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Abstract

Fueled by applications across science and engineering, general-purpose deter-

ministic global optimization algorithms have been developed for nonconvex

nonlinear optimization problems over the past two decades. Central to the ef-

ficiency of such methods is their ability to construct sharp convex relaxations.

Current general-purpose global solvers rely on factorable programming tech-

niques to iteratively decompose nonconvex factorable functions, through the

introduction of variables and constraints for intermediate functional expres-

sions, until each intermediate expression can be outer-approximated by a con-

vex feasible set. While it is easy to automate, this factorable programming

technique often leads to weak relaxations.

In this thesis, we develop the theory of several new classes of cutting planes

based upon ideas from generalized convexity and convex analysis. Namely, we

(i) introduce a new method to outer-approximate convex-transformable func-

tions, an important class of generalized convex functions that subsumes many

functional forms that frequently appear in nonconvex problems and, (ii) derive

closed-form expressions for the convex envelopes of various types of functions

that are the building blocks of nonconvex problems. We assess, theoretically

and computationally, the sharpness of the new relaxations in comparison to

existing schemes. Results show that the proposed convexification techniques

significantly reduce the relaxation gaps of widely-used factorable relaxations.
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Chapter 1

Introduction

1.1 Motivation

Fundamental theoretical and algorithmic developments have transformed linear opti-

mization (LP) and convex nonlinear optimization (NLP) into mature technologies. Robust

general-purpose solvers are capable of solving problems with thousands or even millions of

variables efficiently and accurately with little user effort. For nonconvex NLPs, however,

the situation is completely different. As noted by one of the founders of convex analysis:

“In fact the great watershed in optimization is not between linearity and non-
linearity, but convexity and nonconvexity.” –R. T. Rockafellar, SIAM Review,
1993.

Motivated by diverse applications across science and engineering, deterministic global

solvers have been developed for nonconvex NLPs over the past two decades. While these

new classes of algorithms have already had a significant impact in operations research,

computer science and engineering, there exist a multitude of important applications that

these methods are unable to address. Compared to the LP and convex NLP solvers,

global solvers are very slow, cannot handle large-scale problems, and require a high level

of user expertise. In fact, many optimization experts believe that in the case of nonconvex

problems, one has to give up on either speed or the guarantee of solution quality. The key

to bridge this gap is given by the following insightful observation of Rockafellar (SIAM

Review, 1993):

“Even for problems that are not themselves of convex type, convexity may
enter for instance in setting up subproblems as part of an iterative numerical
scheme.”
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Central to the efficiency of global solvers is their ability to construct sharp convex re-

laxations. Current general-purpose global optimization codes rely on factorable program-

ming techniques [36] to iteratively decompose nonconvex factorable functions, through

the introduction of variables and constraints for intermediate functional expressions, un-

til each intermediate expression can be outer-approximated by a convex feasible set, via

known techniques [49, 63]. While it is easy to automate, this factorable programming

technique often leads to weak relaxations.

This thesis is focused on developing new convexification techniques for noconvex NLPs

by building upon ideas from generalized convexity and convex analysis. While convex

analysis has been employed extensively to develop the theory of convex optimization, its

crucial role in deterministic global optimization is not yet well-understood. Likewise, the

extensive literature on generalized convexity has not found much practical use in noncon-

vex optimization, as almost all nonconvex problems are not generalized convex. In this

thesis, we develop the theory of several new classes of cutting planes by exploring various

implications of convexity in global optimization. Namely, we (i) introduce a new method

to outer-approximate convex-transformable functions, an important class of generalized

convex functions that subsumes many functional forms that frequently appear in non-

convex problems [23] and, (ii) derive closed-form expressions for the convex envelopes of

various types of functions that are the building blocks of nonconvex problems [25, 26].

1.2 Outline and contributions

In the following, we summarize the main contributions of this thesis.

1.2.1 Generalized convexity and global optimization

Generalized convex functions have been studied extensively in both optimization and

economics [2]. Hundreds of articles, several books, and scientific meetings are devoted to

introduce and study various generalizations of convex functions. The main idea is that

convexity is only a sufficient condition for the key properties needed in the context of local

optimization. Indeed, there exists a vast class of nonconvex functions that possess these

key properties. For the purpose of global optimization, however, the important question

is whether the generalized convexity of sub-expressions of nonconvex functions can be

2



exploited to generate tighter relaxations for nonconvex programs. In Chapter 2, we focus

on convex transformable or G-convex functions, an important class of generalized convex

functions. We develop a novel technique to outer-approximate G-convex functions and

compare and contrast it with existing convexification techniques. The main contributions

of this study can be summarized as follows [23].

• We develop a new method to outer-approximate convex-transformable functions and

derive the tightest, in a well-defined sense, transforming function;

• We propose a new scheme to overestimate signomials which is provably tighter than

a popular standard approach;

• We develop tighter relaxations for many classes of functions including products and

ratios of convex and/or concave functions, and log-concave functions.

1.2.2 Convex analysis and global optimization

Consider an optimization problem of the form P : minx∈C φ(x), where C is a compact

convex set and φ(x) is a lower semi-continuous (lsc) function that is nonconvex over C. It
is well-known that this optimization problem is intractable in general. Now, consider the

convex optimization problem Q : minx∈C convCφ(x), where convCφ(x) denotes the convex

envelope of φ(x) over C. Recall that the convex envelope of φ(x) over C is defined as the

greatest convex function majorized by φ(x) over C. It follows that the optimal values of P

and Q are equal and the set of optimal solutions of P is contained in that of Q (cf. [19]).

In general, however, constructing the convex envelope of φ(x) over C is as hard as solving

the nonconvex problem P . This difficulty is due to the fact that, even for computing the

value of the convex envelope of a function at a given point, one needs to solve a highly

nonconvex optimization problem [62, 25]. Now, suppose that φ(x) = φ1(x) + φ2(x). Let

X denote a convex set such that X ⊇ C. Assume that, due to some special structure,

it is simple to construct the convex envelopes of φ1 and φ2 over X . It follows that

φ̃(x) = convXφ1(x) + convXφ2(x) is a (possibly tight) convex underestimator for φ(x)

over C. Such a convex relaxation can then be incorporated in a deterministic global

optimization algorithm to generate a lower bound for the nonconvex problem. For general-

purpose global solvers and, in the context of factorable programming in particular [36, 49],

it is highly advantageous to have closed-form expressions for the convex envelopes of

3



primitive functions that frequently appear as sub-expressions in nonconvex functions.

These envelopes significantly enhance the strength of the relaxations thus generated.

Motivated by the above discussion, in Chapters 3 and 4, we study the problem of

constructing the convex envelope of a lsc function over a compact convex set. The main

contributions of this work are as follows [25, 26]:

• We formulate, as a convex NLP, the problem of constructing the convex envelope of

a lsc function whose generating set is representable as the union of a finite number

of compact convex sets. This development unifies all prior results in the literature

and extends to many additional classes of functions.

• We consider functions of the form φ = f(x)g(y), x ∈ R
m, y ∈ R

n over a box, where

f(x) is a nonnegative convex function and g(y) is a component-wise concave function.

We derive explicit characterizations for the convex envelope of a wide class of such

functions. The proposed envelopes cover roughly 30% of nonconvex functions that

appear in the widely used GLOBALLib and MINLPLib collections of global optimization

test problems.

1.2.3 Deterministic global optimization in product design

Optimization problems in mechanical design applications are often highly nonconvex.

Gradient-based local solvers and stochastic global solvers are used widely to solve these

problems. However, since these methods do not guarantee global optimality, the modeler

is left with the hope of having a good enough design (i.e. better than the starting point) in

hand. Deterministic global optimization avoids this uncertainty by finding the solutions

within a selected tolerance of the global optimum in finite time.

In chapter 5, we present a deterministic Lagrangian-based approach for global opti-

mization of quasi-separable problems and apply it to two product design applications: (i)

product family optimization with a fixed platform configuration and (ii) product design

for maximum profit. Results show that the proposed method is quite scalable and outper-

forms the commercial solver BARON when increasing the size of the problem. Furthermore,

we demonstrate that the global solutions are significantly better than those obtained by

prior approaches in the literature.
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Chapter 2

Relaxations of factorable functions

with convex-transformable

intermediates

Factorable programming techniques are used widely in global optimization for bound-

ing nonconvex functions. These techniques iteratively decompose a nonconvex factorable

function, optionally through the introduction of variables and constraints for intermediate

functional expressions, until each intermediate expression can be outer-approximated by

a convex feasible set, typically a convex hull. This decomposition is invoked only to the

extent that all intermediates in the hierarchy of functions thus generated can be convex-

ified via known techniques. In this chapter, we examine whether these nested functional

decompositions of factorable programs can be replaced by, or enhanced via, the use of

functional transformations. In essence, instead of relying on convexity of simple inter-

mediate expressions, we exploit convex transformability of the component functions of

factorable programs as a tool in the generation of bounding functions for global optimiza-

tion algorithms.

2.1 Introduction

Convex-transformable functions have been studied extensively in the generalized con-

vexity literature [2, 52]. This literature has focused mostly on deriving necessary and

sufficient conditions under which a certain nonconvex optimization problem can be trans-

5



formed to a convex one. Furthermore, in the economics literature, there has been a line

of research to identify whether a given convex preference ordering can be represented in

terms of the upper level sets of a concave utility function [11, 21]. This latter question can

be restated in terms of whether a quasiconcave function can be converted to a concave one

via a one-to-one transformation. While quite rich and interesting, the theory of convex-

transformable functions has found limited applications in nonconvex optimization because

the vast majority of nonconvex optimization problems are not convex transformable. How-

ever, the family of convex-transformable functions subsumes many functional forms, such

as products and ratios of convex and/or concave functions, that appear frequently as

building blocks of nonconvex expressions. Therefore, exploiting convex-transformability

of component functions to construct outer-approximations for the intermediate expres-

sions of factorable programs can lead to relaxations that are tighter than those obtained

by existing approaches.

Transformation techniques have been proposed in the global optimization literature to

convexify signomial functions [34, 35]. In particular, one can underestimate a signomial by

applying term-wise power and exponential transformations to all or a subset of variables,

followed by a relaxation of the inverse transformations. Our transformation scheme differs

from the existing methods in that it is applicable to general nonconvex mathematical

programs and exploits pseudoconvexity of component functions to generate relaxations

that are provably tighter than existing relaxations.

The mere incorporation of functional transformations in global optimization of fac-

torable programs may be viewed as obvious. However, the use of these transformations

gives rise to interesting questions regarding suitable forms of transforming functions as

well as the sharpness of the resulting relaxations, especially in comparison to existing

relaxations for factorable programs. This chapter addresses several questions of this na-

ture. First, in Section 2.2, we review preliminary material from the generalized convexity

literature and obtain some properties of convex-transformable functions. We introduce a

new relaxation method for convex transformable functions in Section 2.3. In Section 2.4,

we derive the tightest, in a well-defined sense, transforming functions for signomial terms,

propose a new method for overestimating signomials, and present theoretical comparisons

of the proposed relaxation versus a conventional one. In Section 2.5, we generalize the

results of Section 2.4 to a large class of composite functions involving products and ratios

of convex and/or concave functions. As another important application of the proposed

6



convexification method, in Section 2.6, we consider the class of log-concave functions.

Finally, in Section 2.7, we demonstrate the integration of the proposed relaxation within

the factorable programming framework through some examples and compare and contrast

it with existing relaxations.

2.2 Convex-transformable functions

In this section, we derive some elementary properties of convex-transformable (G-

convex) functions. The proofs are direct and not based on the equivalence of different

classes of generalized convex functions. Analogous results for concave-transformable (G-

concave) functions can be established in a similar manner. Throughout the chapter, φ

represents a nonconvex continuous function defined over a convex set C ⊆ R
n. The set

of extreme points of C will be denoted by vert(C), while the relative interior of C will be

denoted by ri(C). By G, we will denote a continuous univariate function that is increasing

on Iφ(C), where Iφ(C) is the image of C under φ. The convex envelope of φ over C, denoted
by convCφ, is defined as the tightest convex underestimator of φ over C. Similarly, concCφ

stands for the concave envelope of φ over C and is equal to the negative of the convex

envelope of −φ over C. When the domain is clear from the context, we may drop the

subscript C from convCφ (or concCφ).

Definition 2.1. ([2]) A continuous function φ : C → R is said to be convex-transformable

or G-convex if there exists a continuous increasing function G defined on Iφ(C) such that

G(φ) is convex over C.

Throughout the chapter, we exclude the trivial case where G(t) = t, for all t ∈ Iφ(C).
Namely, we assume that the G-convex function φ is not convex. We now derive sufficient

conditions for G-convexity of composite functions. We will consider scalar composition,

vector composition and composition with an affine mapping in turn.

Proposition 2.1. Let φ : C → R be G-convex and let f be an increasing function on

D ⊆ R, where D ⊇ Iφ(C). Then, the composite function h(x) = f(φ(x)) is G̃-convex on

C, where G̃ = G(f−1).

Proof. By assumption, f and G are both increasing over Iφ(C). Thus, the inverse function
of f , denoted by f−1 exists and the function G̃ = G(f−1) is increasing over the range of

h. By G-convexity of φ, G̃(h) is convex on C.

7



Proposition 2.2. Let f : D → R
n be a vector of functions fj , j ∈ J = {1, . . . , n},

where D ⊆ R
m is a convex set. Let J̄ contain the elements of J for which fj is not affine.

Assume that fj is convex for j ∈ J1 ⊆ J̄ and concave for j ∈ J2 = J̄ \ J1. Let φ : C → R

be G-convex, where C is a convex set in R
n such that C ⊇ If (D). Assume φ(y1, . . . , yn)

is nondecreasing in yj, j ∈ J1 and is nonincreasing in yj, j ∈ J2. Then, the composite

function h(x) = φ(f(x)) is G-convex on D.

Proof. We prove the case where J = J1. The proof for the general case is similar. Let

x1 ∈ D, x2 ∈ D. By assumption, all components of f are convex, φ is nondecreasing over

If(D) and G is increasing over Iφ(C). Thus, the following holds for every λ ∈ [0, 1]:

G(φ(f(λx1 + (1− λ)x2))) ≤ G(φ(λf(x1) + (1− λ)f(x2))). (2.1)

From G-convexity of φ over If(D), it follows that:

G(φ(λf(x1) + (1− λ)f(x2))) ≤ λG(φ(f(x1))) + (1− λ)G(φ(f(x2))). (2.2)

Combining (2.1) and (2.2), we obtain:

G(φ(f(λx1 + (1− λ)x2))) ≤ λG(φ(f(x1))) + (1− λ)G(φ(f(x2))),

which is the definition of G-convexity for the composite function h(x) over D.

Proposition 2.3. Consider the function φ over a convex set C ⊆ R
n. Let T : x→ Ax+ b

denote an affine transformation, where A ∈ R
n×m, x ∈ D ⊆ R

m and b ∈ R
n. Assume D

is a convex set and Ax+ b ∈ C for all x ∈ D. Then, φ(Ax+ b) is G-convex on D, if φ is

G-convex on C.

Proof. Follows directly from Proposition 2.2 by letting f = Ax+ b. Since all components

of f are affine functions, no monotonicity assumption on φ is required.

Next, we present the concept of least convexifying transformation, which was first

introduced by Debreu [11] in the economics literature to define least concave utility func-

tions. In Section 2.3, we will show that least convexifying transformations are of crucial

importance for convexifying nonconvex problems.
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Definition 2.2. ([11]) If φ is G∗-convex and, for every G for which φ is G-convex, GG∗−1

is convex on the image of the range of φ under G∗, then G∗ will be referred to as a least

convexifying transformation for φ.

Remark 2.1. Least convexifying transformations are unique up to an increasing affine

transformation, i.e. if G1 and G2 are both least convexifying for φ, then G2 = αG1 + β,

for some α > 0 and β ∈ R.

Next, we make use of Propositions 2.1 and 2.2 to derive least convexifying transfor-

mations for composite functions.

Proposition 2.4. Let φ : C → R be G-convex with a least convexifying transformation

denoted by G∗. Consider an increasing function f defined on D ⊇ Iφ(C). Then, a least

convexifying transformation for h(x) = f(φ(x)) is given by G∗(f−1).

Proof. By Proposition 2.1, h is Ĝ-convex with Ĝ = G∗(f−1). We claim that Ĝ is least

convexifying for h. Assume the contrary and denote by G̃ a least convexifying transfor-

mation for h. By Definition 2.2, ĜG̃−1 is convex. Let Ḡ = G̃(f). It follows that Ḡ(φ) is

convex. It is easy to show that ḠG∗−1 = (ĜG̃−1)−1 and therefore is concave; contradicting

the least convexifying assumption on G∗. Consequently, G∗(f−1) is least convexifying for

h.

Corollary 2.1. Let φ : C → R be G-convex with a least convexifying transformation

denoted by G∗. Let D be a convex set in R
m such that Ax + b ∈ C for all x ∈ D, where

A is a real n×m matrix. Then, G∗ is least convexifying for φ(Ax+ b).

Proof. Follows directly from Proposition 2.3 by noting that the inverse image of a convex

set under an affine transformation is convex (cf. Theorem 3.4 in [47]).

In the sequel, we only consider the case where both φ and G are twice continuously

differentiable (C2) functions on open convex subsets of Rn and R, respectively. Necessary

and sufficient conditions for convex transformability of C2 functions were first derived by

Fenchel [12]. We summarize the main results in Propositions 2.5 and 2.6.

Proposition 2.5. ([2]) Let φ : C → R be a differentiable G-convex function and let G

be differentiable over Iφ(C). Then, φ is pseudoconvex on C.

9



Proposition 2.6. ([2]) Let φ : C → R and G be C2 functions. Then, φ is G-convex if

and only if the Hessian of G(φ) is positive semidefinite for every x ∈ C.

Since G is increasing and φ is G-convex, we have G′(t) > 0 over ri(Iφ(C)). Letting

ρ(x) = G′′(φ(x))/G′(φ(x)), and defining the augmented Hessian of φ as:

H(x; ρ) = ∇2φ(x) + ρ(x)∇φ(x)∇φ(x)T , (2.3)

the condition of Proposition 2.6 implies that, for a G-convex function, there exists a func-

tion ρ(x) defined on C such thatH(x; ρ) is positive semidefinite for all x ∈ C. Furthermore,

if the function ρ0(x) defined by

ρ0(x) = sup
z∈Rn

{

− zT∇2φ(x)z

(zT∇φ(x))2 : ‖z‖ = 1, zT∇φ(x) 6= 0
}

(2.4)

is bounded above for every x ∈ C, then H(x; ρ) is positive semidefinite for every ρ(x) ≥
ρ0(x) over C. Note that, by Proposition 2.5, the set of points where∇φ(x) = 0, correspond

to the minimal points of φ. Thus, the Hessian of φ is positive-semidefinite at these points

and, as a result, ρ0(x) can take any value. Moreover, it can be shown that (cf. Proposition

3.16 in [2]), for a C2 pseudoconvex function φ, the restriction of its Hessian to the subspace

orthogonal to ∇φ is positive semidefinite. Hence, the nonzero assumption on zT∇φ(x)
in (2.4) is without loss of generality. From the definition of ρ0, we can compute G∗(t) as:

d

dt
ln
(dG∗(t)

dt

)

= g(t), (2.5)

where g(t) = sup
x∈C

{ρ0(x) : φ(x) = t}.
As corollaries of the above results, we next derive several properties of the transforming

function G that we will use in subsequent sections.

Corollary 2.2. Let the G-convex function φ : C → R be nonconvex. Then, G is noncon-

cave over Iφ(C). Namely, G(t) is locally strictly convex at any t̂ = φ(x̂) for which φ is not

locally convex at some x̂ ∈ C.

Proof. From (2.4) it follows that, if ∇2φ(x̂) is not positive semidefinite at x̂ ∈ C, then
ρ0(x̂) > 0. Thus, g(t̂) and G∗′′(t̂) are both positive, where t̂ = φ(x̂). By Definition 2.2,

every G which convexifies φ is strictly convex at t̂.
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The above result can be further refined for the class of merely pseudoconvex functions,

defined as follows.

Definition 2.3. Let φ : C → R be pseudoconvex. If φ is not locally convex at any x ∈ C,
then φ will be referred to as a merely pseudoconvex function.

Corollary 2.3. Let φ : C → R be G-convex with a least convexifying function denoted

by G∗. If φ is merely pseudoconvex over C, then G∗ is convex over Iφ(C).

Proof. Follows directly from Corollary 2.2.

The converse of the above corollary does not hold, in general, due to taking the

supremum in the computation of g(t) in (2.5).

2.3 Convexification via transformation

In this section, we consider the problem of outer-approximating the set

Φ := {(x, t) ∈ C × I : φ(x) ≤ t}, (2.6)

where the nonconvex function φ : C → R is G-convex and I ⊇ Iφ(C) denotes a closed in-

terval over which G(t) is increasing. This is the typical form of an intermediate constraint

introduced within the factorable decomposition in the construction of relaxations of non-

convex optimization problems [63, 64]. Namely, φ(x) is assumed to be part of the initial

nonconvex expression and t denotes an auxiliary variable introduced for the purpose of

separable reformulation.

