single 
scaled engine design, similar to Toyota Prius to model each electrified powertrain alternative. In 
particular, we do not examine advancements to ICEs that improve fuel economy, such as direct 
injection, low friction lubricants, variable valve timing, etc. [24], and we do not include PHEVs 
with blended control strategies due to complexity in modeling the control variable space [25]. 
Additionally, we do not account for degradation requiring replacement of batteries and chargers 
prior to the end of vehicle life. Battery degradation will tend to affect smaller battery packs more 
severely than large packs because processed energy is spread over a larger number of cells in a 
larger pack.  
 Third, while we do consider a wide range of possible electricity generation scenarios, we 
vary these independently in sensitivity analysis and do not consider the effect that vehicle 
allocation might have on marginal grid mix. If assigning vehicles with larger battery packs leads 
to greater charging demand, it may have systematic effects on electricity grid mix that vary by 
region and time and would be expected to change in future scenarios with high penetration of 
electrified vehicles [7, 12, 14]. In general, marginal electricity associated with charging PHEVs 
in future grid scenarios may be of somewhat lower carbon intensity than today's U.S. average 
grid mix in some regions, although it may be higher intensity in other regions. Across regions 
and assumptions, grid implications should be bounded by our sensitivity scenarios. 

5. CONCLUSIONS 
We pose an optimization model to minimize annual GHG emissions from the personal vehicle 
fleet by selecting (1) engine, motor, and battery size for conventional, hybrid, plug-in hybrid, and 
battery electric vehicles and (2) allocation of those vehicles and of home and workplace charging 
stations to the vehicle fleet based on annual VMT. Results indicate a best-possible scenario for 
GHG reductions given existing driving patterns, rather than likely market outcomes.  
 We find that hybrid electric vehicles and plug-in hybrid vehicles provide the greatest 
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reduction in GHG emissions under most scenarios. Under the current average U.S. grid mix, 
allocation of conventional vehicles produces 86% more life cycle GHG emissions, HEVs 
produce 1% more GHG emissions, and BEVs produce over 13% more GHG emissions due to 
battery production and vehicle weight. Availability of workplace charging has marginal potential 
for reducing GHG emissions, providing only 0.5% reductions under optimistic assumptions.  
 Carbon intensity of the electricity grid has a significant effect on GHG emissions of 
electrified vehicles. Low-carbon scenarios make larger battery packs more competitive; however, 
the optimal PHEV pack under the current average U.S. grid mix holds about 30 miles (48 km) of 
charge. Larger battery packs would allow longer travel on electricity, rather than gasoline, but 
the GHG benefit is offset by greater emissions in battery production and lower efficiency of 
heavier vehicles. Under our modeling assumptions, BEVs are allocated only to a small subset of 
the population under decarbonized grid scenarios, and they may not offer substantial GHG 
reductions over PHEVs. 

In future work, we aim to address remaining model limitations while also examining life 
cycle cost and petroleum consumption. 
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