Proposition 2.7. Let φ : C → R be G-convex with Ḡ(t) denoting a concave overestimator

for G(t) over I. Then, the following is a convex relaxation of the set Φ:

Φ̃ := {(x, t) ∈ C × I : G(φ(x)) ≤ Ḡ(t)} (2.7)

Proof. Since G is increasing over I, the set Φ can be equivalently written as Φ = {(x, t) ∈
C × I : G(φ(x)) ≤ G(t)}. By Corollary 2.2, G(t) is nonconcave. Therefore, to obtain a

convex outer-approximation of Φ, G(t) should be replaced by a concave overestimator.

Denoting such a relaxation by Ḡ(t), it follows that Φ̃ is a convex relaxation for the set

Φ.
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From (2.7), it follows that the quality of the proposed relaxation depends on the

form of G and the tightness of Ḡ. For a given transforming function G, by definition,

concIG(t) ≤ Ḡ(t) for all t ∈ I. Thus, setting Ḡ(t) = concIG(t) provides the tightest

relaxation in (2.7). Next, we investigate the criteria for choosing the transforming function

G.

Proposition 2.8. Let φ : C → R be G1-convex and G2-convex. Consider the following

convex outer-approximations of the set Φ defined by (2.6):

1. Φ̃1 = {(x, t) ∈ C × I : G1(φ(x)) ≤ concIG1(t)},

2. Φ̃2 = {(x, t) ∈ C × I : G2(φ(x)) ≤ concIG2(t)}.

Let F (u) = G2(G
−1
1 (u)) be defined over the image of I under G1. Then,

(i) If F is concave, Φ̃2 ⊆ Φ̃1;

(ii) If F is convex, Φ̃1 ⊆ Φ̃2;

(iii) Otherwise, neither Φ̃1 nor Φ̃2 globally dominates the other.

Proof. By definition, G2(t) = F (G1(t)). Since G1 and G2 are both increasing over I, F
is also increasing over the range of G1. Hence, Φ̃1 = {(x, t) ∈ C × I : F (G1(φ(x))) ≤
F (conc G1(t))} or, equivalently, Φ̃1 = {(x, t) ∈ C × I : G2(φ(x)) ≤ F (conc G1(t))}.
Further, Φ̃2 = {(x, t) ∈ C × I : G2(φ(x)) ≤ conc F (G1(t))}. Since F is increasing,

F (G1) ≤ F (concG1). When F is concave, F (concG1) is a concave function. By definition,

concIF (G1) is the tightest concave function that majorizes F (G1) over I. It follows that
conc F (G1) ≤ F (conc G1) and, as a result, Φ̃2 ⊆ Φ̃1. Similarly, for Part (ii), G1(t) =

F−1(G2(t)) and, since F−1 is a concave increasing function over the range of G2, it can

be shown that Φ̃1 ⊆ Φ̃2. Finally, it follows from the first two parts that, if F is neither

convex nor concave, then neither of the two relaxations is globally dominant.

Remark 2.2. In Parts (i) and (ii) of the above proposition, the set inclusion relations

are often strict. For example, if G1 and G2 are both convex, and F is concave, then

concIF (G1) is the affine underestimator of the concave function F (concG1). This implies

Φ̃2 ⊂ Φ̃1.
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Remark 2.3. Employing a similar line of arguments, for a G-concave function φ, the

conditions of Proposition 2.8 can be stated as: (i) if F is concave, Φ̃1 ⊆ Φ̃2, (ii) if F is

convex, Φ̃2 ⊆ Φ̃1, (iii) otherwise, neither Φ̃1 nor Φ̃2 globally dominates the other.

Using the result of Proposition 2.8 and the concept of least convexifying transforma-

tions introduced in Section 2.2, we now show that the tightest relaxation of the form (2.7)

has a well-defined mathematical description as given by the following corollary.

Corollary 2.4. For a G-convex function φ : C → R, the tightest relaxation of the form

(2.7) is obtained using G = G∗ and Ḡ = concIG
∗.

Proof. Follows from Proposition 2.8 and Definition 2.2.

From (2.7), it follows that the function φ̃G(x) := inf{t : (x, t) ∈ Φ̃} is a convex

underestimator for φ over C. Suppose that Ḡ(t) is increasing over I. Then, φ̃G(x) can be

equivalently written as φ̃G(x) = inf{t : (x, t) ∈ C × I, Ḡ−1(G(φ(x))) ≤ t}. Consequently,

φ̃G(x) = Ḡ−1(G(φ(x))). (2.8)

Let gG : C → R denote the gap between φ(x) and φ̃G(x), i.e.

gG(x) = φ(x)− φ̃G(x). (2.9)

Substituting for φ̃G(x), we obtain gG(x) = {t − Ḡ−1(G(t)) : t = φ(x), x ∈ C}. If G(t) is

convex over I = [t, t̄] and Ḡ(t) = concIG, then g
G is a concave function of t and is given

by:

gG(t) = t−
( t̄− t

G(t̄)−G(t)

)

G(t) +
(G(t)t̄−G(t̄)t

G(t̄)−G(t)

)

. (2.10)

In the following sections, we employ the proposed relaxation scheme to convexify

several classes of generalized convex functions and characterize their gap functions. For

generalized concave functions, φ(x), we will construct concave overestimators, denoted by

φ̃G, with corresponding gap functions defined as:

gG(x) = φ̃G(x)− φ(x). (2.11)

The gap functions in (2.9) and (2.11) will be compared against similarly defined gap

functions gS(x) between φ(x) and standard factorable programming under- and over-
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estimators denoted by φ̃S(x). In particular, we will characterize the points at which these

gap functions assume their maximal values gGmax and gSmax.

2.4 Signomials

Throughout this section, we consider the signomial term φ =
∏

i∈I x
ai
i , ai ∈ R, I =

{1, . . . , n}. Define the subsets I1 = {i ∈ I : 0 < ai < 1}, I2 = {i ∈ I : ai ≥ 1}, and
I3 = I \ {I1 ∪ I2}. We consider the function φ over the domain

C = {x ∈ R
n : xi > 0, ∀i ∈ I3, xi ≥ 0, ∀i ∈ I \ I3}. (2.12)

First, we identify conditions under which φ is convex (resp. concave) transformable and

derive its least convexifying (resp. concavifying) transformation. Subsequently, we employ

the method described in Section 2.3 to generate a concave overestimator of φ and compare

its tightness with a widely used conventional approach.

2.4.1 G-convexity and least convexifying transformations

First, we consider the case where the signomial φ is convex transformable.

Proposition 2.9. Consider φ =
∏

i∈I x
ai
i , ai ∈ R over the set C defined by (2.12). The

function φ is G-convex if and only if ai < 0 for all i ∈ I \ {j} and
∑

i∈I\{j} |ai| < aj <
∑

i∈I\{j} |ai|+ 1. Moreover, a least convexifying transformation for φ is given by

G∗(t) = t
1∑

i∈I ai . (2.13)

Proof. By Proposition 2.6, if φ is G-convex, its augmented Hessian given by:

H(i,j) =

{

ai(ai − 1 + ρaiφ)φ/x
2
i , if i = j

aiaj(1 + ρφ)φ/(xixj), otherwise
, ∀i, j ∈ {1, . . . , n}, (2.14)

is positive semidefinite for every ρ(x) ≥ ρ0(x) for all x ∈ ri(C). Let Kkl denote the

index set of rows (columns) of H present in its lth principal minor of order k, where

l ∈ L = {1, . . . ,
(

n
k

)

}. By definition, H is positive semidefinite if and only if all of its
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principal minors given by:

Dkl = (−1)k+1
∏

i∈Kkl

ai
x2i

(

∑

i∈Kkl

ai(ρφ+ 1)− 1
)

φk, ∀k ∈ I, l ∈ L (2.15)

are nonnegative for all ρ ≥ ρ0. We have the following cases:

(i) ai < 0 for all i ∈ I. By (2.15), H is positive semidefinite when
∑

i∈Kkl
ai(ρφ+1) ≤ 1

for all Kkl. By assumption,
∑

i∈Kkl
ai < 0 and φ > 0. Thus, this condition holds for

all ρ ≥ 0, implying that φ is convex.

(ii) ai > 0 for all i ∈ S ⊆ I. First, consider the case |S| ≥ 2. Consider any two

principal minors Dkl and Dk′l′ of H , with k and k′ denoting even and odd numbers,

respectively, such that Kk′l′ ⊂ Kkl ⊆ S. By (2.15), Dkl is nonnegative if ρ ≤
1
φ
(1/
∑

i ai − 1) for all i ∈ Kkl whereas Dk′l′ is nonnegative if ρ ≥ 1
φ
(1/
∑

i ai − 1)

for all i ∈ Kk′l′. Since by construction,
∑

i∈Kkl
ai >

∑

i∈Kk′l′
ai, it follows that no

ρ meets these requirements. Next, consider the case |S| = 1. Let aj denote the

positive exponent. By Part (i), if j /∈ Kkl, then Dkl is nonnegative. Thus, consider

any Dkl such that j ∈ Kkl. By (2.15), Dkl is nonnegative when
∑

i∈Kkl
ai(ρφ+1) ≥

1. Obviously, this condition holds only if
∑

i∈Kkl
ai > 0. Hence, H is positive

semidefinite for all ρ such that:

ρ ≥ 1

φ

( 1
∑

i∈I ai
− 1
)

. (2.16)

If
∑

i∈I ai ≥ 1, then (2.16) holds for every ρ ≥ 0, and φ is convex. Hence, φ is

G-convex for 0 <
∑

i∈I ai < 1 with ρ0 = 1/φ( 1∑
i∈I ai

− 1). From (2.5), it follows

that:
d

dt
ln
(dG∗(t)

dt

)

=
( 1
∑

i∈I ai
− 1
)1

t
,

It is then simple to verify that G∗ is given by(2.13).

We now address the cases where the signomial term φ is concave transformable.

Proposition 2.10. Consider φ =
∏

i∈I x
ai
i , ai ∈ R over the set C defined by (2.12). The

function φ is G-concave if and only if one of the following holds:
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(i) ai > 0 for all i ∈ I and
∑

i∈I ai > 1,

(ii) aj < 0 for some j ∈ I such that
∑

i∈I\{j} ai < |aj|.

Moreover, a least concavifying transformation for φ is given by (2.13) when condition

(i) is met and by

G∗(t) = −t
1∑

i∈I ai , (2.17)

when condition (ii) is met.

Proof. By Proposition 2.6, if φ is G-concave, then all kth order principal minors of its

augmented Hessian given by:

Dkl = (−1)k
∏

i∈Kkl

ai
x2i

(

∑

i∈Kkl

ai(ρφ− 1) + 1
)

φk, ∀k ∈ I, l ∈ L =

{

1, . . . ,

(

n

k

)}

(2.18)

are nonnegative if k is even, and are nonpositive otherwise, where the index set Kkl is as

defined in the proof of Proposition 2.9. The following cases arise:

(i) ai > 0 for all i ∈ I. Then, H is negative semidefinite if and only if:

ρ ≥ 1

φ

(

1− 1
∑

i∈Kkl
ai

)

, ∀Kkl. (2.19)

First, consider
∑

i∈I ai ≤ 1. It follows that (2.19) is satisfied for all ρ ≥ 0, implying

φ is concave. Assuming
∑

i∈I ai > 1, it follows that (2.19) holds for all ρ ≥ ρ0 with:

ρ0 =
1

φ

(

1− 1
∑

i∈I ai

)

. (2.20)

Substituting (2.20) in equation (2.5) and solving for G∗, we obtain (2.13).

(ii) ai < 0 for all i ∈ S ⊂ I. Using a similar argument as in Part (ii) of Proposition 2.9, it

can be shown that, if |S| ≥ 2, then φ is not G-concave. Thus, suppose that |S| = 1.

Let aj denote the negative exponent. For any principal minor Dkl such that j /∈ Kkl,

by Part (i), we conclude that condition (2.19) should hold. Thus, let j ∈ Kkl. In

this case, the product
∏

i∈Kkl
ai in (2.18) is negative. It follows that

∑

i∈Kkl
ai < 0

for all Kkl containing the index j, which in turn implies
∑

i∈I\{j} ai < vertajvert.

Imposing this condition, it can be shown that the expressions for ρ0 and G∗ are
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given by (2.20) and (2.17), respectively. Note that the minus sign in (2.17) follows

from the negativity of
∑

i∈I ai.

Necessary and sufficient conditions for pseudo-convexity (-concavity) of signomials

were derived by Schaible [50] using the basic definition of pseudoconvexity. Since pseudo-

convexity is a necessary condition for G-convexity, we could have examined only instances

satisfying those conditions. However, our proofs do not require knowledge of these con-

ditions and the characterization of G∗ follows naturally.

2.4.2 Exploiting G-concavity for upper bounding signomials

Next, we employ Proposition 2.10 to develop a new relaxation scheme for upper bound-

ing signomials over a hyper-rectangle Hn in the nonengative orthant. The standard fac-

torable scheme overestimates signomials by first replacing each convex univariate term

by its affine envelope. Next, the resulting expression is outer-linearized using a recursive

interval arithmetic scheme (rAI) [63]. Denote by xi and x̄i the lower and upper bounds on

xi, i ∈ I, respectively. Introduce auxiliary variables ηi ∈ [η
i
, η̄i], where ηi = xaii , η̄i = x̄aii

for all i ∈ I \ I3 and η
i
= x̄aii , η̄i = xaii for all i ∈ I3. The standard relaxation φ̃S is as

follows:

φ̃S = tn

ti = min

{

ti−1ηi + t̄i−1ηi − t̄i−1ηi
η̄iti−1 + ηiti−1 − η̄iti−1

}

, ∀i ∈ I \ {1}

ηi = xaii , ∀i ∈ I1

ηi =
x̄
ai
i −x

ai
i

x̄i−xi
(xi − xi) + xaii , ∀i ∈ I \ I1,







































(2.21)

where t1 = η1, ti =
∏i

j=1 ηj and t̄i =
∏i

j=1 η̄j for all i ∈ I.

Now, suppose that φ is G-concave. Let ξ =
∑

i∈I ai and I = [φ, φ̄], where φ =
∏

i∈I ηi
and φ̄ =

∏

i∈I η̄i. By Propositions 2.7 and 2.10, the following is a concave overestimator

for φ:

φ̃G = (φ
1

ξ − φ
1

ξ )
( φ̄− φ

φ̄
1

ξ − φ
1

ξ

)

+ φ. (2.22)

By Proposition 2.10, G∗(φ) is concave over the range of φ. Thus, by (2.11), the gap
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between φ̃G and φ is a concave function of φ and its maximum value is given by:

gGmax =
(ξ − 1)

ξ
ξ

ξ−1

(

φ̄− φ

φ̄
1

ξ − φ
1

ξ

)
ξ

ξ−1

− (φ̄φ)
1

ξ

(

φ̄1− 1

ξ − φ1− 1

ξ

φ̄
1

ξ − φ
1

ξ

)

. (2.23)

Next, we compare the relative tightness of the relaxations obtained by the standard

and transformation approaches.

Proposition 2.11. Consider the G-concave signomial φ =
∏

i∈I x
ai
i defined over a box

Hn ⊂ C. Then, φ̃S globally dominates φ̃G, if one of the following conditions is met:

(i) I1 = ∅;

(ii) aj < 0 for some j ∈ I such that
∑

i∈I\{j} ai < |aj|.

Proof. To prove this result, we will show that the optimal value of the following problem

max
x∈Hn

(φ̃S − φ̃G) (2.24)

is zero under conditions (i) or (ii). Consider an optimal solution (x, η, t) of the above

problem. By (2.21), at this point we have

ti−1ηi + t̄i−1ηi − t̄i−1ηi = η̄iti−1 + ηiti−1 − η̄iti−1, ∀i ∈ I \ {1}. (2.25)

Define t̃i = (ti − ti)/(t̄i − ti) for all i ∈ I, x̃i = (xaii − xaii )/(x̄
ai
i − xaii ) for all i ∈ I1,

x̃i = (xi−xi)/(x̄i−xi) for all i ∈ I2 and x̃i = (x̄i−xi)/(x̄i−xi) for all i ∈ I3. From (2.25)

it follows that t̃i−1 = x̃i and t̃i = t̃i−1 for all i ∈ I \ {1}. Letting λ = x̃i for some i ∈ I,

yields φ̃S = (φ̄− φ)λ+ φ. We now consider two cases:

Case (i). When I1 = ∅, any optimal solution of (2.24) is attained over the line segment

L given by x̃1 = . . . = x̃n, x̃i ∈ [0, 1] for all i ∈ I. Furthermore, the restriction of φ̃S to L
is the line segment connecting the minimum and maximum of φ̃G, i.e. the points λ = 0,

φ = φ and λ = 1, φ = φ̄. Since φ̃G is concave, we have φ̃S ≤ φ̃G for all x ∈ Hn.

Case (ii). When I1 6= ∅, let aj denote the negative exponent. Substituting for λ into

φ̃G, we obtain φ̃G = (φ̄− φ)f̃(λ) + φ, where f̃(λ) = (f(λ)− φ1/ξ)/(φ̄1/ξ − φ1/ξ), and

f(λ) =
{

(x̄j − λ∆xj)
aj
∏

i∈I1

(η
i
+ λ∆ηi)

∏

i∈I2

(xi + λ∆xi)
ai
}1/ξ

,
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where ∆ηi = η̄i − η
i
and ∆xi = x̄i − xi, for all i ∈ I. Now, we show that f(λ) is convex

in λ. It is simple to check that the second derivative of f(λ) can be written as:

f ′′(λ) =
f(λ)

ξ2

{(

∑

I1

∆ηi
η
i
+ λ∆ηi

+
∑

I2

ai∆xi
xi + λ∆xi

− aj∆xj
x̄j − λ∆xj

)2

− ξ
(

∑

I1

∆η2i
(η

i
+ λ∆ηi)2

+
∑

I2

ai∆x
2
i

(xi + λ∆xi)2
+

aj∆x
2
j

(x̄j − λ∆xj)2

)}

. (2.26)

The only negative expression in (2.26) is g = −ξ aj∆x2
j

(x̄j−∆xjλ)2
. Since ξ < 0 and |ξ| < |aj|,

if we replace g by g̃ = −(
aj∆xj

x̄j−∆xjλ
)2, we obtain a lower bound for f ′′(λ). However, g̃

cancels out when expanding (2.26), which implies that f ′′(λ) ≥ 0. Since ξ < 0, we have

φ̄1/ξ ≤ f(λ) ≤ φ1/ξ. It follows that f̃(λ), λ ∈ [0, 1], is a nonnegative concave function

with f̃(λ) = λ at λ = 0 and λ = 1. Hence, at any optimal solution of (2.24), we have

φ̃S ≤ φ̃G.

In the sequel, we assume that ai > 0 for all i ∈ I and I1 6= ∅. Next, we analyze

the maximum relaxation gap between φ̃S and φ; i.e. the optimal value of the following

problem:

max
x∈Hn

(φ̃S − φ). (2.27)

By (2.21), at an optimal solution of the above problem, the equalities given by (2.25) are

valid. First, consider xk = x̄k for k ∈ K ⊂ I. It follows that tk = tk−1η̄k for all k ∈ K.

Substitute the latter expression for tk in (2.21) to compute tn and factor out the constant

term α =
∏

k∈K η̄k. Define I ′ = I \ K, and n′ = |I ′|. The maximum gap in this case is

equal to the maximum of the following problem:

max
x∈Hn′

α(ϕ̃S − ϕ), (2.28)

where ϕ =
∏

i∈I′ x
ai
i , and ϕ̃S denotes the corresponding standard overestimator. As we

argue later, for our cases of interest, any optimal solution of this problem is a local

maximum of (2.27). Similarly, if xk = xk for k ∈ K ⊂ I, then the maximum gap is equal

to the maximum of (2.28) with α =
∏

k∈K ηk, and ϕ and ϕ̃S as defined before. For now,

suppose that the maximum of (2.27) is attained at an interior point. Using a similar

argument as in the proof of Proposition 2.11, it follows that, at a point of maximum gap,

x̃i = λ for all i ∈ I, where x̃i is as defined in the proof of Proposition 2.11. Let βi = xi/x̄i
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for all i ∈ I. It follows that, the maximum of (2.27) is attained at the optimal solution

of the following univariate concave maximization problem:

max
0≤λ≤1

(

1−
∏

i∈I
βai
i

)

λ+
∏

i∈I
βai
i −

∏

i∈I1

(

(1− βai
i )λ+ βai

i

)

∏

i∈I2

(

(1− βi)λ+ βi

)ai
. (2.29)

Proposition 2.12. Consider the G-concave signomial φ =
∏

i∈I x
ai
i over a box Hn, with

ai > 0 for all i ∈ I and
∑

i∈I ai > 1. Assume that I1 6= ∅. Then, gGmax < gSmax if one of the

following conditions is met:

(i) xi = 0 for all i ∈ I;

(ii)
(xi
x̄i

)ai
=
xj
x̄j

= β for all i ∈ I1 and j ∈ I2.

Proof. Case (i). Define ξ′ = |I1|+
∑

I2
ai. Letting βi = 0 for all i ∈ I in (2.29), we obtain:

gSmax =
ξ′ − 1

ξ
′ ξ′

ξ′−1

φ̄. (2.30)

Consider again the case where xk = x̄k for some k ∈ K ⊂ I. As argued earlier, the

maximum gap in this case is given by (2.30) provided that ξ′ is computed over I ′ = I \K.

Since gSmax is an increasing function of ξ′, the maximum gap for this case is strictly less

than the value given by (2.30) and therefore corresponds to a local maximum of (2.27).

Further, if xk = 0 for some k ∈ I, then α in (2.28) as well as the maximum gap go to

zero. Letting φ = 0 in (2.22), we obtain:

gGmax =
(ξ − 1)

ξ
ξ

ξ−1

φ̄. (2.31)

By (2.30) and (2.31), gGmax < gSmax when ξ < ξ′ or, equivalently,
∑

i∈I1 ai < |I1|. Since
ai < 1 for all i ∈ I1, this condition holds if I1 6= ∅.

Case (ii). Substituting βai
i = βj = β for all i ∈ I1 and j ∈ I2 in (2.29) yields:

max
0≤λ≤1

(1− βξ′)λ+ βξ′ −
(

(1− β)λ+ β
)ξ′
.
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The maximum gap in this case is equal to

gSmax = φ̄

{

(ξ′ − 1)

ξ
′ ξ′

ξ′−1

(1− βξ′

1− β

)
ξ′

ξ′−1 − β
(1− βξ′−1

1− β

)

}

. (2.32)

Now, assume xk = x̄k for k ∈ K ⊂ I. It can be shown that gSmax in (2.32) is an increasing

function of ξ′. Thus, the point x under consideration is a local maximum. A similar

conclusion is immediate when xk = xk, k ∈ K ⊂ I. It is simple to check that (2.32) can

be equivalently written as:

gSmax =
(ξ′ − 1)

ξ
′ ξ′

ξ′−1

(

φ̄− φ

φ̄
1

ξ′ − φ
1

ξ′

)
ξ′

ξ′−1

− (φ̄φ)
1

ξ′

(

φ̄
1− 1

ξ′ − φ
1− 1

ξ′

φ̄
1

ξ′ − φ
1

ξ′

)

. (2.33)

From (2.23) and (2.33), it follows that, if I1 6= ∅, then gGmax < gSmax.

Thus, we conclude that the transformation method exploits the concavity of the uni-

variate terms xaii to provide a tighter overestimator of φ, whereas, in the standard method,

only the cardinality of the set of concave terms is accounted for. However, the transfor-

mation overestimator does not globally dominate the standard overestimator. Namely,

φ̃G is tighter in the interior, especially around the normalized center of the domain (i.e.

x̃1 = x̃2 = . . . = x̃n), while φ̃
S is tighter near the boundaries and is exact at the boundaries.

Thus, it is mostly advantageous to include both relaxations in computational implemen-

tations. As an example, consider φ = x0.51 x0.72 over [0, 1]2. The two overestimators are

compared in Figure 2.1 at various cross sections.
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0.6
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0 0.5 1
0

0.2

0.4

0.6

x1 − x2 = 0 x1 + x2 = 1 x2 (x1 = 0.5) x1 (x2 = 0.5)

Figure 2.1: Comparison of the standard and transformation overestimators for φ(x) =
x0.51 x0.72 over [0, 1]2 at various cross sections. The nonconcave function φ is shown in solid
black, its standard relaxation φ̃S in dotted blue, and the proposed relaxation φ̃G in dashed
red.
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While Proposition 2.12 is valid under certain restrictive assumptions on the lower and

upper bounds, similar gap reductions are observed for the general case in practice. Denote

by γ the percentage reduction of the maximum gap when employing φ̃G instead of φ̃S:

γ = (gSmax − gGmax)/g
S
max × 100%.

The maximum gap reduction values for a number of G-concave signomials are listed in

Table 2.1. For each case, γ is the average value of maximum gap reductions computed

over five randomly generated domains in [0.1, 2.0] for each variable.

Table 2.1: Average maximum gap reduction (γ) due to G-concavity transformations for
overestimating G-concave signomials

exponents γ(%) exponents γ(%) exponents γ(%)

{0.4, 0.7} 80.71 {0.3, 0.4, 0.5} 76.53 {0.2, 0.3, 0.4, 0.5} 65.67
{0.3, 1.0} 42.97 {0.5, 0.6, 0.7} 35.30 {0.3, 0.4, 0.5, 0.8} 37.57
{0.6, 0.8} 39.24 {0.4, 0.7, 1.0} 21.42 {0.4, 0.5, 0.6, 0.8} 28.98

By transforming a G-concave signomial in one step, we obtain an overestimator which

is a function of n variables, while, in the standard approach, all intermediate constraints

are functions of two variables. The latter feature is mostly advantageous for methods that

rely on polyhedral outer-approximations in low-dimensional spaces [64]. To decompose

the multivariate relaxation into low-dimensional subspaces and benefit from both methods

to overestimate general nonconcave signomials, we propose a recursive transformation

and relaxation (RT) scheme, which combines the standard relaxation and G-concavity

transformations. Define the sets of subsets

S := {Sk ⊆ I1 :
∑

i∈Sk

ai ≤ 1, Sk ∩ Sj = ∅, ∀k, j},

and

T := {Tj ⊆ I1 :
∑

i∈Tj

ai > 1, Tj ∩ Tk = ∅, ∀k, j}.

Further, assume S ∪ T forms a partition of I1. Let ξj =
∑

i∈Tj ai for all Tj ∈ T , and

let K = |S|, J = |T |, N = K + J + |I \ I1|. Introduce tm ∈ [
∏

Sk
η
i
,
∏

Sk
η̄i] for all

Sk ∈ S, m = 1, . . . , K, tm ∈
[
∏

Tj ηi,
∏

Tj η̄i
]

for all Tj ∈ T , m = K + 1, . . . , K + J , and
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tm ∈ [η
i
, η̄i] for all i ∈ I \ I1, m = K + J + 1, . . . , N . We define the RT overestimator of

φ as follows:

φ̃RT = rN

rm = min

{

r̄m−1tm + tmrm−1 − r̄m−1tm

rm−1tm + t̄mrm−1 − rm−1t̄m

}

, m = 2, . . . , N

tm =
∏

i∈Sk
xaii , ∀Sk ∈ S, m = 1, . . . , K

tm =
(

∏

i∈Tj x
ai
ξj

i − t
1

ξj
m

)

(

t̄m−tm

t̄

1
ξj
m −t

1
ξj
m

)

+ tm, ∀Tj ∈ T , m = K+1, . . . , K+J

tm =
x̄
ai
i −x

ai
i

x̄i−xi
(xi − xi) + xaii , ∀i ∈ I \ I1, m = K + J + 1, . . . , N,































































(2.34)

where r1 = t1, rm =
∏m

j=1 tj and r̄m =
∏m

j=1 t̄j for all m ∈ {1, . . . , N}. Each G-concave

signomial associated with a subset Tj is overestimated via transformation as defined

by (2.22). Convex terms are relaxed by affine envelopes, and the resulting expression

is outer-approximated using rAI. Obviously, for a given signomial φ, there are various

ways of defining subsets S and T . Next, we demonstrate the effect of this partitioning on

the maximum relaxation gap between φ̃RT and φ, and define an optimal variable grouping

to obtain the least maximum gap.

Proposition 2.13. Consider φ =
∏

i∈I x
ai
i , with ai > 0, xi ∈ [0, x̄i] for all i ∈ I and

∑

i∈I ai > 1. Consider an RT relaxation of φ as defined in (2.34). Let ξ̂ = K+
∑

Tj∈T ξj+
∑

i∈I2 ai. Then, the maximum gap between φ̃RT and φ is:

gRT
max =

ξ̂ − 1

ξ̂
ξ̂

ξ̂−1

φ̄. (2.35)

Proof. Let xi = 0 for all i ∈ I in (2.34). By the second equation of (2.34), at any point

of maximum gap between φ̃RT and φ, we have r̃m−1 = tm/t̄m and r̃m = r̃m−1, for all

m = 2, . . . , N , where r̃m = rm/r̄m. Using the last three of (2.34), tm can all be eliminated

and the above relations can be rewritten in terms of x̃i = xi/x̄i for all i ∈ I to yield

∏

m∈Sk

x̃amm =
(

∏

m∈Tj

x̃amm

)1/ξ̂j
= x̃i, ∀Sk ∈ S, Tj ∈ T , i ∈ I \ I1.
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Letting r̃N = λ, it can be shown that the maximum gap between φ̃RT and φ can be found

by solving the following univariate concave maximization problem

max
λ∈[0,1]

φ̄(λ− λξ̂),

where ξ̂ is defined in the statement of the proposition. It is then simple to check that

gRT
max is given by (2.35).

Under the conditions of Proposition 2.13, the least maximum gap is attained when ξ̂ is

minimum. The value of ξ̂ depends on the form of the sets S and T . Next, we characterize

a partitioning of the set A := {ai : i ∈ I1} that minimizes ξ̂. We assume |Sk| ≤ 2 for all

Sk ∈ S and |Tj| ≤ 2 for all Tj ∈ T . We denote by Π a partitioning of the set A with its

corresponding ξ̂ denoted by ξ̂(Π).

Proposition 2.14. Let A = {ai : i ∈ I1}. Without loss of generality, assume that the

elements of A are in ascending order. Then, a partition of A that minimizes ξ̂ is given

by:

Π∗ := {{a1, a2m}, {a2, a2m−1}, . . . , {am, am+1}} , (2.36)

if |A| = 2m, and by Π∗ ∪ {a2m+1}, otherwise.

Proof. First, we address the case |A| = 2m. Consider a partition Π = {d1, . . . , dm} of the

set A, where di = {aj , ak} for some j, k ∈ I1, and i = 1, . . . , m. We are interested in

finding partition improving strategies, i.e. given di1 = {aj1 , ak1} and di2 = {aj2, ak2} in Π,

we are looking for exchanges that result in new subsets d′i1 = {aj1, ak2} and d′i2 = {aj2 , ak1}
that provide a partition Π′ of A such that ξ̂(Π′) ≤ ξ̂(Π). It is simple to show that, if

di1, di2 ∈ S or di1 , di2 ∈ T , then ξ̂(Π′) ≥ ξ̂(Π). Let di1, di2 ∈ S. Two cases arise: (i) if

d′i1, d
′
i2
∈ S, then ξ̂(Π) = ξ̂(Π′); (ii) if d′i1 ∈ T and d′i2 ∈ S, then ξ̂(Π′) > ξ̂(Π). A similar

conclusion is immediate if di1, di2 ∈ T . Thus, without loss of generality, suppose that

di1 ∈ S and di2 ∈ T . It can be shown that an exchange is improving if and only if one of

the following holds:

1. d′i1, d
′
i2 ∈ S;

2. d′i1 ∈ S, d′i2 ∈ T such that ak1 ≤ ak2;

3. d′i1, d
′
i2
∈ T .
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We claim that, given any partition Π of A and Π 6= Π∗, it is possible to construct

Π∗ from Π, through a series of improving exchanges. By (2.36), the partition Π∗ can

be uniquely characterized by the following inclusion property: given any di1 , di2 ∈ Π∗, if

aj1 ≤ aj2 , then ak2 ≤ ak1 . It follows that, for any partition Π 6= Π∗, there exists some

di1, di2 ∈ Π such that aj1 ≤ aj2 and ak1 < ak2 . Now apply the exchange d′i1 = {aj1, ak2} and
d′i2 = {aj2, ak1}, which satisfies the inclusion property. We show that such an exchange

is always improving. First, suppose that di1, di2 ∈ S (resp. di1 , di2 ∈ T ); it follows that

d′i1, d
′
i2
∈ S (resp. d′i1, d

′
i2
∈ T ), i.e. the value of ξ̂(Π) remains unchanged. Without loss

of generality, let di1 ∈ S and di2 ∈ T . The following cases arise:

(i) d′i1, d
′
i2
∈ S (resp. d′i1, d

′
i2
∈ T ). By Case 1 (resp. Case 3) above, this exchange is

always improving.

(ii) d′i1 ∈ S, d′i2 ∈ T . By Case 2 above, this exchange is improving provided that

ak1 ≤ ak2 , which is satisfied by assumption.

After updating Π by replacing di1 , di2 with d
′
i1
, d′i2, we apply a similar exchange to any

di1, di2 ∈ Π that does not satisfy the inclusion property. By employing this procedure

recursively, we construct the partition Π∗ from any partition Π 6= Π∗, through a set of

exchanges all of which are improving. Consequently, Π∗ is optimal.

Now, we prove the result for the case |A| = 2m+1. We claim that Π = Π∗ ∪ {a2m+1}
is optimal. Let Π′ = Π̂ ∪ {ak}, where Π̂ is obtained by replacing di = {aj, ak} ∈ Π∗

with d′i = {aj, a2m+1} such that ak < a2m+1, for some k ∈ {1, . . . , m}. We show that

ξ̂(Π) ≤ ξ̂(Π′). To calculate ξ̂(Π′), consider the following cases:

(i) di ∈ S. If d′i ∈ S, then ξ̂(Π) = ξ̂(Π′). Otherwise, ξ̂(Π′) = ξ̂(Π) + aj + a2m+1 − 1. It

follows that ξ̂(Π) < ξ̂(Π′).

(ii) di ∈ T . In this case, we have ξ̂(Π′) = ξ̂(Π)−ak+a2m+1, which implies ξ̂(Π) < ξ̂(Π′).

Thus, Π is optimal.

Proposition 2.13 requires nonnegative exponents and zero lower bounds for all vari-

ables. In practice, however, similar gap reductions are observed for the general case. The

percentage reduction of the maximum gap when employing φ̃RT instead of the standard

relaxation φ̃S, i.e.

γ = (gSmax − gRT
max)/g

S
max × 100%
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is provided in Table 2.2 for a number of nonconcave signomials. Note that, in all instances

the signomial term is not concave transformable. As before, the values of γ in this table

represent averages over five randomly generated domains in [0.1, 2.0] for each variable.

We conclude that G-concavity transformations and decompositions based on the parti-

tioning outlined in Proposition 2.14 lead to considerable reductions of the maximum gap

of factorable relaxations for nonconcave signomials.

Table 2.2: Average maximum gap reduction (γ) due to RT method for overestimating
signomials

exponents γ(%) exponents γ(%) exponents γ(%)

{-0.6, 0.4, 0.5} 44.37 {-0.5, 0.4, 0.6, 1.2} 25.66 {-0.5, 0.4, 0.5, 0.6, 0.7} 25.75
{-0.5, 0.4, 0.8} 35.67 { 0.4, 0.5, 0.7, 1.5} 23.51 {-0.3, 0.4, 0.6, 0.8, 1.5} 20.56
{-1.5, 0.5, 0.6} 20.52 {-0.8,-0.5, 0.4, 0.7} 22.14 {-0.8,-0.5, 0.5, 0.6, 0.7} 20.01
{ 0.6, 0.7, 1.5} 13.15 {-1.5, 0.5, 0.6, 1.0} 14.03 {-1.5, 0.5, 0.6, 1.0, 1.2} 10.50

2.5 Products and ratios of convex and/or concave

functions

In this section, we generalize the results of Propositions 2.9 and 2.10 using the com-

position rules developed in Section 2.2. This generalization will enable us to provide

tight relaxations for a large class of convex-transformable functions, including products

and ratios of convex and/or concave functions. Such functional forms appear frequently

as component functions of nonconvex factorable expressions. For numerical comparisons

of the proposed relaxations with the conventional factorable scheme, we compute the

percentage gap closed by transformation relaxation denoted by φ̃G, as follows:

(φ̃S − φ̃G)/(φ̃S − φ)× 100%,

where φ̃S denotes a factorable relaxation of φ.

Proposition 2.15. Consider φ =
∏

i∈I φ
ai
i over a box, where ai > 0 for all i ∈ I and

∑

i∈I ai > 1. Let φi be concave and nonnegative for all i ∈ I. Then, φ is G-concave with

G(t) = t1/ξ, where ξ =
∑

i∈I ai. Furthermore, φ̃G is given by (2.22).
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Proof. Follows directly from Propositions 2.2 and 2.10.

Remark 2.4. For a given function φ and cardinality of I in Proposition 2.15, there are

infinitely many possible representations in terms of φi and ai. However, by Proposition 2.8,

the tightness of the transformation relaxation is determined by the value of ξ alone.

To obtain the tightest relaxation, each ai should be as small as possible, provided that

the concavity of the corresponding φi is preserved. For example, consider the function

ψ =
(
∑

i∈I x
1/p
i

)p
, p > 1, xi ≥ 0 for all i ∈ I. Let φak

k = ψ for some k ∈ I. Then,

the condition of Proposition 2.15 holds for any ak ∈ [1, p]. However, letting ak = 1 and

φk = ψ provides the tightest relaxation.

Example 2.1. Consider φ(x) = (x2 − 1)
(

log(x+ 2)
)2
, x ∈ [−1, 1]. To construct a

factorable relaxation, let t1 = x2 − 1 and t2 = log(x + 2). Denote by t3 the affine

overestimator of t22 over the range of t2. After convexifying t1t3 using bilinear envelopes [1],

we obtain the following underestimator for φ:

φ̃S = max{(log 3)2(x2 − 1), − log 3 log(x+ 2)}.

By Proposition 2.15, the function −φ is G-concave with G(t) = t1/3. Thus, an alternative

underestimator of φ is given by:

φ̃G = −0.746
(

(1− x2)(log(x+ 2))2
)1/3

.

The standard and transformation relaxations are compared in Figure 2.2. While neither

of the underestimators is globally dominant, φ̃G leads to a much smaller gap integrated

over the domain of interest.

Example 2.2. Consider φ =
√

1− x21(x1 + x2)
4, x1 ∈ [−0.2, 0.9], x2 ∈ [0.5, 1.5]. We are

interested to construct a concave overestimator for φ. Let t1 =
√

1− x21, t2 = x1 + x2

and denote by t3 the affine overestimator of t42 over the range of t2. Relaxing the bilinear

term t1t3 using its concave envelope [1], we obtain:

φ̃S = min
{

0.0081
√

1− x21 + 15.80(x1 + x2)− 4.74,

33.18
√

1− x21 + 6.89(x1 + x2)− 16.52
}

.
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Figure 2.2: Comparison of the standard and transformation relaxations for φ = (x2 −
1)(log(x + 2))2, x ∈ [−1, 1] in Example 2.1. The nonconvex function φ is shown in solid
black, its standard underestimator φ̃S in dotted blue, and the proposed underestimator
φ̃G in dashed red.

By Proposition 2.15, φ is G-concave with G(t) = t2/9. Hence, a transformation overesti-

mator of φ is given by:

φ̃G = 11.04

(

√

1− x21(x1 + x2)
4

)2/9

− 3.76.

The two relaxation are compared in Figure 2.3(b) at x2 = 1.0, and the gap closed by φ̃G,

is depicted in Figure 2.3(a). Up to over 85% of the gap is closed by φ̃G.
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Figure 2.3: Comparison of the standard and transformation relaxations for φ =
√

1− x21(x1 + x2)
4 x1 ∈ [−0.2, 0.9], x2 ∈ [0.5, 1.5] in Example 2.2. In Fig 2.3(b), the

nonconcave function φ is shown in solid black, its standard overestimator φ̃S in dotted
blue, and the proposed overestimator φ̃G in dashed red.

Proposition 2.16. Consider φ =
∏

i∈I φ
ai
i over a box, where aj < 0 for some j ∈ I and

∑

i∈I\{j} ai < |aj|. Let φi be positive and concave for all i ∈ I \ {j}, and let φj be positive
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and convex. Then, φ is G-concave with G(t) = −t1/ξ, ξ =
∑

i∈I ai, and its associated

overestimator φ̃G is given by (2.22).

Proof. Follows directly from Propositions 2.2 and 2.10.

Remark 2.5. As a special case of Proposition 2.16, namely, when φ is a ratio of a

nonnegative concave function over a positive convex function, the above transformation

has been applied to convert a class of fractional programs to concave programs [51].

Remark 2.6. Proposition 2.16 requires the value of the negative exponent aj to be finite.

For example, consider the G-concave function φ =
√
x exp (−x). Since exp(ax) is convex

for all a < 0, Proposition 2.16 cannot be used for overestimating φ. However, as we detail

in the next section, setting G(t) = log t provides a tight overestimator for φ in this case.

Proposition 2.17. Consider φ =
∏

i∈I φ
ai
i over a box, where ai < 0 for all i ∈ I \{j} and

∑

i∈I\{j} |ai| < aj <
∑

i∈I\{j} |ai| + 1. Let φi be positive and concave for all i ∈ I \ {j},
and let φj be nonnegative and convex. Then, φ is G-convex with G(t) = t1/ξ, ξ =

∑

i∈I ai,

and (2.22) provides an underestimator for it.

Proof. Follows directly from Propositions 2.2 and 2.9.

Remark 2.7. Using a similar argument as in Remark 2.4, it is simple to show that, for

a given function φ and cardinality of I, the tightest relaxation in Proposition 2.16 (resp.

Proposition 2.17) is obtained by setting aj and ai, i ∈ I\{j} to the smallest (resp. largest)

possible values while preserving convexity of φj and concavity of φi, i ∈ I \ {j}.

Example 2.3. Consider φ(x) = log(x + 1)/(x4 + x2 + 1), x ∈ [0.1, 4]. To construct a

concave overestimator of φ using the standard factorable method, let t1 = log(x+ 1) and

t2 = (x4 + x2 + 1). Employing the concave envelope of the fractional term [61, 62] to

overestimate t1/t2, we obtain:

φ̃S = 10−2min
{

0.37 log(x+ 1)− 0.58(x4 + x2) + 158.75,

100 log(x+ 1)− 0.035(x4 + x2)
}

.

By Proposition 2.16, φ is G-concave with G(t) = −t−1/3. Thus, we have the following

transformation overestimator for φ:

φ̃G = 0.427− 0.076
(

log(x+ 1)/(x4 + x2 + 1)
)−1/3
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The two relaxations are depicted in Figure 2.4. Clearly, the transformation method pro-

vides a significantly tighter relaxation.
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Figure 2.4: Comparison of the standard and transformation relaxations for φ = log(x +
1)/(x4+x2+1), x ∈ [0.1, 4] in Example 2.3. The nonconcave function φ is shown in solid
black, its standard overestimator φ̃S in dotted blue, and the proposed overestimator φ̃G

in dashed red.

Example 2.4. Consider φ = 1/(1 + x21 + 3x22), over [−4, 4]2. Letting t1 = 1 + x21 + 3x22

and overestimating the convex term t2 = 1/t1 using its affine envelope, we obtain the

following concave relaxation of φ:

φ̃S = 1− 0.015(x21 + 3x22).

By Proposition 2.16, φ is G-concave with G(t) = −t−1/2. Hence, φ̃G is given by:

φ̃G = 1.14− 0.14
√

1 + x2 + 3y2.

The two relaxations are compared in Figure 2.5. The transformation relaxation dominates

the standard approach.

2.6 Log-concave functions

Another important class of concave-transformable functions are log-concave functions

[45]. A function φ : C → R+ is logarithmically concave (log-concave) if logφ is concave

over C. It is simple to check that φ =
∏

i∈I φ
ai
i , where ai > 0 and φi is positive and concave

for all i ∈ I is log-concave and can be overestimated after a logarithmic transformation.
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Figure 2.5: Comparison of the standard and transformation relaxations for φ =
1/(1 + x21 + 3x22), over [−4, 4]2 in Example 2.4. In Fig 2.5(b), the nonconcave function φ
is shown in solid black, its standard overestimator φ̃S in dotted blue, and the proposed
overestimator φ̃G in dashed red.

However, by Proposition 2.8, the transforming function defined in Proposition 2.15 dom-

inates the log function. Thus, in this section, we are considering classes of log-concave

functions that are not concave transformable by means of the transformations of the

previous section.

Proposition 2.18. Consider the function

φ =
f(x)a exp g0(x)

1 +
∑

i∈I exp gi(x)
, a > 0

over a convex set C ⊂ R
n. Let f(x) be concave and positive, g0(x) be concave, and gi(x),

i ∈ I be convex over C. Then, φ is log-concave. Further, let [φ, φ̄] ⊇ Iφ(C). Then, a

concave overestimator of φ over C is given by:

φ̃G =
(logφ− logφ)(φ̄− φ)

log(φ̄/φ)
+ φ. (2.37)

Proof. Taking the log of φ, we obtain log φ = a log f(x) + g0(x)− log(1+
∑

i∈I exp gi(x)).

The log-sum-exp function is convex and increasing. Thus, its composition with convex

functions gi, i ∈ I is convex as well. It follows that log φ is concave. Letting G(t) = log t

in (2.8), yields (2.37).

Several important instances of log-concave functions are derived from the function

φ introduced in Proposition 2.18. As an example, consider I = ∅, for which φ =
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f(x)a exp g(x). As another example, consider f(x) = 1, g0(x) = 1, and g(x) = x, which

yields φ = 1/(1 + exp x). Next, we examine some of these functional forms and compare

the relaxation given by Proposition 2.18 with a standard factorable approach.

Example 2.5. Consider the sigmoidal function φ = 1/(1+exp(−x)), x ∈ [−6, 6]. Letting

t = exp(−x) and overestimating the convex term 1/(1 + t) using its affine envelope, we

obtain the following factorable overestimator of φ:

φ̃S = 0.9975− 0.0025 exp(−x).

Clearly, the sigmoidal function is log-concave. Thus, an alternative overestimator for φ

can be obtained from (2.37):

φ̃G = 0.98− 0.166 log (1 + exp(−x)) .

The two overestimators are compared in Figure 2.6. The transformation overestimator is

strongly dominant.
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Figure 2.6: Comparison of the standard and transformation overestimators for φ = 1/(1+
exp(−x)), x ∈ [−6, 6] in Example 2.5. The nonconcave function φ is shown in solid black,
its standard overestimator φ̃S in dotted blue, and the proposed overestimator φ̃G in dashed
red.

Example 2.6. Consider φ(x) = x21 exp(x2−x1), x1 ∈ [0.1, 5], x2 ∈ [−1, 1]. Let t1 = x2−x1
and denote by t2 and t3 the affine overestimators of x21 and exp(t1), respectively. Utilizing

bilinear envelopes [1] to overestimate t2t3, yields:

φ̃S = min{12.54x1 + 0.0036x2 − 1.23, −8.89x1 + 8.90x2 + 53.41}.
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Exploiting the log-concavity of φ, we obtain the following overestimator for φ:

φ̃G = 0.62 + 0.13(2 log x1 − x1 + x2).

The two overestimators are depicted in Figure 2.7. The proposed overestimator is sig-

nificantly tighter than the standard relaxation, and results in gap reductions of up to

99%.
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Figure 2.7: Comparison of the standard and transformation overestimators for φ(x) =
x21 exp(x2−x1), x1 ∈ [0.1, 5], x2 ∈ [−1, 1] in Example 2.6. In Figure 2.7(b), the nonconcave
function φ is shown in solid black, its standard overestimator φ̃S in dotted blue, and the
proposed overestimator φ̃G in dashed red

2.7 Integration within the factorable framework

In this section, we utilize convex transformability in the construction of a convex re-

laxation for a general nonconvex factorable function defined over a convex set. As in the

standard factorable approach, this convex relaxation is constructed by recursively decom-

posing the nonconvex function up to the level that all intermediate expressions can be

bounded. We depart from the standard approach in that some intermediate expressions

are not further decomposed but outer-approximated after a convex or concave transforma-

tion. Via examples, we demonstrate that incorporation of the functional transformations

introduced in previous sections into the standard factorable framework leads to stronger

relaxations.
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Example 2.7. Consider

φ(x) =
(x+ 3)

(x2 + x+ 1)2
−

√
6− x− x2(0.4x+ 1)3/2, x ∈ [−2, 1.8].

This function has two local minima at x∗1 = −1.676 and x∗2 = 1.456, and one local

maximum at x∗3 = −0.481 (see Figure 2.8). A standard factorable decomposition of φ is

as follows:

t1 = x+ 3, t2 = (x2 + x+ 1)
2
, t3 = t1/t2,

t4 =
√
6− x2 − x, t5 = (0.4x+ 1)3/2, t6 = t4t5,

φ = t3 − t6.

All convex and concave univariate terms are over- and under-estimated, respectively, by

their affine envelopes. The bilinear and fractional terms are replaced by their convex and

concave envelopes [1, 61, 62]. We denote the resulting convex set by φ̃S. By Proposi-

tions 2.15 and 2.16, φ is the difference of two G-concave functions. Thus, we have the

following alternative decomposition:

t′1 = (x+ 3)/(x2 + x+ 1)
2
,

t′2 =
√
6− x2 − x(0.4x+ 1)3/2,

φ = t′1 − t′2.

Propositions 2.15 and 2.16 provide overestimators for t′1 and t′2. We replace the over-

estimators of t3 and t6 in the standard relaxation by the overestimators of t′1 and t′2,

respectively, and denote the resulting integrated relaxation by φ̃G. The standard and

integrated relaxations of φ are compared in Figure 2.8. As can be seen, exploiting convex

transformability of the component functions leads to a tighter relaxation of the overall

nonconvex expression. An even tighter outer-approximation is obtained by including both

relaxations.

Example 2.8. Consider

φ(x) = x

√
x+ 4

(1 + x2)2
+ 0.05x3, x ∈ [−1.5, 3.0].
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Figure 2.8: Comparison of the standard and integrated relaxations of φ = (x+ 3)/(x2 +
x+1)2−

√
6− x− x2(0.4x+1)1.5, x ∈ [−2, 1.8] in Example 2.7. The nonconvex function

φ is shown in solid black, its standard relaxation φ̃S in dotted blue, and the proposed
relaxation φ̃G in dashed red.

This function has two local minima at x∗1 = −0.562 and x∗2 = 1.53, and two local maxima

at x∗3 = −1.475 and x∗4 = 0.624 (see Figure 2.9). A standard decomposition of φ is given

by:

t1 =
√
x+ 4, t2 = (1 + x2)2, t3 = t1/t2,

t4 = x t3, t5 = x3,

φ = t4 + 0.05t5.

By Proposition 2.15, the function
√
x+ 4/(1 + x2)2 is G-concave. Thus, we have the

following alternative decomposition for φ:

t′1 =
√
x+ 4/(1 + x2)2, t′2 = x t′1, t

′
3 = x3,

φ = t′2 + 0.05t′3.

The integrated relaxation exploits G-concavity of t′1. The standard and integrated relax-

ations are compared in Figure 2.9. Clearly, the integrated relaxation is dominant.
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Figure 2.9: Comparison of the standard and integrated relaxations of φ = x
√
x+ 4/(1 +

x2)2+0.05x3, x ∈ [−1.5, 3.0] in Example 2.8. The nonconvex function φ is shown in solid
black, its standard relaxation φ̃S in dotted blue, and the proposed relaxation φ̃G in dashed
red.

2.8 Conclusions

This study demonstrates the potential benefits from exploiting generalized convexity

in the global optimization of nonconvex factorable programs. We studied convex trans-

formable functions, an important class of generalized convex functions. We proposed a

new method to outer-approximate such functions and applied it to a number of impor-

tant functional forms including signomials, products and ratios of convex and/or concave

functions, and log-concave functions. In all instances, the transformation relaxations were

shown to be considerably tighter than a standard one. Finally, via an integrated factorable

framework, we showed that exploiting the convex transformability of sub-expressions of

a nonconvex function leads to factorable decompositions that often provide stronger re-

laxations than the standard approach. This work can be considered as a step towards

bridging the gap between generalized convexity and global optimization. Future research

will integrate the proposed relaxations into a global solver and study its effect on the

convergence rate of branch-and-bound algorithms.
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Chapter 3

Convex envelopes generated from

finitely many compact convex sets

In this chapter, we consider the problem of constructing the convex envelope of a lsc

function defined over a compact convex set. We formulate the envelope representation

problem as a convex optimization problem for functions whose generating sets consist

of finitely many compact convex sets. In particular, we consider nonnegative functions

that are products of convex and component-wise concave functions and derive closed-form

expressions for the convex envelopes of a wide class of such functions. Several examples

demonstrate that these envelopes reduce significantly the relaxation gaps of widely used

factorable relaxation techniques.

3.1 Introduction

By definition, the tightest convex outer-approximation of a nonconvex set is obtained

using its convex hull relaxation. The formal representation of the convex hull of a general

nonconvex set and the study of its dimensionality date back to the works of Minkowski [42]

and Carathéodory [9], respectively. A detailed treatment of this concept can be found

in [47] and more recent results in [48, 18, 6]. In the context of combinatorial optimization,

there is an extensive literature on constructing the convex hulls for problems with special

structures [43]. In particular, characterizing the convex hull of the union of polyhedral sets

has been pursued under the name of disjunctive programming and successfully employed

to address many discrete problems [3, 4]. These results have been further extended to
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construct the convex hull of disjunctions of convex sets [10] and build relaxations for

convex MINLPs [56, 15, 13]. In the special case where all disjunctions belong to orthogonal

linear subspaces, Tawarmalani et al. [59] provide an explicit characterization of the convex

hull of the union of the disjunctions in the space of the original variables.

In the context of nonconvex NLPs, there has been a line of similar research to con-

struct the convex and concave envelopes of nonconvex functions that appear frequently

in nonconvex optimization problems. However, until recently, convexification results in

this area were restricted to a few classes of functions with polyhedral convex or con-

cave envelopes [46, 57]; these results address bilinear [1], trilinear [39], three-dimensional

edge-concave functions [40], and multilinear functions [53, 5]. Tawarmalani et al. [60]

considered supermodular functions with polyhedral concave envelopes and derived ex-

plicit representations for the concave envelope of such functions over hyperrectangles and

a variety of polyhedral subdivisions of hyperrectangles.

Non-polyhedral convex envelopes were first systematically studied by Tawarmalani and

Sahinidis [62], who derived an explicit representation for the convex envelope of x/y over

a subset of the nonnegative orthant. In another study, Tawarmalani and Sahinidis [61]

proposed a convex formulation for constructing the convex envelope of f(x, y) over a box

under the assumption that f is concave in y ∈ R and convex in x ∈ R
n. Jach et al.

[20] considered (n− 1)-convex functions with indefinite Hessians over a box, and showed

that the convex envelope of such functions can be obtained by solving a series of lower-

dimensional optimization problems. The latter work also derived analytical descriptions

for the convex envelopes of some bivariate functions in this category; namely, bivariate

functions of the form f = g(xy) over a nonnegative box, where g is an increasing convex

function, and bivariate indefinite quadratic functions. Tawarmalani et al. [60] utilized

the orthogonal disjunctions theory of [59] to derive the convex envelope for a function of

the form xg(y) over the unit hypercube, where g(·) is a monotone convex function. An

explicit representation for the convex envelopes of functions whose convex combinations

are pairwise complementary was provided by Tawarmalani [58]. Moreover, the author

of [58] considered the problem of simultaneous convexification of a collection of functions

and provided sufficient conditions under which individual convexification of functions

leads to the simultaneous convexification of the collection.

In this chaper, we formulate as a convex NLP, the problem of constructing the convex

envelope of a lsc function whose generating set is representable as the union of a finite
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number of compact convex sets. Our convexification argument is based on the concept of

the perspective transformation, which has also been employed in [10, 56, 15, 13] to derive

a convex formulation for the convex hull relaxation of disjunctive programs. Our devel-

opment unifies all prior results in the convexification of functions with non-polyhedral

envelopes and extends to many additional classes of functions that appear frequently in

nonconvex NLPs and MINLPs. We focus on functions of the form φ = f(x)g(y), x ∈ R
m,

y ∈ R
n over a box, where f(x) is a nonnegative convex function and g(y) is a nonneg-

ative component-wise concave function. While our approach extends to more general

functions, we restrict our study to the case when f(x), x ∈ R
m has a power or an expo-

nential form and derive explicit characterizations for the convex envelope of a wide class

of such functions. These functions appear frequently in the widely used GLOBALLib [14]

and MINLPLib [8] collections of global optimization test problems. Through several ex-

amples, we demonstrate that our convex envelopes reduce significantly the relaxation gap

of standard factorable relaxations.

The remainder of the chapter is structured as follows. We first provide preliminary

material on constructing the convex envelopes of lsc functions in Section 3.2. In Sec-

tion 3.3, we study nonnegative functions that are products of convex and component-wise

concave functions. In Section 3.4, we restrict attention to products of convex functions

with univariate concave and bivariate component-wise concave functions. We derive al-

gebraic expressions for the convex envelopes of various functions that are building blocks

of nonconvex optimization problems. Finally, conclusions are offered in Section 3.5.

3.2 Preliminaries

In this section, we present some basic properties of the convex envelopes and derive

a basic formulation that we will use in the remainder of the chapter. Throughout the

chapter, φ(x) represents a lsc function defined over a compact convex set C ⊂ R
n. The

relative interior of C will be denoted by ri(C), and the epigraph of φ over C will be denoted

by epiCφ. The convex envelope of φ over C, denoted by convCφ, is defined as the greatest

convex function majorized by φ over C. When the domain is clear from the context, we

may drop the subscript C from convCφ. Similarly, the concave envelope of φ over C is the

lowest concave function minorized by φ over C.
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3.2.1 A convex formulation for the envelope representation prob-

lem

A closed convex set is the convex hull of its extreme points and extreme directions (cf.

Theorem 18.5 in [47]). It follows that the convex envelope of a lsc function φ over a

compact convex set C can be fully characterized by the set of extreme points of the

convex hull of epiCφ. We will therefore refer to the projection of this set on C as the

generating set of the convex envelope of φ over C and will denote it by GCφ. To construct

convCφ, by Carathéodory’s theorem (cf. Theorem 17.1 in [47]), one needs to consider only

n+1 or fewer points in the generating set, even when GCφ is infinite. Hence, the value of

convCφ at a point x ∈ C can be found by solving the following optimization problem (see

[62] for details):

convCφ(x) = min
zi,λi

{

n+1
∑

i=1

λiφ(z
i) :

n+1
∑

i=1

λiz
i = x,

n+1
∑

i=1

λi = 1,

(3.1)

zi ∈ GCφ, λi ≥ 0, i = 1, . . . , n+ 1
}

,

where zi denotes a point in the generating set of convCφ and λi is the corresponding

convex multiplier. The multipliers, in general, depend on the value of the particular x

and, as a result, zi ∈ GCφ represents a semi-infinite nonconvex constraint. A significant

simplification for Problem (3.1) is possible when the generating set can be expressed as

a union of a finite number of closed convex sets, i.e. when GCφ = ∪i∈ISi, where Si ⊂ C
denotes a nonempty closed convex set for all i ∈ I = {1, . . . , p}. By convexity of Si, to

evaluate convCφ(x), it suffices to consider p points in the generating set, each belonging

to a different Si (cf. Theorem 3.3 in [47]). Therefore, for such functions, the envelope

representation problem simplifies to:

convCφ(x) = min
zi,λi

{

∑

i∈I
λiφ(z

i) :
∑

i∈I
λiz

i = x,
∑

i∈I
λi = 1, zi ∈ Si, λi ≥ 0, ∀i ∈ I

}

. (3.2)

While φ(x) is nonconvex over C, the condition zi ∈ Si ⊂ GCφ implies that φ(zi) is convex

over Si. However, Problem (3.2) is highly nonconvex due to the products of the form

λiφ(z
i) in the objective and λiz

i in the constraint set. In the special case where Si

is a singleton for all i ∈ I; i.e. when convCφ is a polyhedral function, zi is no longer
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an optimization variable and Problem (3.2) simplifies to an LP (see [5, 60]). We will

henceforth assume that there exists a subset Si, for some i ∈ I, that is not a singleton.

We also note that, if Si is a singleton for i ∈ I ′ ⊂ I, then zi, i ∈ I ′ is fixed.

Next, we show that, under very mild assumptions, Problem (3.2) can be reformulated

as a convex optimization problem. To this end, let Si = {u ∈ C : gi(u) ≤ 0}, for all i ∈ I,

where gi : R
n → R

mi is a vector mapping whose components gij, j = 1, . . . , mi are closed

convex functions. After introducing xi = λiz
i for all i ∈ I and substituting in (3.2), the

value of convCφ(x) can be found by solving the following convex problem:

(CX) min
xi,λi

∑

i∈I
λiφ

(

xi/λi
)

s.t.
∑

i∈I
xi = x

∑

i∈I
λi = 1

λi ≥ 0, ∀i ∈ I

λigij
(

xi/λi
)

≤ 0, j = 1, . . . , mi, i ∈ I.

Recall that φ is convex when restricted to Si, i ∈ I. Convexity of the objective of CX

follows from the fact that, given a convex function φ(xi) and λi > 0, the perspective of

φ defined as Φ(xi, λi) = λiφ(x
i/λi) is convex [18]. By compactness of C, when λi = 0,

we have xi = 0 and it can be shown that Φ(0, 0) = 0 (see Proposition 2.2.2 in [18]).

Hence, the objective function of CX is closed and bounded. Similar arguments hold for

the functions gij and the last set of inequality constraints of CX.

In the sequel, we assume that φ and gij for i ∈ {1, . . . , p}, j ∈ {1, . . . , mi}, are twice

continuously differentiable (C2) functions. Under these assumptions, it is simple to check

that, while convex and continuous, CX is not differentiable at the points where λi = 0

for some i ∈ I. Thus, for gradient-based convex NLP solvers, the numerical solution of

CX is plagued with numerical difficulties over the regions where some of the multipliers

are approaching zero. For some special functional forms, the perspective constraints can

be recast as second order cone constraints [16], and Problem CX can be reformulated as

a second order conic optimization problem. Several solution techniques involving barrier

methods [10] and perturbing the perspective transformations [15] have been proposed

in the literature to address the non-differentiability of the general problem numerically.
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Another difficulty in solving CX numerically is that its size depends on the number p of

convex components in the generating set. In turn, p, in the worst case, increases expo-

nentially in the number of original variables (n). However, as we detail in the following

sections, for certain cases, algebraic and geometric properties of the functions involved

can be exploited to solve Problem CX analytically and derive a closed-form expression

for the convex envelope (see also [61, 20]).

3.2.2 Identifying the generating set of the convex envelope

As it follows from the above discussion, identifying the generating set of a function

is a crucial step toward building its envelope. The following result (Theorem 7 in [62])

provides an exclusion criterion to identify regions that do not belong to the generating

set.

Proposition 3.1. [62] Let φ(x) be a lsc function on a compact convex set C. Consider a
point x0 ∈ C. Then, x0 /∈ GCφ if and only if there exists a convex subset X of C such that

x0 ∈ X and x0 /∈ GXφ.

If the subset X is a face of C, the converse of the above result is also true (cf. Propo-

sition 2.3.7 in [18]). This, so-called “transmission of extremality” property, leads to the

following corollary, which, in combination with Proposition 3.1, provides a powerful tool

for characterizing the generating set of many functions of practical interest.

Corollary 3.1. Let X denote a nonempty face of C and let ϕ denote the restriction of φ

to X . Then the restriction of GCφ to X is the generating set of ϕ over X .

For instance, given a C2 function φ defined over a compact convex set C, if the Hessian
of φ is not positive semidefinite at x0 ∈ ri(C), then x0 does not belong to GCφ. Now, con-

sider the major assumption in the derivation of Problem CX, namely that the generating

set of the convex envelope of the function of interest is the union of a finite number of

compact convex sets. There are many functions that do not satisfy this assumption. As

a simple example, consider φ = x2y over C = {(x, y) : 0.01 ≤ x ≤ 1, 0.1 ≤ y ≤ √
x}. The

generating set in this case is: GCφ = S1 ∪ S2, where S1 = {(x, y) : 0.01 ≤ x ≤ 1, y = 0.1}
and S2 = {(x, y) : 0.01 ≤ x ≤ 1, y =

√
x}. Obviously, S2 cannot be written as a union of

finitely many convex sets. However, there also exists a multitude of functions of practical
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interest whose generating sets are amenable to such a representation. Some examples

include:

1. Component-wise convex functions of the form φ =
∏n

i=1 fi(xi), xi ∈ R
mi , over a

box, where fi(xi) is a nonnegative convex function and the Hessian of φ restricted

to any face of the domain where two or more xi are not fixed is indefinite:

– φ = xa1x
b
2, where (a, b) ∈ {{(1,+∞)2} ∪ {(−∞, 0) × (1,+∞) : a + b<1}},

x1, x2 ∈ R, φ ≥ 0;

– φ = ax1xb2, where a > 0, b > 1, x1, x2 ∈ R, xb2 ≥ 0;

– φ = exp(x1x2), where x1, x2 ∈ R.

2. Products of nonnegative convex and component-wise concave functions, i.e. func-

tions of the form φ = f(x)g(y), where f(x) is nonnegative convex in [x, x̄] ⊂ R
m

and g(y) is component-wise concave in [y, ȳ] ⊂ R
n:

– φ = xayb, where a ∈ {(−∞, 0) ∪ (1,∞)}, b ∈ (0, 1], xa ≥ 0;

– φ = y
√
1 + x2, φ = yax, φ = y/(x1x2), where a > 0, x, y ∈ R, x1, x2 > 0;

– φ = y1y2/x, φ = (y1 + y2)/x, where y1, y2 ∈ R, x > 0;

– φ = x2y1y2, φ = x2(y1 + y2), φ = y1y2 exp(−x), where x, y1, y2 ∈ R.

3. Quasi-concave functions defined over a box (it follows from the definition of quasi-

concave functions that they are not locally convex at any point in the interior of

their domain and, as a result, this interior does not belong to the generating set):

– φ = y/(1 + x21), 1/(1 + x21 + x22), where y ≥ 0, x1, x2 ∈ R;

– φ = exp(x1/x2), where x1 ∈ R, x2 > 0;

– φ = 1/(x21 + x22 + x23)
a, where a > 0, x1, x2, x3 ∈ R, x21 + x22 + x23 > 0.

Collectively, these three classes of functions constitute roughly 60% of the primitive func-

tions appearing in the GLOBALLib [14] and MINLPLib [8] test problems. Class 2 functions,

in particular, outnumber all others, since they constitute roughly 45% of the nonconvex

functions in these two libraries. As these problems originate from diverse applications

across science and engineering, this observation makes a strong argument for reducing the

complexity of Problem CX for these functional classes and incorporating the results of
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this analysis in global optimization software technology. Below, we focus on functions in

Class 2.

3.3 Products of nonnegative convex and component-

wise concave functions

Consider the C2 function φ = f(x)g(y), x ∈ Hm
x = [x, x̄] ⊂ R

m, y ∈ Hn
y = [y, ȳ] ⊂ R

n.

Define C = Hm
x ×Hn

y . Let f(x) be a convex function, and let g(y) be a component-wise

concave function; i.e. g(y) is concave in yk, k = 1, . . . n when all yk′, k
′ 6= k are fixed

to some arbitrary values in their domain. Further, assume that both f(x) and g(y) are

nonnegative over Hm
x and Hn

y , respectively. If f(x) is affine, then by Proposition 3.1, we

have GCφ = vert(C), which in turn implies that convCφ is polyhedral. We will henceforth

assume that f(x) is not affine. However, our analysis addresses the case where g(y) is

affine, or is affine with respect to a subset of its variables. Under these assumptions, it

is easy to show that φ(x, y) is not strictly convex over any neighborhood in the interior

of C and in the relative interior of any proper face of C for which all y variables are not

fixed. Denote by ŷi, i ∈ I = {1, . . . , 2n} the vertices of Hn
y . By Proposition 3.1 and

Corollary 3.1, GCφ is a subset of 2n m-dimensional boxes:

GCφ ⊆ {(x, ŷi), x ∈ Hm
x , ∀i ∈ I}.

Since, by assumption, φ(x, y) is continuously differentiable over C, the above inclusion is

strict when (i) g(ŷi) = 0 for some i ∈ I or (ii) f(x) is affine with respect to a subset

of its variables. For example, if φ = x2(1 − y2), 0 ≤ x ≤ 1, −1 ≤ y ≤ 0.5, then

GCφ = {(0,−1) ∪ (1,−1) ∪ {(x, 0.5), 0 ≤ x ≤ 1}}. Thus, at a given (x, y) ∈ C, the value

of convCφ(x, y) can be found by solving the following variant of CX:
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(CX1) min
xi,λi

∑

i∈I
λif

(

xi/λi
)

g(ŷi)

s.t.
∑

i∈I
λiŷi = y

∑

i∈I
xi = x (3.3)

∑

i∈I
λi = 1 (3.4)

λix ≤ xi ≤ λix̄, ∀i ∈ I (3.5)

λi ≥ 0, ∀i ∈ I,

where the variables are xij , j = 1, . . . , m and λi for all i ∈ I, for a total of (m + 1)2n

variables. For a univariate g(y), the multipliers vary linearly with the y variables and

CX1 reduces to a convex problem with 2m variables (see [61]). Thus, in the following

we assume n ≥ 2. As noted in [61], the procedure for constructing the convex envelope

of φ for a univariate concave g(y) can be generalized to a multivariate (component-wise)

concave g(y) by convexifying the function sequentially, one y variable at a time. Sequen-

tial convexification would lead to a rapid growth of the number and complexity of the

intermediate optimization problems to be solved, which makes it difficult to use even for

simple functional forms. This growth can be avoided with the proposed approach. For

the nonnegative convex f(x), x ∈ Hm
x , we study the following functional forms:

(i) f(x) = (cTx+ d)
a
, a ∈ R \ {[0, 1]}, c ∈ R

m, d ∈ R,

(ii) f(x) = a(c
T x+d), a > 0, c ∈ R

m, d ∈ R.

The above expressions for f(x) cover a large number of the Class 2 functions that appear in

nonconvex problems. Furthermore, as we will detail later, they enjoy certain separability

properties that are key to the derivation of the convex envelope of the corresponding

function φ. Now, consider the component-wise concave g(y), y ∈ Hn
y . Denote by Λ′ the

set of optimal multipliers in the description of convg(y) over Hn
y . As we will prove in

Theorems 3.1 and 3.3, if the restriction of g(y) to vert(Hn
y ) is a submodular function that

is nondecreasing (or nonincreasing) in every argument, then there exists Λ∗ ⊆ Λ′ that is

also optimal for the envelope representation problem of φ = f(x)g(y) over C. Next, we
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review some basic properties of submodular functions that we will use in the remainder of

the chapter. Recall that a real valued function g(y) on a lattice X is said to be submodular

if

g(y ∧ y′) + g(y ∨ y′) ≤ g(y) + g(y′), ∀ y, y′ ∈ X , (3.6)

where y ∨ y′ denotes the component-wise maximum and y ∧ y′ denotes the component-

wise minimum of y and y′ (see chapter 2 of [65] for an exposition). Similarly, g(y) is

said to be supermodular, if g(y ∧ y′) + g(y ∨ y′) ≥ g(y) + g(y′) for all y, y′ ∈ X . If

g(y) is both submodular and supermodular, then it is called modular. It can be shown

that g(y) is modular on X = X1 × . . . × Xn, where Xk is a chain for all k = 1, . . . , n,

if and only if it is separable (Theorem 2.6.4 in [65]). For instance, if X = R
n, then

g(y) =
∑n

k=1 gk(yk), yk ∈ R. The following lemma provides sufficient conditions for the

submodularity (supermodularity) of composite functions.

Lemma 3.1. ([65]) Let g(y) be nondecreasing (or nonincreasing) over the lattice X and

let h(·) be defined over an interval Z that contains the range of g(y). Define the composite

function ψ = h(g(y)). We have the following cases:

(i) if g is submodular over X and h is concave and nondecreasing over Z, then ψ is

submodular over X ,

(ii) if g is supermodular over X and h is convex and nondecreasing over Z, then ψ is

supermodular over X .

In both parts of Lemma 3.1, if g(y) is modular, then no monotonicity assumption on

h is required. For example, consider ψ(y) = h(
∑n

k=1 gk(yk)), yk ∈ [y
k
, ȳk] ⊂ R, where

gk(ȳk)− gk(yk) ≥ 0 for all k = 1, . . . n (or gk(ȳk) − gk(yk) ≤ 0 for all k). It follows from

Lemma 3.1 that (i) if h(·) is concave, then ψ(y), y ∈ vert(Hn
y ) is submodular and (ii) if

h(·) is convex, then ψ(y), y ∈ vert(Hn
y ) is supermodular. If g(y) is a C2 function and X

is a subset of Rn, then submodularity can be characterized as follows:

Lemma 3.2. ([65]) Suppose that g(y) is twice continuously differentiable on Hn
y . Then

g(y) is submodular (resp. supermodular) if and only if ∂2g(y)/∂yi∂yj ≤ 0 (resp. ≥ 0),

for all yi, yj ∈ Hn
y with i 6= j.

Obviously, if g(y) is submodular over Hn
y , then it is submodular over vert(Hn

y ), since

the latter is a sublattice of the former.
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Now, consider the component-wise concave g(y), y ∈ Hn
y . As discussed earlier, in this

case we have GHn
y
g(y) = vert(Hn

y ) and thus Problem (3.1) simplifies to the LP:

(CCV) min
λi

∑

i∈I λig(ŷi)

s.t.
∑

i∈I λiŷi = y
∑

i∈I λi = 1

λi ≥ 0, ∀i ∈ I.















(3.7)

Let λ′ = {λ′i, i ∈ I} denote a basic feasible solution of the above problem. Denote by V

the index set of nonzero multipliers in λ′. Define bik, for all i ∈ V and k ∈ I \ V , such
that

∑

i∈V bik = 1 and
∑

i∈V bikŷi = ŷk, for all k ∈ I \V . Note that, for any k ∈ I \V , the
associated system of equations always has a unique solution since ŷi, i ∈ V correspond to

n+ 1 affinely independent vertices of Hn
y . Then, from the optimality conditions for LPs,

it follows that λ′ is optimal for CCV if and only if

∑

i∈V
bikg(ŷi)− g(ŷk) ≤ 0, ∀k ∈ I \ V. (3.8)

Now, suppose that g(y) is submodular over the vertices of Hn
y . As was shown in [60],

the convex envelope of g(y) in this case is given by its Lovász extension (see [33]). More

precisely, we have the following result:

Proposition 3.2. (Theorem 3.3 in [60]) The convex (resp. concave) envelope of g(y)

over Hn
y is given by its Lovász extension if and only if (i) g(y) is submodular (resp.

supermodular) over vert(Hn
y ) and (ii) GHn

y
g(y) = vert(Hn

y ).

Consequently, if the component-wise concave g(y) is submodular over vert(Hn
y ), then

an optimal solution for Problem (3.7) can be determined a priori, as follows. Let ek denote

the kth unit vector in R
n. Given any y ∈ Hn

y , let ỹk = (yk− y
k
)/(ȳk− y

k
), k ∈ {1, . . . , n}.

Denote by π a permutation of {1, . . . , n} such that ỹπ(1) ≥ ỹπ(2) ≥ ... ≥ ỹπ(n). The region

defined by this set of inequalities is a simplex ∆π ⊂ Hn
y , whose vertices correspond to the

vertices of Hn
y with nonzero optimal multipliers in (4.2). The set of these n! simplices

obtained from different permutations of {1, . . . , n} forms Kuhn’s triangulation of Hn
y .

The vertices of ∆π are: vert(∆π) = {νj : νj = y + (ȳ − y)
∑j−1

k=1 e
π(k), j = 1, . . . n + 1}.

Since, by construction, y ∈ ∆π, one can express y as a convex combination of vert(∆π) as
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follows: y = (1− ỹπ(1))ν1+
∑n

j=2 (ỹπ(j−1) − ỹπ(j))νj+ ỹπ(n)νn+1. Thus, the nonzero optimal

multipliers associated with vert(∆π) are given by: λ̃1 = 1− ỹπ(1), λ̃j = ỹπ(j−1)− ỹπ(j), j =
2, . . . , n, λ̃n+1 = ỹπ(n). Let I = {i ∈ I : ŷi = νj , for some j ∈ {1, . . . , n + 1}} and, for

each i ∈ I, let q(i) be equal to a j such that ŷi = νj. Define λ∗ as follows:

λ∗i =

{

λ̃q(i), if i ∈ Ĩ ,

0, otherwise.
(3.9)

By Proposition 3.2 and relation (3.6), to check the optimality of λ∗ for Problem (3.7),

condition (3.8) simplifies to:

δ(g) = g(ŷi1)− g(ŷi2)− g(ŷi3) + g(ŷi4) ≤ 0, ∀i2, i3 ∈ I, (3.10)

where ŷi1 = ŷi2 ∧ ŷi3, and ŷi4 = ŷi2 ∨ ŷi3. Let Ω(λ, g(ŷ)) denote a differentiable function

that is convex with respect to λi, i ∈ I. Consider an optimization problem of the following

form:

(GCV) min
λi

Ω(λ, g(ŷ))

s.t. Constraints (3.7).

Now, we examine the conditions under which the set λ∗ given by (3.9), is optimal for

the above problem. Since GCV is convex and differentiable, it suffices to show that λ∗

satisfies the KKT conditions for this problem. Consider the set λ′ defined in accordance

with the optimality conditions (3.8). Since the feasible regions of CCV and GCV are

identical, λ′ is feasible for Problem GCV. Let γi(λ, g(ŷ)) denote the partial derivative of

Ω(λ, g(ŷ)) with respect to λi for all i ∈ I. It follows that λ′ satisfies the KKT conditions

for GCV if and only if:

∑

i∈V
bikγi(λ

′, g(ŷ))− γk(λ
′, g(ŷ)) ≤ 0, ∀k ∈ I \ V, (3.11)

where, as before, V denotes the index set of nonzero multipliers in λ′ and bik is as defined

in (3.8). Define the function γ(g(ŷ)) : vert(Hn
y ) → R, where γ(g(ŷ)) = γi(λ

∗, g(ŷ)) for all

ŷi ∈ vert(Hn
y ). By (3.8), (3.10) and (3.11), the set λ∗ is optimal for Problem GCV if and
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only if γ is submodular over vert(Hn
y ), i.e.

δ(γ(g(ŷ))) = γ(g(ŷi1))− γ(g(ŷi2))− γ(g(ŷi3)) + γ(g(ŷi4)) ≤ 0, ∀i2, i3 ∈ I, (3.12)

where ŷi1 = ŷi2∧ŷi3 and ŷi4 = ŷi2∨ŷi3 . The above condition is key to the proof of following

theorems. Next, we derive some relations that we will use to simplify the presentation in

the following proofs. Define

ϕr(x) =

∫ x

1

vr−1dv = (xr − 1) /r, x > 0, r ∈ R \ {0}. (3.13)

It follows that limr→0 ϕr(x) = log x. For notational simplicity, in the following, we denote

limr→0 ϕr(·), by ϕ0(·). Since ϕr(x), r ∈ (−∞, 1) is an increasing function of r, we have:

ϕr(x) ≤ x− 1, r ∈ (−∞, 1). (3.14)

Define ϕr(x, y) = ϕr(x)− ϕr(y), r ∈ (−∞, 1), x, y > 0. It is simple to show that

ϕr(x, y) ≤ x− y, ∀ (x, y) ∈ {(0, 1]2 : x ≤ y} ∪ {[1,∞)2 : y ≤ x}. (3.15)

We are now in a position to prove the main results of this section. We consider the cases

where f(x) has power and exponential forms in turn.

Theorem 3.1. Let f(x), x ∈ Hm
x be a nonnegative convex function of the form f(x) =

(cTx+ d)
a
, a ∈ R \ {[0, 1]}, c ∈ R

m, d ∈ R and, let g(y), y ∈ Hn
y be a nonnegative

component-wise concave function such that its restriction to the vertices of Hn
y is sub-

modular and nondecreasing (or nonincreasing) in every argument. Then, for any (x, y) in

the domain of φ = f(x)g(y), there exists an optimal solution of CX1 with at most n + 1

nonzero multipliers. Further, the values of these optimal multipliers are independent of

the x variables and are given by (3.9).

Proof. We start by partially minimizing Problem CX1 with respect to xi, i ∈ I. Let

xj < xj < x̄j for all j ∈ J = {1, . . . , m}. This assumption is without loss of generality

since, for example, if xj = xj for some j ∈ J , then xij = λixj for all i ∈ I. Thus, we

can eliminate xij , i ∈ I from CX1 by updating d = d + cjxj, J = J \ {j}. Furthermore,

by nonnegativity of f(x), if xj = xj or xj = x̄j for all j ∈ J , then CX1 reduces to

the envelope representation problem for g(y), which implies the optimality of λ∗ given
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by (3.9). Let gi, i ∈ I, denote the value of g(y) at the vertices of Hn
y such that (i) if a < 0,

then g1 ≤ g2 ≤ . . . ≤ g2n and, (ii) if a > 1, then g1 ≥ g2 ≥ . . . ≥ g2n . In each case, we also

rearrange ŷi, i ∈ I accordingly. First, suppose that all multipliers are nonzero, gi > 0 for

all i ∈ I, and the inequalities given by (3.5) are inactive. Writing the KKT conditions for

CX1 with respect to xi, i ∈ I yields:

(

cTxi/λi + d
)a−1

gi =
(

cTxk/λk + d
)a−1

gk, ∀i, k ∈ I.

Substituting for cTxi/λi + d, i ∈ I in the following surrogate of (3.3):

∑

i∈I
cTxi + dλi = cTx+ d, (3.16)

we obtain

cTxi/λi + d =
gri

∑

k∈I λkg
r
k

(

cTx+ d
)

, ∀i ∈ I, (3.17)

where r = 1/(1 − a). Let lj = xj, uj = x̄j , if cj > 0, and lj = x̄j , uj = xj, if cj < 0

for all j ∈ J . For notational simplicity, let l =
∑

j∈J cjlj + d, and u =
∑

j∈J cjuj + d.

From (3.17) it follows that, if the inequality

λil ≤ cTxi + dλi ≤ λiu, (3.18)

is inactive for some i ∈ I, then there exists an optimal solution of Problem CX1, such

that the corresponding inequalities in (3.5) are inactive. Conversely, if cTxi + dλi ≤ λil

(resp. ≥ λiu) for some i ∈ I, then the only feasible solution for CX1 is xij = λilj (resp.

= λiuj) for all j ∈ J . Hence, instead of inequalities (3.5), we can equivalently study

the bounds given by (3.18). Now suppose that 0 ≤ l < u. From (3.17), it follows that

cTx1/λ1 ≤ . . . ≤ cTx2
n

/λ2n. Partition I as I = I1∪I2∪I3, where I1 and I3 denote the sets
of indices whose corresponding cTxi + dλi in (3.18) are at their lower and upper bounds,

respectively. Suppose I2 6= ∅. As we will discuss later, this assumption is without loss of

generality. Thus, let I1 = {1, . . . , s − 1}, I2 = {s, . . . , t} and, I3 = {t + 1, . . . , 2n}. For

consistency, if s = 1, then we set I1 = ∅ with gs−1 = 0, if a < 0 and gs−1 = +∞, if a > 1.

Similarly, if t = 2n, then we set I3 = ∅ with gt+1 = +∞, if a < 0 and gt+1 = 0, if a > 1.

Substituting cTxi + dλi = λil for all i ∈ I1 and c
Txi + dλi = λiu for all i ∈ I3 in CX1, and
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minimizing the resulting problem with respect to xi, i ∈ I2, yields:

cTxi/λi + d =
gri

∑

k∈I2 λkg
r
k

(

cTx+ d− l
∑

k∈I1

λk − u
∑

k∈I3

λk

)

, ∀i ∈ I2. (3.19)

From (3.18) and (3.19), it follows that:

cTx+ d ≥ l
∑

i∈I1

λi +max
{

l/grs , u/g
r
t+1

}

∑

i∈I2

λig
r
i + u

∑

i∈I3

λi, (3.20)

and

cTx+ d ≤ l
∑

i∈I1

λi +min
{

l/grs−1, u/g
r
t

}

∑

i∈I2

λig
r
i + u

∑

i∈I3

λi, (3.21)

where the lower bounds in (3.20) are obtained from the conditions cTxs + dλs ≥ λsl and

cTxt+1+dλt+1 ≥ λt+1u, and the upper bounds in (3.21) follow from cTxs−1+dλs−1 ≤ λs−1l

and cTxt + dλt ≤ λtu. Note that these inequalities are implied by the definitions of the

index sets I1, I2, and I3. For the above bounds to be consistent, the following should

hold:

(gt/gs)
r ≤ u/l ≤ (gt+1/gs−1)

r . (3.22)

Substituting (3.19) in Problem CX1, yields

min
λi

la
∑

i∈I1 λigi +
(

cTx+ d− l
∑

i∈I1 λi − u
∑

i∈I3 λi
)a (∑

i∈I2 λig
r
i

)1/r

+ua
∑

i∈I3 λigi

s.t. Constraints (3.7).



















(3.23)

We next show that λ∗ given by (3.9) is optimal for Problem (3.23). It is simple to check

that (3.23) is a special case of Problem GCV. Thus, to show the optimality of λ∗, it suffices

to show that condition (3.12) is valid. First, let I = I2. In this case, the objective function

of (3.23) simplifies to Ω = f(x)(
∑

i∈I λig
r
i )

1/r. Obviously, given a submodular function ψ

on a lattice X , the function αψ + β, where α > 0, β ∈ R is submodular on X as well.

It follows that λ∗ is optimal if and only if the function ϕr(g(y)), r ∈ (−∞, 0) ∪ (0, 1),

given by (3.13), is submodular over the vertices of Hn
y . If r ∈ (−∞, 1), then ϕr(u),

u > 0 is concave and increasing in u. Further, by assumption, the restriction of g(y) to

vert(Hn
y ) is submodular and component-wise nondecreasing (or nonincreasing). Hence,
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by Lemma 3.1, ϕr(g(y)), r ∈ (−∞, 0)∪ (0, 1) is submodular over vert(Hn
y ). Next, suppose

that (i) I1 or I3 and (ii) I2 are nonempty. Assumption (ii) is without loss of generality.

To see this, consider a partitioning I of set I as I = I1 ∪ I3, with I1 = {1, . . . , i′} and

I3 = {i′ +1, . . . 2n} which corresponds to cTx+ d = l
∑

i∈I1 λi + u
∑

i∈I3 λi. It is simple to

see that I is the limiting case between the two partitions (i) I1 = {1, . . . , i′}, I2 = {i′+1},
I3 = {i′ + 2, . . . , 2n} and (ii) I1 = {1, . . . i′ − 1}, I2 = {i′}, I3 = {i′ + 1, . . . , 2n}. For the

latter two partitions, we will demonstrate next that λ∗ is optimal. Thus, by continuity of

convφ over C (see Theorem 10.2 in [47]), λ∗ is optimal for I. Define

wλ =

(

cx+ d− l
∑

i∈I1

λi − u
∑

i∈I3

λi

)

/

(

∑

i∈I2

λig
r
i

)

.

By (3.20) and (3.21), we have the following bounds on wλ:

max
{

l/grs , u/g
r
t+1

}

≤ wλ ≤ min
{

l/grs−1, u/g
r
t

}

. (3.24)

By (3.12), the set λ∗ satisfies the KKT conditions for Problem (3.23) if and only if

δ(γ(g)) = γ(gi1)− γ(gi2)− γ(gi3) + γ(gi4) ≤ 0, ∀i2, i3 ∈ I, (3.25)

where ŷi1 = ŷi2∧ŷi3 , ŷi4 = ŷi2∨ŷi3, and γ(gi) denotes the partial derivative of the objective
function of (3.23) with respect to λi at λ = λ∗, which is given by:

γ(gi) =















lagi − alwa−1
λ∗ , if i ∈ I1

griw
a
λ∗/r, if i ∈ I2

uagi − auwa−1
λ∗ , if i ∈ I3.

(3.26)

Since, by assumption, the restriction of g(y) to vert(Hn
y ) is component-wise nondecreasing

(or nonincreasing), without loss of generality, we assume (i) if a < 0, then gi1 ≤ gi2 ≤
gi3 ≤ gi4 and (ii) if a > 1, then gi1 ≥ gi2 ≥ gi3 ≥ gi4. Next, we consider all feasible

combinations of bounds for Problem (3.23) and demonstrate in each case that

(N) δ(g) ≤ 0 =⇒ δ(γ(g)) ≤ 0.

In the following, w and w̄ denote a lower and an upper bound on wλ∗ , respectively,
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obtained from (3.24). By monotonicity of cTxi/λi, i ∈ I, the following cases arise:

I. {i1, i2, i3} ⊆ I1, {i4} ⊆ I2. Then, w = l/gri4 and w̄ = min{l/gri3 , u/gri4}. In this case,

δ(γ(g)) is decreasing in wλ∗ and is given by:

δ(γ(g)) = la(gi1 − gi2 − gi3) + alwa−1
λ∗ + gri4w

a
λ∗/r. (3.27)

It suffices to show that the maximum of δ(γ(g)) is non-positive. Substituting wλ∗ = w

in (3.27), gives δ(g) ≤ 0. Thus, relation (N) holds. By symmetry, (N) is valid for

{i1} ⊆ I2, {i2, i3, i4} ⊆ I3.

II. {i1, i2} ⊆ I1, {i3, i4} ⊆ I2. Then, w = l/gri3 and w̄ = min{l/gri2, u/gri4}. Again,

δ(γ(g)) is a decreasing function of wλ∗ and is given by:

δ(γ(g)) = la
(

gi1 − gi2) + (gri4 − gri3
)

wa
λ∗/r. (3.28)

Substituting wλ∗ = w in δ(γ(g)) and using gi1 − gi2 ≤ gi3 − gi4 , yields

ϕr (gi4/gi3) ≤ (gi4/gi3)− 1, (3.29)

which follows from (3.14). By symmetry, (N) holds for {i1, i2} ⊆ I2, {i3, i4} ⊆ I3.

III. {i1} ⊆ I1, {i2, i3, i4} ⊆ I2. Then, w = l/gri2 and w̄ = min{l/gri1, u/gri4}. In this

case, δ(γ(g)) can be written as:

δ(γ(g)) = lagi1 − alwa−1
λ∗ +

(

−gri2 − gri3 + gri4
)

wa
λ∗/r. (3.30)

Over the region of interest, δ(γ(g)) is a unimodal function of wλ∗ and has a local

minimum if it possesses a stationary point in the interior of its domain. Thus, the

maximum of δ(γ(g)) is obtained at a boundary point. We have the following cases:

(i) wλ∗ = w. Substituting for w in δ(γ(g)) and using δ(g) ≤ 0, yields

ϕr ((gi4/gi2) , (gi3/gi2)) ≤ (gi4/gi2)− (gi3/gi2) , (3.31)

which follows from (3.15).

53



(ii) wλ∗ = l/gri1 . Substituting for wλ∗ in δ(γ(g)), gives δ(ϕr(g)) ≤ 0, which is valid

since ϕr(g) is submodular over vert(Hn
y ).

By symmetry, (N) is valid for {i1, i2, i3} ⊆ I2, {i4} ⊆ I3.

IV. {i1, i2} ⊆ I1, {i3} ⊆ I2, {i4} ⊆ I3. Then, w = max{l/gri3, u/gri4} and w̄ =

min{l/gri2, u/gri3}. In this case, δ(γ(g)) is decreasing in wλ∗ , and is given by:

δ(γ(g)) = la(gi1 − gi2)− gri3w
a
λ∗/r − auwa−1

λ∗ + uagi4. (3.32)

It suffices to show δ(γ(g)) ≤ 0 for wλ∗ = w. Using δ(g) ≤ 0, the following cases arise:

(i) If l/u ≤ (gi3/gi4)
r, then w = u/gri4. Substituting for w in δ(γ(g)) and using

l/u ≤ (gi3/gi4)
r, gives (3.29).

(ii) If l/u ≥ (gi3/gi4)
r, then w = l/gri3. Substituting for w in δ(γ(g)), yields:

(u/l)a (gi4/gi3)− a (u/l − 1) ≤ gi4/gi3 . (3.33)

Over 1 ≤ u/l ≤ (gi4/gi3)
r, the left-hand side of (3.33) is decreasing in u/l.

Therefore, its maximum is attained at u/l = 1 and is equal to the right-hand side

of (3.33).

By symmetry, (N) holds for {i1} ⊆ I1, {i2} ⊆ I2, {i3, i4} ⊆ I3.

V. {i1} ⊆ I1, {i2, i3} ⊆ I2, {i4} ⊆ I3. Then, w = max{l/gri2, u/gri4} and w̄ =

min{l/gri1, u/gri3}. In this case, δ(γ(g)) can be written as:

δ(γ(g)) = lagi1 − a(l + u)wa−1
λ∗ −

(

gri2 + gri3
)

wa
λ∗/r + uagi4 . (3.34)

Over the region of interest, δ(γ(g)) is a unimodal function that attains a minimum in

the interior of its domain. Thus, the maximum of δ(γ(g)) is attained at a boundary

point. We have the following cases:

(i) If l/u ≤ (gi2/gi4)
r, then w = u/gri4. Substituting for w in δ(γ(g)), yields

(1− (gi2/gi4)
r − (gi3/gi4)

r) /r ≤ a (l/u)− (l/u)a (gi1/gi4) . (3.35)
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Over (gi1/gi4)
r ≤ l/u ≤ (gi2/gi4)

r, the right-hand side of (3.35) is decreasing in

l/u. Substituting l/u = (gi2/gi4)
r in (3.35), and using δ(g) ≤ 0, yields (3.31). By

symmetry, (N) holds for wλ∗ = w̄ = l/gri1 .

(ii) If l/u ≥ (gi1/gi3)
r, then w̄ = u/gri3. Substituting for w̄ in δ(γ(g)), gives

(gi4/gi3)− 1 ≤ (gi2/gi3)
r /r + a (l/u)− (l/u)a (gi1/gi3) . (3.36)

Over (gi1/gi3)
r ≤ l/u ≤ (gi2/gi3)

r, the right-hand side of (3.36) is decreasing in

l/u. Substituting l/u = (gi2/gi3)
r in (3.36) and using δ(g) ≤ 0, yields gi2/gi3 ≤

(gi2/gi3)
r for a < 0, and gi2/gi3 ≥ (gi2/gi3)

r for a > 1, both of which are valid

statements. By symmetry, the proof for w = w = l/gri2 is similar.

Obviously, if l < u ≤ 0, then the proof follows immediately from a similar line of argu-

ments. Thus, suppose that l < 0 < u. By (3.17), if cTx + d ≤ 0 (resp. cTx + d ≥ 0),

then cTxi/λi + d ≤ 0 (resp. cTxi/λi + d ≥ 0) for all i ∈ I, which implies the upper (resp.

lower) bounds in (3.18) are always inactive. Thus, we partition the set I as I = I1 ∪ I2
(resp. I = I2 ∪ I3) and proceed accordingly. The remainder of the proof is quite similar

to the proof for 0 ≤ l < u.

Employing a very similar line of arguments, we obtain the following result for the

concave envelope of a closely related class of functions to those considered in Theorem 3.1:

Theorem 3.2. Consider φ(x, y) = (cTx + d)ag(y), a ∈ (0, 1), c ∈ R
m, d ∈ R, x ∈ Hm

x =

{[x, x̄] ⊂ R
m : cTx + d ≥ 0}. Let g(y), y ∈ Hn

y be a component-wise convex function

such that its restriction to vert(Hn
y ) is nonnegative, supermodular and nondecreasing (or

nonincreasing) in every argument. Then, any point in the graph of the concave envelope

of φ(x, y) can be written as a convex combination of at most n+1 points in the hypograph

of φ. Further, the corresponding optimal multipliers are given by (3.9).

Next, we consider the case where f(x) is exponential. As we will show, several steps

of the proof are derived by letting ϕr → ϕ0 in the proof of Theorem 3.1.

Theorem 3.3. Let f(x) = ac
T x+d, a > 0, c ∈ R

m, d ∈ R, x ∈ Hm
x , and let g(y), y ∈ Hn

y

be a nonnegative component-wise concave function. Assume that the restriction of g(y) to

vert(Hn
y ) is submodular and nondecreasing (or nonincreasing) in every argument. Then,

for any (x, y) in the domain of φ = f(x)g(y), there exists an optimal solution of CX1 with
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at most n + 1 nonzero multipliers. Further, the values of these optimal multipliers are

independent of the x variables and are given by (3.9).

Proof. As in the proof of Theorem 3.1, we start by partially optimizing CX1 with respect

to xi, i ∈ I, assuming all multipliers are nonzero. Without loss of generality, assume

xj < xj < x̄j for all j ∈ J = {1, . . . , m}. Let gi, i ∈ I denote the value of g(y) at

the vertices of Hn
y such that (i) if 0 < a < 1, then g1 ≤ g2 ≤ . . . ≤ g2n and (ii) if

a > 1, then g1 ≥ g2 ≥ . . . ≥ g2n . First, suppose that the inequalities given by (3.5)

are inactive. Writing the KKT conditions for CX1 with respect to xi, i ∈ I, we obtain

cTxi/λi+loga gi = cTxk/λk+loga gk, for all i, k ∈ I. Substituting for cTxi/λi+d in (3.16),

yields:

cTxi/λi + d = cTx+ d−
∑

k∈I
λk loga (gi/gk), ∀i ∈ I.

Employing a similar argument as in the proof of Theorem 3.1, it follows that, instead of

inequalities (3.5), we can equivalently analyze the bounds given by (3.18), where l and

u are similarly defined. Partition I as I = I1 ∪ I2 ∪ I3, where I1 and I3 denote the sets

of indices whose corresponding cTxi + dλi in (3.18) are at their lower and upper bounds,

respectively. Letting cTxi + dλi = λil for all i ∈ I1, and c
Txi + dλi = λiu for all i ∈ I3

and minimizing CX1 with respect to xi, i ∈ I2, yields:

cTxi/λi + d =

(

cTx+ d− l
∑

k∈I1

λk − u
∑

k∈I3

λk −
∑

k∈I2

λk loga (gi/gk)

)

/
∑

k∈I2

λk, (3.37)

for all i ∈ I2. It follows that cTx1/λ1 ≤ cTx2/λ2 ≤ . . . ≤ cTx2
n

/λ2n . Thus, let I1 =

{1, . . . , s − 1}, I2 = {s, . . . , t} and, I3 = {t + 1, . . . , 2n}. For consistency, if s = 1, then

we set I1 = ∅ with gs−1 = 0, if 0 < a < 1 and gs−1 = +∞, if a > 1. Similarly, if

t = 2n, then we set I3 = ∅ with gt+1 = +∞, if 0 < a < 1 and gt+1 = 0, if a > 1. Define

Γ2 =
∑

i∈I2 λi loga gi Then, we have the following bounds on cTx+ d:

cTx+ d ≥ l
∑

i∈I1

λi +max {l + loga gs, u+ loga gt+1}
∑

i∈I2

λi + u
∑

i∈I3

λi − Γ2, (3.38)

and

cTx+ d ≤ l
∑

i∈I1

λi +min {l + loga gs−1, u+ loga gt}
∑

i∈I2

λi + u
∑

i∈I3

λi − Γ2, (3.39)
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which, in turn, imply:

loga(gs/gt) ≤ u− l ≤ loga(gs−1/gt+1). (3.40)

Finally, substituting (3.37) into CX1, yields:

min
λi

al
∑

i∈I1 λigi

+
(
∑

i∈I2 λi
)

a
cT x+d−l

∑
i∈I1

λi−u
∑

i∈I3
λi

∑
i∈I2

λi
(
∏

i∈I2 g
λi

i

)

1∑
i∈I2

λi

+au
∑

i∈I3 λigi

s.t. Constraints (3.7).































(3.41)

Next, we show that λ∗ given by (3.9) is optimal for the above problem. As in the proof of

Theorem 3.1, we will use the fact that (3.41) is an instance of Problem GCV. If I = I2, then

the objective function of (3.41) reduces to Ω = f(x)
∏

i∈I g
λi

i , which can be equivalently

replaced by Ω′ =
∑

I λi log gi. Since log(·) is concave and increasing and the restriction of

g(y) over vert(Hn
y ) is submodular and component-wise nondecreasing (or nonincreasing),

by Lemma 3.1, log g(y), y ∈ vert(Hn
y ) is submodular. Thus, λ∗ is optimal. For all other

feasible combinations of bounds, as in the proof of Theorem 3.1, the idea is to show that

λ∗ satisfies condition (3.25), where

γ(gi) =















algi − lawλ∗ log a, if i ∈ I1

awλ∗ (1 + log gi − (log a)wλ∗) , if i ∈ I2

augi − uawλ∗ log a, if i ∈ I3,

for all i ∈ I, and

wλ =

(

cTx+ d− l
∑

i∈I1

λi − u
∑

i∈I3

λi +
∑

i∈I2

λi loga gi

)

/
∑

i∈I2

λi.

Following a similar line of arguments as in the proof of Theorem 3.1, one needs to establish

relation (N) for all feasible combinations of bounds of Problem (3.41). It is simple to check

that the proofs follow from those of Theorem 3.1 by replacing ua with au and letting r → 0

in certain expressions. We will demonstrate this analogy for one set of bounds. Other

cases are similarly proved. Without loss of generality, assume (i) if 0 < a < 1, then

gi1 ≤ gi2 ≤ gi3 ≤ gi4 and (ii) if a > 1, then gi1 ≥ gi2 ≥ gi3 ≥ gi4. In the following, w and
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w̄ denote a lower and an upper bound on wλ∗ , respectively.

Let {i1, i2} ⊆ I1, {i3} ⊆ I2, {i4} ⊆ I3. Then, w = max{l + loga gi3, u + loga gi4}, and
w̄ = min{l + loga gi2, u+ loga gi3}. In this case, δ(γ(g)) is decreasing in wλ∗ and is given

by

δ(γ(g)) = al(gi1 − gi2)− awλ∗(1 + (log a)(u− wλ∗) + log gi3) + augi4.

It suffices to show that δ(γ(g)) is non-positive for wλ∗ = w. Using δ(g(y)) ≤ 0, the

following cases arise:

(i) If u − l ≥ loga(gi3/gi4), then w = u + loga gi4. Substituting for w in δ(γ(g)), and

using u − l ≥ loga(gi3/gi4), yields log(gi4/gi3) ≤ gi4/gi3 − 1, which is always valid.

Note that this inequality can be obtained by letting r → 0 in (3.29).

(ii) If u − l ≤ loga(gi3/gi4), then w = l + loga gi3 . Substituting w in δ(γ(g)), yields

(see (3.33)):

au−l(gi4/gi3)− (log a)(u− l) ≤ gi4/gi3.

Over 0 ≤ u−l ≤ loga(gi3/gi4), the left-hand side of the above inequality is decreasing

in u− l. Thus, its maximum is attained at u− l = 0, and is equal to the right-hand

side.

By symmetry, (N) holds for {i1} ⊆ I1, {i2} ⊆ I2, {i3, i4} ⊆ I3.

Remark 3.1. Consider the concave function g(y) = h(
∑

k∈K gk(yk)), where gk(yk), yk ∈
[y

k
, ȳk] ⊂ R is concave for all k ∈ K and h(·) is concave and nondecreasing over the

range of
∑

k∈K gk(yk). Suppose that gk(ȳk) − gk(yk) ≥ 0, for all k ∈ K1 ⊂ K and

gk(ȳk)−gk(yk) ≤ 0 for all k ∈ K \K1. Obviously, g(y) does not satisfy the submodularity

and monotonicity assumptions of Theorems 3.1 and 3.3 (if K = K1 or K1 = ∅, then the

conditions of Theorems 3.1 and 3.3 are met). Now, consider the affine mapping T (yk) = yk,

for all k ∈ K1 and T (yk) = ȳk + y
k
− yk, for all k ∈ K \K1. By Lemma 3.1, the concave

function g(T (y)) = h(
∑

k∈K gk(T (yk))), yk ∈ [y
k
, ȳk], is submodular and component-wise

nondecreasing over vert(Hn
y ); hence, satisfying the conditions of Theorems 3.1 and 3.3.

Let ψ(x, y) = f(x)g(T (y)). It is simple to show that convCφ(x, y) = convCψ(x, T (y)).

Therefore, we first utilize Theorems 3.1 and 3.3, to construct convCψ(x, y) and then

apply the inverse mapping to derive the convex envelope of φ(x, y) over C. As another

example, consider the component-wise convex function g(y) =
∏

k∈K gk(yk), where gk(yk),
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yk ∈ [y
k
, ȳk] ⊂ R, is convex and nonnegative for all k ∈ K. Suppose that gk(ȳk)−gk(yk) >

0 for all k ∈ K1 ⊂ K and gk(ȳk) − gk(yk) < 0 for all k ∈ K \K1. Again, g(y) does not

satisfy the monotonicity and supermodularity assumptions of Theorem 3.2 (if K = K1 or

K1 = ∅, then the assumptions of Theorem 3.2 are satisfied). However, if we let T (yk) = yk

for all k ∈ K1 and T (yk) = ȳk + y
k
− yk, for all k ∈ K \K1, then g(T (y)) is component-

wise convex over Hn
y and its restriction to vert(Hn

y ) is supermodular (cf. Lemma 2.6.4 in

[65]) and component-wise increasing; thus satisfying the conditions of Theorem 3.2. For

instance, this holds for g(y) =
∏

k∈K y
ak
k , where ak ≥ 1, yk ≥ 0 for all k ∈ K1 and ak < 0,

yk > 0 for all k ∈ K \K1 (see Corollaries 3.14-3.16 in [60] for other examples).

Remark 3.2. Let t = cTx + d, x ∈ Hm
x , c ∈ R

m, d ∈ R, and let l and u denote the

minimum and maximum of cTx+ d over Hm
x , respectively. Define ψ(t, y) = f(t)g(y), over

D = [l, u] × Hn
y , where f(t) = ta or f(t) = at, and suppose that f and g satisfy the

conditions of Theorems 3.1 and 3.3. From the proofs of these theorems, it follows that

convCφ(x, y) = convDψ(c
Tx+d, y). It is important to note that such a recursive approach

does not yield the convex envelope of the original function, in general. For example, as

we will detail in Chapter 4, if we relax the nonnegativity assumption on g(y), then this

equivalence is no longer valid.

Throughout this section we assumed that g(y) is component-wise concave over Hn
y .

Nonetheless, the results are valid for any g(y) with a polyhedral convex envelope over Hn
y .

For the functions satisfying the conditions of Theorems 3.1 and 3.3, the envelope repre-

sentation problem simplifies significantly, in that the optimal multipliers are independent

of the x variables and are given by the set λ∗. In order to prove this decoupling, we

derived explicit characterizations of the convex envelopes in both theorems. In the next

section, we demonstrate the benefits of the proposed envelopes in closing the relaxation

gaps of standard factorable techniques.

3.4 Closed-form expressions for the convex envelope

of primitive functions

In this section, we present analytical expressions for the convex envelopes of selected

functions of the form φ(x, y) = f(x)g(y), x ∈ Hm
x , y ∈ Hn

y , where f(x) is nonnegative
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convex and g(y) is component-wise concave. We consider the cases where g(y) is uni-

variate and bivariate in turn. All examples presented correspond to functions that occur

frequently in applications. For numerical comparisons of the proposed envelopes and fac-

torable relaxations, we compute the percentage of the gap closed by convφ at a given

point x as follows

(convφ(x)− φ̃(x))/(φ(x)− φ̃(x))× 100%,

where φ̃ is a convex underestimator of φ obtained by a conventional factorable relaxation

scheme.

3.4.1 Univariate g(y)

In [61], the authors propose a convex formulation for evaluating the value of convφ(x, y),

where φ is convex in x ∈ Hm
x and concave in y ∈ [y, ȳ] ⊂ R. In [58], the author derives an

explicit characterization of convφ(x, y) provided that the convex combinations of φ are

pairwise complementary (see Section 3 in [58] for details). In particular, it is shown that,

if φ(x, y) is nondecreasing and convex and φ(x, ȳ) is nonincreasing and convex, then the

pairwise combinations of φ are complementary. In the following, we consider functions

for which this condition is not satisfied. We further assume that φ can be written as

φ(x, y) = f(x)g(y), C = Hm
x ×H1

y, where f(x) is nonnegative convex and g(y) is concave.

First, let g(y) be nonnegative. In the following two corollaries, we consider the cases

where f(x) has power and exponential forms in turn.

As it was shown in [60], if g(y) = 0 (or g(ȳ) = 0), then the closed-form expressions

for convφ can be obtained in a more general setting. Namely, it suffices to assume that

f(x), x ∈ Hm
x is convex and monotone (see Theorem 4.1 in [60]). This generalization

follows from to the fact that, if f(x) is monotone and g(y)g(ȳ) = 0, then at any optimal

solution of Problem CX1, if λ1xj < x1j < λ1x̄j (resp. λ2xj < x2j < λ2x̄j) for some j ∈ J ,

then x2j = λ2x or x2j = λ2x̄ (resp. x1j = λ1x or x1j = λ1x̄). Thus, in the following, we

assume that g(y) is strictly positive. We state the results without proofs, since they follow

directly from the proofs of Theorems 3.1 and 3.3. To simplify the notation, we denote

g(y) and g(ȳ) by g and ḡ, respectively, and f(x) and f(x̄) by f and f̄ , respectively.

Corollary 3.2. Consider φ = f(x)g(y), x ∈ [x, x̄] ⊂ R, y ∈ [y, ȳ] ⊂ R. Let f(x) = xa,

a ∈ R \ {[0, 1]} be nonnegative and convex and, let g(y) be positive and concave. Define

α = (g/ḡ)1/(1−a). We have the following cases:
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(i) if (1) α ≥ 1 and x ≥ 0, or (2) α ≤ 1 and x̄ ≤ 0:

convφ =



















λ1−a
1 (x− λ2x)

ag + λ2fḡ, if x ≤ x ≤ λ1min{αx, x̄}+ λ2x,

xa
(

λ1g
1

1−a + λ2ḡ
1

1−a

)1−a

, if (λ1α + λ2)x ≤ x ≤ (λ1 + λ2/α)x̄,

λ1f̄ g + λ1−a
2 (x− λ1x̄)

aḡ, if λ1x̄+ λ2max{x, x̄/α} ≤ x ≤ x̄,

(ii) if (1) α ≤ 1 and x ≥ 0, or (2) α ≥ 1 and x̄ ≤ 0:

convφ =



















λ1fg + λ1−a
2 (x− λ1x)

aḡ, if x ≤ x ≤ λ1x+ λ2min{x/α, x̄},
xa
(

λ1g
1

1−a + λ2ḡ
1

1−a

)1−a

, if (λ1 + λ2/α)x ≤ x ≤ (λ1α+ λ2)x̄,

λ1−a
1 (x− λ2x̄)

ag + λ2f̄ ḡ, if λ1max{x, αx̄}+ λ2x̄ ≤ x ≤ x̄,

(iii) if α ≥ 1 and x < 0 < x̄:

convφ =



















λ1fg + λ1−a
2 (x− λ1x)

aḡ, if x ≤ x ≤ (λ1 + λ2/α)x,

xa
(

λ1g
1

1−a + λ2ḡ
1

1−a

)1−a

, if (λ1 + λ2/α)x ≤ x ≤ (λ1 + λ2/α)x̄,

λ1f̄g + λ1−a
2 (x− λ1x̄)

aḡ, if (λ1 + λ2/α)x̄ ≤ x ≤ x̄,

(iv) if α ≤ 1 and x < 0 < x̄:

convφ =



















λ1−a
1 (x− λ2x)

ag + λ2f ḡ, if x ≤ x ≤ (λ1α + λ2)x,

xa
(

λ1g
1

1−a + λ2ḡ
1

1−a

)1−a

, if (λ1α + λ2)x ≤ x ≤ (λ1α + λ2)x̄,

λ1−a
1 (x− λ2x̄)

ag + λ2f̄ ḡ, if (λ1α + λ2)x̄ ≤ x ≤ x̄,

where λ1 = (ȳ − y)/(ȳ − y), λ2 = (y − y)/(ȳ − y).

Example 3.1. Let φ =
√
y/x2, x ∈ [−2,−1], y ∈ [1, 4]. Then, α = (1/2)1/3 < 1 and

x̄ = −1 < 0. Thus, Part (i) of Corollary 3.2 is satisfied and convφ is given by:

convφ =















(4−y)3

3(3x+2y−2)2
+ y−1

6
, if − 2 ≤ x ≤ −0.14y − 1.45,

(0.09y+0.9)3

x2 , if − 0.14y − 1.45 ≤ x ≤ −0.09y − 0.9,
2(y−1)3

3(3x−y+4)2
+ 4−y

3
, if − 0.09y − 0.9 ≤ x ≤ −1.0.

To construct a convex underestimator for φ using a standard factorable relaxation scheme

[63], the concave function g =
√
y is first replaced by its affine underestimator and the
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resulting expression is outer-linearized using bilinear envelopes to yield:

φ̃ = max
{

1/x2 + (y − 1)/12, 2/x2 + (y − 4)/3
}

.

Figure 3.1(a) depicts the percentage of the gap closed by convφ. Up to over 80% of the

gap is closed by the convex envelope.

By checking more boundary conditions, Corollaries 3.2 can be easily generalized to the

case where f(x) is a nonnegative multivariate convex function of the form f(x) =
∏

j∈J x
aj
j ,

where xj > 0 and aj < 0 for all j ∈ J . We show this through an example:

Example 3.2. Let φ = y/(x1x2), x1 ∈ [0.1, 1], x2 ∈ [1.5, 2], y ∈ [0.5, 2]. The convex

envelope of φ is given by:











































































10(2y−1)3

9(y+x2−2)(y+15x1−2)
− 20

9
(y − 2), if 0.1 ≤ x1 ≤ 0.08 + 0.04y, 1.5 ≤ x2 ≤ (y + 4)/3,

20(y−2)2

3(3x2−4y+2)
+ 5(2y−1)2

3(y+15x1−2)
, if 0.1 ≤ x1 ≤ 0.08 + 0.04y, (y + 4)/3 ≤ x2 ≤ 2,

1
x1

(

0.39(2− y) +
√

2(2y−1)3

27(y+x2−2)

)2

, if 0.08 + 0.04y ≤ x1 ≤ 0.5 + 0.25y,

1.5 ≤ x2 ≤ (y + 4)/3,

1
x1

(

2y−1
3

+
√

4(2−y)3

9(3x2−4y+2)

)2

, if 0.08 + 0.04y ≤ x1 ≤ 0.5 + 0.25y,

(y + 4)/3 ≤ x2 ≤ 2,
4(2−y)2

9(−2y+3x1+1)
+ 2(2y−1)2

9(y+x2−2)
, if 0.5 + 0.25y ≤ x1 ≤ 1.0, 1.5 ≤ x2 ≤ (y + 4)/3,

4(2−y)3

3(3x2−4y+2)(3x1−2y+1)
+ 2y−1

3
, if 0.5 + 0.25y ≤ x1 ≤ 1.0, (y + 4)/3 ≤ x2 ≤ 2.

A factorable relaxation of φ is obtained by letting t = 1/(x1x2) and underestimating

φ = yt using bilinear envelopes:

φ̃ = max {2/(x1x2) + 20(y − 2)/3, 1/(2x1x2) + (2y − 1)/4} .

The gap closed by convφ at x1 = 0.3 is shown in Figure 3.1(b). Up to over 88% of the

gap is closed by the convex envelope.

Corollary 3.3. Consider φ = f(x)g(y), x ∈ [x, x̄] ⊂ R, y ∈ [y, ȳ] ⊂ R. Let f(x) = ax,

a > 0 and, let g(y) be concave and positive. Define α = loga(ḡ/g). Then, the convex

envelope of φ is given by
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Figure 3.1: Gap closed by the convex envelopes for Examples 3.1 and 3.2

(i) if α ≥ 0:

convφ =















λ1a
(x−λ2x)/λ1g + λ2f ḡ, if x ≤ x ≤ λ1min{x+ α, x̄}+ λ2x,

axgλ1 ḡλ2, if x+ λ1α ≤ x ≤ x̄− λ2α,

λ1f̄g + λ2a
(x−λ1x̄)/λ2 ḡ, if λ1x̄+ λ2max{x, x̄− α} ≤ x ≤ x̄,

(ii) if α ≤ 0:

convφ =















λ1fg + λ2a
(x−λ1x)/λ2 ḡ, if x ≤ x ≤ λ1x+ λ2min{x− α, x̄},

axgλ1 ḡλ2 , if x− λ2α ≤ x ≤ x̄+ λ1α,

λ1a
(x−λ2x̄)/λ1g + λ2f̄ ḡ, if λ1max{x, x̄+ α}+ λ2x̄ ≤ x ≤ x̄,

where λ1 = (ȳ − y)/(ȳ − y), λ2 = (y − y)/(ȳ − y).

Example 3.3. Let φ = y exp(−x), x ∈ [−1, 1], y ∈ [1, 3]. Then, α = − log 3 < 0 and

Part (ii) of Corollary 3.3 is valid. Thus, convφ is given by:















1.5(y − 1) exp(−2x+y−3
y−1

) + 1.36(3− y), if − 1 ≤ x ≤ 0.55y − 1.55,

3(y−1)/2 exp(−x), if 0.55y − 1.55 ≤ x ≤ 0.55y − 0.65,

0.5(3− y) exp(−2x+y−1
3−y

) + 0.55(y − 1), if 0.55y − 0.65 ≤ x ≤ 1.

To compare with a standard factorable relaxation, let t = exp(−x). Employing bilinear
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Figure 3.2: Gap closed by the convex envelopes for Examples 3.3 and 3.4

envelopes to underestimate φ = yt, we obtain

φ̃ = max {3 exp(−x) + 2.72(y − 3), exp(−x) + 0.37(y − 1)} .

The two relaxations are compared in Figure 3.2(a). Up to over 85% of the gap of the

standard relaxation is closed by the convex envelope.

Remark 3.3. In Parts (i) and (ii) of Corollary 3.2 and in Corollary 3.3, depending on

the values of parameters S = {x, x̄, g, ḡ, a}, the convex envelope of φ can be composed of

two or three convex pieces. For example, in Part (i) of Corollary 3.3, if x̄−x ≤ loga(ḡ/g),

then the second expression is not present in the graph of convCφ.

Next, we relax the nonnegativity requirement on g(y). If g and ḡ are both nonpositive,

then convφ is polyhedral. Thus, without loss of generality, let g < 0 < ḡ. Denote by x̂j ,

j ∈ J̄ = {1, . . . , 2m}, the vertices of Hm
x . In this case, we have:

GCφ ⊆ {{x̂j, y} ∪ {x, ȳ}, ∀j ∈ J̄ , x ∈ Hm
x }.

We choose to first convexify φ over L = {(x, y), x ∈ Hm
x }. Since the restriction of φ to L

is concave, its convex envelope is polyhedral. First, let f(x) be a univariate function. If

f(x) is nondecreasing (resp. nonincreasing) over H1
x, then conv(f(x)g) is a nonincreasing

(resp. nondecreasing) convex function and f(x)ḡ is a nondecreasing (resp. nonincreasing)

convex function. Thus, as discussed earlier, the pairwise complementarity property of [58]

is satisfied, and the convex envelope of φ can be accordingly derived (see Proposition 3.3
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in [58]). For completeness, we provide the expressions for convφ in the following corollary.

Corollary 3.4. Consider φ = f(x)g(y), x ∈ [x, x̄] ⊂ R, y ∈ [y, ȳ] ⊂ R, where f(x) is

nonnegative, monotone and convex and g(y) is concave with g < 0 < ḡ. Then, convφ is

given by:

convφ =







(

f̄−f

x̄−x

)

(x− x)g + (λ1g + λ2ḡ)f, if x ≤ x ≤ λ1x̄+ λ2x,

λ1f̄g + λ2f
(

x−λ1x̄
λ2

)

ḡ, if λ1x̄+ λ2x ≤ x ≤ x̄,
(3.42)

if f(x) is nondecreasing, and by

convφ =







λ1fg + λ2f
(

x−λ1x
λ2

)

ḡ, if x ≤ x ≤ λ1x+ λ2x̄,
(

f̄−f

x̄−x

)

(x− x̄)g + (λ1g + λ2ḡ)f̄ , if λ1x+ λ2x̄ ≤ x ≤ x̄,
(3.43)

if f(x) is nonincreasing, where λ1 = (ȳ − y)/(ȳ − y), λ2 = (y − y)/(ȳ − y).

Example 3.4. Let φ = log10 y/x
2, x ∈ [0.1, 2], y ∈ [0.1, 102]. In this case, f(x) = 1/x2,

x ∈ [0.1, 2] is decreasing and convφ is given by (3.43):

convφ =

{

10−4 2(y−.1)3

(10x+0.01y−1)2
+ y − 100.1, if 0.1 ≤ x ≤ 0.019y + 0.098,

52.5x+ 0.0075y − 105.251, if 0.019y + 0.098 ≤ x ≤ 2.

To obtain a convex relaxation of φ using the standard method, let t1 denote the affine un-

derestimator of log10 y, y ∈ [0.1, 102] and let t2 = 1/x2. Employing the bilinear envelopes

to underestimate t3 = t1t2, yields:

φ̃ = max
{

2/x2 + 3(y − 100), 52.5x+ 0.0075y − 105.251
}

.

The two relaxations are compared in Figure 3.2(b). Up to over 65% of the relaxation gap

is closed by the convex envelope of φ. Further, as can be seen from the figure, the two

relaxations coincide over the region where convφ is affine.

Example 3.5. Let φ = y exp(x1−x2), y ∈ [−1, 1], (x1, x2) ∈ [0, 1]2. The convex envelope
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Figure 3.3: Gap closed by the convex envelopes for Examples 3.5 and 3.6

of φ is given by:







































y+1
2

exp(−2x2

y+1
)− 1.72x1 + 0.5y − 0.5, if 2x1 + y ≤ 1, 2x2 − y ≤ 1, x1 + x2 ≤ 1,

−1.72x1 + 0.63x2 + 0.37y − 0.63, if 2x1 + y ≤ 1, 2x2 − y ≥ 1, x1 + x2 ≤ 1,

−0.63x1 + 1.72x2 + 0.37y − 1.72, if 2x1 + y ≤ 1, 2x2 − y ≥ 1, x1 + x2 ≥ 1,
y+1
2

exp(2x1−2
y+1

) + 1.72x2 + 0.5y − 2.22, if 2x1 + y ≥ 1, 2x2 − y ≥ 1, x1 + x2 ≥ 1,
y+1
2

exp(2x1−2x2+y−1
y+1

) + 1.36(y − 1), if 2x1 + y ≥ 1, 2x2 − y ≤ 1.

To compare with a factorable relaxation scheme, introduce t1 = x1 −x2, and let φ̃ denote

the convex envelope of t2 = y exp(t1), given by Corollary 3.4:

φ̃ =







−1.175(x1 − x2 + 1) + 0.37y, if − 1 ≤ x1 − x2 ≤ −y,
y+1
2

exp
(

2x1−2x2+y−1
y+1

)

+ 1.36(y − 1), if − y ≤ x1 − x2 ≤ 1.

The gap closed by convφ at x2 = 0.8 is depicted in Figure 3.3(a). As can be seen, convφ

closes up to 70% of the relaxation gap. To construct φ̃, we used the convex envelope

of t2 = y exp(t1), which is not implemented in current global solvers. Employing the

standard relaxation method will lead to a much weaker relaxation than φ̃.

Next, let f(x) be non-monotone. In the following corollary, we consider the case where

f(x) is a monomial of even degree with x < 0 < x̄. A similar procedure can be employed

to derive convφ assuming other functional forms for f(x).

Corollary 3.5. Consider φ = f(x)g(y), x ∈ [x, x̄] ⊂ R, y ∈ [y, ȳ] ⊂ R. Let f(x) = xa,
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a = 2k, k = 1, . . . , n, x < 0 < x̄ and, let g(y) be concave with g < 0 < ḡ. Define

α = sgn(f − f̄)

∣

∣

∣

∣

∣

g

aḡ

f̄ − f

x̄− x

∣

∣

∣

∣

∣

1/(a−1)

.

We then have the following cases:

1. if |x| ≤ x̄ and α ≤ x, then convφ is given by (3.42),

2. if x̄ ≤ |x| and α ≥ x̄, then convφ is given by (3.43),

3. otherwise, convφ is given by:















λ1fg + λ1−a
2 (x− λ1x)

aḡ, if x ≤ x ≤ λ1x+ λ2α,
f̄−f

x̄−x
(x− λ1x− λ2α)g + λ1fg + λ2α

aḡ, if λ1x+ λ2α ≤ x ≤ λ1x̄+ λ2α,

λ1f̄ g + λ1−a
2 (x− λ1x̄)

aḡ, if λ1x̄+ λ2α ≤ x ≤ x̄,

(3.44)

where λ1 = (ȳ − y)/(ȳ − y), λ2 = (y − y)/(ȳ − y).

Proof. As discussed earlier, to construct convCφ, we first convexify φ over L = {(x, y), x ∈
[x, x̄]}. Since by assumption g < 0, the convex envelope of φ over L is affine: convLφ =

(m(x − x) + f)g, where m = (f̄ − f)/(x̄ − x). Subsequently, convCφ is obtained by

convexifying convLφ and φ(x, ȳ) over C. It follows that, Problem CX simplifies to:

min
x1

λ1(m(x1/λ1 − x) + f)g + λ1−a
2 (x− x1)aḡ

s.t. max{λ1x, x− λ2x̄} ≤ x1 ≤ min{λ1x̄, x− λ2x},







(3.45)

where the multipliers vary linearly with the y variables and are given by λ1 = (ȳ−y)/(ȳ−
y), λ2 = 1 − λ1. The derivative of the objective function of the above problem is zero at

x1 = x− λ2α. Thus, two cases arise:

(i) |x| ≤ x̄. In this case, α is negative. It follows that x1 = x − λ2α ≥ x and, thus,

the bound x− λ2x̄ ≤ x1 is redundant. Further, if α ≤ x, then the interior solution

x1 = x− λ2α is always greater than the upper bound x− λ2x. Thus, the minimum

of Problem (3.45) is attained at the upper bound on x1 and convφ is given by (3.42).

For α ≥ x, the constraint x1 ≤ x− λ2x is inactive. The following cases arise:

– if x− λ2α ≤ λ1x, then x
1 = λ1x,
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– if x− λ2α ≥ λ1x̄, then x
1 = λ1x̄,

– otherwise, x1 = x− λ2α.

Substituting for x1 in the objective function of (3.45), gives (3.44).

(ii) |x| ≥ x̄. In this case, α ≥ 0, which implies x1 = x− λ2α ≤ x. Since by assumption

x < 0, it follows that the bound x1 ≤ x− λ2x is redundant. Further, if α ≥ x̄, then

the minimum of Problem (3.45) is attained when x1 hits its lower bound and convφ

is given by (3.43). If α ≤ x̄, the constraint x1 ≥ x − λ2x̄ is inactive and we should

solve the same problem as in Part (i) for α ≥ x.

Example 3.6. Let φ = x2 log10 y, x ∈ [−1, 2], y ∈ [0.1, 10]. Then, α = −0.5 and

x < α < x̄. Thus, Part 3 of Corollary 3.5 is satisfied and convφ is given by:

convφ =















(9.9x−y+10)2

9.9(y−0.1)
+ 0.1y − 1, if − 1 ≤ x ≤ 0.05y − 1.0,

−x+ 0.18y − 2.02, if 0.05y − 1.0 ≤ x ≤ 2.03− 0.25y,
(9.9x+2y−20)2

9.9(y−0.1)
+ 0.4y − 4, if 2.03− 0.25y ≤ x ≤ 2.

To obtain a convex relaxation of φ via a standard factorable method, let t1 = x2 and let

t2 denote the affine underestimator of log10 y, y ∈ [0.1, 10]. Using bilinear envelopes to

underestimate t3 = t1t2, we obtain:

φ̃ = max{0.81(y − 10) + x2, −x− 2}.

The two relaxations are compared in Figure 3.3(b), where it is seen that up to about 80%

of the relaxation gap is closed by convφ.

Similar to the case where f(x) is monotone, the above result is easily generalizable for

a multivariate f(x).

3.4.2 Bivariate g(y)

In this section, we consider φ = f(x)g(y1, y2), x ∈ Hm
x , y ∈ H2

y, where f(x) is a

nonnegative convex function with one of the forms considered in Theorems 3.1 and 3.3

and g(y1, y2) is nonnegative and component-wise concave. We will show that, when g(y)
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is bivariate, similar results to those of Theorems 3.1 and 3.3 can be obtained for much

broader classes of g(y). Namely, the restriction of g(y) to vert(H2
y) is not required to

be submodular. This generalization follows the fact that, over vert(H2
y), there exist two

possible triangulations:

(i) ∆1 = {(y
1
, y

2
), (y

1
, ȳ2), (ȳ1, ȳ2)} and ∆2 = {(y

1
, y

2
), (ȳ1, y2), (ȳ1, ȳ2)}, which corre-

sponds to convg when the restriction of g(y) to vert(H2
y) is submodular,

(ii) ∆′
1 = {(y

1
, y

2
), (y

1
, ȳ2), (ȳ1, y2)} and ∆′

2 = {(y
1
, ȳ2), (ȳ1, y2), (ȳ1, ȳ2)}, which corre-

sponds to convg when the restriction of g(y) to vert(H2
y) is supermodular.

Obviously, the restriction of a bivariate g(y) to vert(H2
y) is either submodular or super-

modular. Let h be a C2 function which is concave and increasing over the range of g(y).

Since the composite function h(g(y)) is component-wise concave over H2
y, by Proposi-

tion 3.1, it has a polyhedral convex envelope. Denote by Λ′ and Λ′′ the sets of optimal

multipliers in the descriptions of convg(y) and convh(g(y)) over H2
y, respectively. Let

Λ∗ = Λ′ ∩ Λ′′. In Propositions 3.3 and 3.5, by letting h(g) = ϕr(g), where ϕr(g) is given

by (3.13), we show that, if Λ∗ is nonempty, then it corresponds to the set of optimal

multipliers in the description of the convex envelope of φ = f(x)g(y1, y2). In the fol-

lowing lemmas, we first present a simple criterion to evaluate the value of the optimal

multipliers for g(y1, y2), y ∈ H2
y. Subsequently, we derive a number of sufficient con-

ditions under which Λ∗ is nonempty and provide a characterization of it in each case.

Define ỹ1 = (y1 − y
1
)/(ȳ1 − y

1
), ỹ2 = (y2 − y

2
)/(ȳ2 − y

2
). For notational simplicity, let

g̃1 = g(y
1
, y

2
), g̃2 = g(y

1
, ȳ2), g̃3 = g(ȳ1, y2), and g̃4 = g(ȳ1, ȳ2). We have the following

result:

Lemma 3.3. Consider the component-wise concave function g(y1, y2), y ∈ H2
y. Define

δ(g) = g̃1 − g̃2 − g̃3 + g̃4. Then, the optimal multipliers in the description of the convex

envelope of g(y1, y2) are given by:

(i) if δ(g) ≤ 0 :

{

λ1 = 1− ỹ2, λ2 = ỹ2 − ỹ1, λ3 = 0, λ4 = ỹ1, if ỹ1 ≤ ỹ2,

λ1 = 1− ỹ1, λ2 = 0, λ3 = ỹ1 − ỹ2, λ4 = ỹ2, if ỹ1 ≥ ỹ2.
(3.46)
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(ii) if δ(g) ≥ 0 :

{

λ1 = 1− ỹ1 − ỹ2, λ2 = ỹ2, λ3 = ỹ1, λ4 = 0, if ỹ1 + ỹ2 ≤ 1,

λ1 = 0, λ2 = 1− ỹ1, λ3 = 1− ỹ2, λ4 = ỹ1 + ỹ2 − 1, if ỹ1 + ỹ2 ≥ 1.
(3.47)

In Lemma 3.3, δ(g) = 0 implies that convg(y) is affine over H2
y (i.e. g(y), y ∈ vert(H2

y )

is modular). It follows that any feasible set of multipliers is also optimal for convg(y)

in this case. Note that δ(g) ≤ 0 (resp. δ(g) ≥ 0) is equivalent to the submodularity

(resp. supermodularity) of g(y) over vert(H2
y). By Lemma 3.3, the set Λ∗ defined before

is nonempty when δ(g)δ(h(g)) ≥ 0, where δ(h(g)) = h(g̃1) − h(g̃2) − h(g̃3) + h(g̃4). Let

ĝ(y) denote the restriction of g(y) to the vertices of H2
y. Obviously, if ĝ(y) is constant

along any edge of H2
y, i.e. if g̃i = g̃j, for some (i, j) ∈ E = {(1, 2), (1, 3), (2, 4), (3, 4)}, then

δ(g) and δ(h(g)) have the same sign and, as a result, Λ∗ is nonempty. Thus, suppose that

g̃i 6= g̃j for all (i, j) ∈ E . Consider ĝ(y) with g̃2 ≤ g̃3 ≤ g̃1 ≤ g̃4. It follows that δ(g) > 0.

As another example, consider the same function with g̃1 ≤ g̃2 ≤ g̃3 ≤ g̃4. In this case, the

sign of δ(g) cannot be determined by the ordering pattern of g̃i, i ∈ I; i.e. depending on

the values of g̃i, i ∈ I, δ(g) can take both nonnegative and nonpositive values. Based on

this simple observation, we introduce the following classification for g(y1, y2), which we

will use in the sequel:

C1. ĝ(y) is non-monotone in at least one argument or is constant over at least one

edge of H2
y. In this case, the sign of δ(g) is implied by the ordering pattern of

g̃i, i ∈ I. We have the following orderings: (i) min{g̃2, g̃3} ≤ min{g̃1, g̃4} and

max{g̃2, g̃3} ≤ max{g̃1, g̃4}, which implies δ(g) ≥ 0, (ii) min{g̃1, g̃4} ≤ min{g̃2, g̃3}
and max{g̃1, g̃4} ≤ max{g̃2, g̃3}, which implies δ(g) ≤ 0.

C2. ĝ(y) is monotone in each argument and g̃i 6= g̃j, ∀(i, j) ∈ E . In this case, the

sign of δ(g) cannot be determined from the ordering pattern of g̃i, i ∈ I. The

feasible orderings are: (i) min{g̃1, g̃4} ≤ g̃2, g̃3 ≤ max{g̃1, g̃4}, which implies ĝ(y)

is nondecreasing (or nonincreasing) in y1 and y2 and (ii) min{g̃2, g̃3} ≤ g̃1, g̃4 ≤
max{g̃2, g̃3}, which implies ĝ(y) is nonincreasing (resp. nondecreasing) in y1 and

nondecreasing (resp. nonincreasing) in y2.

By the above classification, if g(y) is in C1, then the sign of δ(h(g)) follows from the

ordering pattern of g̃i, i ∈ I for any h that is increasing. This, in turn, implies that Λ∗
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is nonempty. It is simple to check that, if g(y) is in C1, then δ(g) = 0 if and only if

δ(h(g)) = 0. Thus, Λ′ = Λ′′. Next, suppose that g(y) is in C2. If ĝ(y) is component-

wise nondecreasing (or nonincreasing), by Lemma 3.1, (i) if δ(g) ≤ 0, then δ(h(g)) ≤ 0

and (ii) if δ(h(g)) ≥ 0, then δ(g) ≥ 0. Thus, without loss of generality, let ĝ(y) be

nondecreasing in y1 and nonincreasing in y2. Consider the mapping T (y1) = y1 and

T (y2) = ȳ2 + y
2
− y2. It follows that ĝ(T (y)) is component-wise nondecreasing and

δ(g(T (y))) = −δ(g(y)). Thus, by Lemma 3.1, (i) if δ(g) ≥ 0, then δ(h(g)) ≥ 0 and (ii) if

δ(h(g)) ≤ 0, then δ(g) ≤ 0. Hence, we have the following characterizations of Λ∗.

Lemma 3.4. Let g(y), y ∈ H2
y, be component-wise concave and let h(·) be concave and

increasing over the range of g(y). Let Λ′ and Λ′′ denote the sets of optimal multipliers in

the descriptions of convg and convh(g) over H2
y, respectively. Let Λ∗ = Λ′ ∩ Λ′′. Denote

by ĝ(y) the restriction of g(y) to vert(H2
y). We have the following cases:

(i) if ĝ(y) is nonmonotone in at least one argument or is constant over any edge of

H2
y, then submodularity (resp. supermodularity) of ĝ(y) implies the submodularity

(resp. supermodularity) of h(ĝ(y)); i.e. Λ′ = Λ′′, and Λ∗ is given by Lemma 3.3,

(ii) if ĝ(y) is submodular and nondecreasing (or nonincreasing) in every argument, then

h(ĝ(y)) is submodular and Λ∗ is given by (3.46),

(iii) if h(ĝ(y)) is submodular, nondecreasing in y1 and nonincreasing in y2, then ĝ(y) is

submodular and Λ∗ is given by (3.46),

(iv) if ĝ(y) is supermodular, nondecreasing in y1 and nonincreasing in y2, then h(ĝ(y))

is supermodular and Λ∗ is given by (3.47),

(v) if h(ĝ(y)) is supermodular and nondecreasing (or nonincreasing) in every argument,

then ĝ(y) is supermodular and Λ∗ is given by (3.47).

In all parts of Lemma 3.4, if δ(g) = δ(h(g)) = 0; i.e. g̃1 = g̃2 and g̃3 = g̃4 (or

g̃1 = g̃3 and g̃2 = g̃4), then Λ∗ consists of all feasible sets of multipliers for convg(y) over

H2
y. For example, consider g(y) = g1(y1)g2(y2), where g1 and g2 are nonnegative concave

functions. Let (i) h(u) = ur, 0 < r < 1, u ≥ 0 and (ii) h(u) = log u, u > 0. It is simple

to verify that, in both cases, (1) if (g1(ȳ1) − g1(y1))(g2(ȳ2) − g2(y2)) ≥ 0, then Part (v)

holds and, (2) if (g1(ȳ1) − g1(y1))(g2(ȳ2) − g2(y2)) ≤ 0, then Part (iii) is satisfied. This

example is of particular importance since h(u) = ur, 0 < r < 1 and h(u) = log u are
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indeed the functions we introduce in Propositions 3.3 and 3.5, respectively. As another

example, consider g(y) = g1(y1) + g2(y2), where g1 and g2 are concave functions and

let h be any concave function which is increasing over the range of g(y). In this case,

(1) if (g1(ȳ1) − g1(y1))(g2(ȳ2) − g2(y2)) ≥ 0, then Part (ii) holds and, (2) if (g1(ȳ1) −
g1(y1))(g2(ȳ2)− g2(y2)) ≤ 0, then Part (iv) is satisfied.

By adding the bivariate restriction on g(y), we next relax the submodularity assump-

tions of Theorems 3.1 and 3.3 and prove that a similar result holds for many more func-

tional classes. Since the proofs of Theorems 3.1 and 3.3 will be heavily used, we adopt

the same notation and will not redefine the symbols.

Proposition 3.3. Let f(x), x ∈ Hm
x be a nonnegative convex function of the form

f(x) = (cTx+ d)
a
, a ∈ R \ {[0, 1]}, c ∈ R

m, d ∈ R and, let g(y1, y2), y ∈ H2
y be

a nonnegative component-wise concave function. Define ϕr(u) = (ur − 1)/r, u ≥ 0,

r = 1/(1− a). Denote by Λ′ and Λ′′, the sets of optimal multipliers in the descriptions of

convg and convϕr(g) over H2
y, respectively. Let Λ∗ = Λ′ ∩ Λ′′. If Λ∗ is nonempty then,

for any (x, y) in the domain of φ = f(x)g(y1, y2) and any λ∗ ∈ Λ∗, there exists an optimal

solution of CX1 with the optimal multipliers given by λ∗.

Proof. We start from Problem (3.23) and will show that, if Λ∗ is nonempty, then any

λ∗ ∈ Λ∗ is optimal for this problem. First, assume δ(g) 6= 0 or δ(h(g)) 6= 0; i.e. Λ∗ consists

of one set of optimal multipliers, denoted by λ∗. Suppose that l ≥ 0, where l is as defined

in Theorem 3.1. Let I = I2. As it follows from the proof of Theorem 3.1, λ∗ is optimal if

and only if δ(g)δ(ϕr(g)) ≥ 0, where δ(g) = g̃1−g̃2−g̃3+g̃4 and δ(ϕr(g)) = ϕr(g̃1)−ϕr(g̃2)−
ϕr(g̃3)+ϕr(g̃4). By Lemma 3.3, this statement follows immediately from the definition of

Λ∗. Thus, suppose that (i) I1 or I3 and (ii) I2 are nonempty. To prove the optimality of

λ∗, it suffices to show that δ(γ(g))δ(g) ≥ 0 (or equivalently δ(γ(g))δ(ϕr(g)) ≥ 0), where

γ(g) is given by (3.26) and δ(γ(g)) = γ(g̃1)− γ(g̃2)− γ(g̃3) + γ(g̃4). Let ĝ(y) denote the

restriction of g(y) to vert(H2
y). If Λ

∗ is nonempty, then one of the following conditions is

satisfied:

1. ĝ(y) is nonmonotone in at least one argument or is constant along any edge of H2
y;

i.e. g(y) is in C1.

2. ĝ(y) is (i) nonincreasing (or nondecreasing) in y1 and y2, with δ(g) ≤ 0 and

δ(ϕr(g)) ≤ 0 or, (ii) nondecreasing in y1 and nonincreasing in y2, with δ(g) ≥ 0

and δ(ϕr(g)) ≥ 0.
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3. ĝ(y) is (i) nonincreasing (or nondecreasing) in y1 and y2, with δ(g) ≥ 0 and

δ(ϕr(g)) ≥ 0 or, (ii) nondecreasing in y1 and nonincreasing in y2, with δ(g) ≤ 0

and δ(ϕr(g)) ≤ 0.

First, let g(y) be in C1. To prove δ(γ(g))δ(g) ≥ 0, it suffices to show that γ(g̃i), i ∈ I, is

nondecreasing in g̃i; i.e. for any i, j ∈ I, if g̃i ≤ g̃j, then γ(g̃i) ≤ γ(g̃j). This statement

means that, if g(y) is in C1, then the sign of δ(γ(g)) is implied by the ordering pattern

of g̃i, i ∈ I, which in turn proves the optimality of λ∗ for Problem (3.23). It is simple to

check that, if i, j ∈ Ik, k ∈ {1, 2, 3}, then γ(g̃i) is increasing in g̃i. Thus, the following

cases arise:

(i) i ∈ I1, j ∈ I2. By (3.19), if a < 0, then g̃i ≤ g̃j, while, if a > 1, then g̃i ≥ g̃j.

Consider

γ(g̃j)− γ(g̃i) = g̃rjw
a
λ∗/r + alwa−1

λ∗ − lag̃i. (3.48)

Since i ∈ I1 and j ∈ I2, by (3.24) we have l/g̃rj ≤ wλ∗ ≤ l/g̃ri . Over this region,

(3.48) is decreasing in wλ∗ . Thus, we have the following bounds on γ(g̃j)− γ(g̃i):

lag̃iϕr(g̃j/g̃i) ≤ γ(g̃j)− γ(g̃i) ≤ la(g̃j − g̃i).

Two cases arise:

– If g̃i ≤ g̃j (i.e. a < 0), then 0 < r < 1. Since ϕr(·) is increasing in r, we have

ϕr(g̃j/g̃i) > log(g̃j/g̃i) ≥ 0. By nonnegativity of f(x) and g(y) it follows that

lag̃iϕr(g̃j/g̃i) ≥ 0. Thus, γ(g̃i) ≤ γ(g̃j).

– If g̃j ≤ g̃i (i.e. a > 1), then la(g̃j − g̃i) ≤ 0, which implies γ(g̃j) ≤ γ(g̃i).

By symmetry, similar result holds for i ∈ I2 and j ∈ I3.

(ii) i ∈ I1, j ∈ I3. If a < 0 (resp. a > 1), then there exists some k ∈ I2 such that

g̃i ≤ g̃k ≤ g̃j . (resp. g̃i ≥ g̃k ≥ g̃j). By Part (i), we have γ(g̃i) ≤ γ(g̃k) (resp.

γ(g̃i) ≥ γ(g̃k)) and γ(g̃k) ≤ γ(g̃j) (resp. γ(g̃k) ≥ γ(g̃j)). Hence, γ(g̃i) ≤ γ(g̃j) (resp.

γ(g̃i) ≥ γ(g̃j)).

Next, suppose that ĝ(y) satisfies one of the conditions of Part 2. If ĝ(y) is submodular

and component-wise nondecreasing (or nonincreasing) then, by Theorem 3.1, λ∗ is optimal

for Problem (3.23). Thus, let ĝ(y) be nondecreasing in y1 and nonincreasing in y2, with
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δ(g) ≥ 0 and δ(ϕr(g)) ≥ 0. Consider the mapping T (y1) = y1 and T (y2) = y
2
+ ȳ2−y2. It

follows that g′(y) = ĝ(T (y)) is component-wise nondecreasing with δ(g′) = −δ(g). Thus,
it suffices to show that δ(g′) ≤ 0 implies δ(γ(g′)) ≤ 0, which is precisely the statement

proved in Theorem 3.1. Now, let ĝ(y) satisfy one of the conditions of Part 3. Let gi, i ∈ I

denote the value of g(y) at the vertices of H2
y such that (i) if a < 0, then g1 ≤ . . . ≤ g4

and (ii) if a > 1, then g1 ≥ . . . ≥ g4. Employing a similar argument as in Part 2, it follows

that, to prove the optimality of λ∗, it suffices to show

(P) δ(ϕr(g)) ≥ 0 =⇒ δ(γ(g)) ≥ 0,

where δ(ϕr(g)) = ϕr(g1)−ϕr(g2)−ϕr(g3) +ϕr(g4) and δ(γ(g)) = γ(g1)− γ(g2)− γ(g3) +

γ(g4). Next, we consider all feasible combinations of bounds for Problem (3.23) which are

derived from Cases I-V considered in Theorem 3.1, by letting ij = j, j = 1, . . . , 4. For

each case, we prove that (P) holds. In the following, by w and w̄, we denote the minimum

and maximum of wλ∗ , respectively, given by (3.24).

I. I1 = {1, 2, 3}, I2 = {4}. Then, w = l/gr4 and w̄ = min{l/gr3, u/gr4}. It suffices to

show that δ(γ(g)) given by (3.27) is nonnegative for wλ∗ = w̄ or some upper bound

on w̄. Substituting wλ∗ = l/gr3 in (3.27), and using δ(ϕr(g)) ≥ 0, yields

ϕr((g1/g3), (g2/g3)) ≤ (g1/g3)− (g2/g3),

which follows from (3.15). By symmetry, (P) holds for I2 = {1}, I3 = {2, 3, 4}.

II. I1 = {1, 2}, I2 = {3, 4}. Then, w = l/gr3 and w̄ = min{l/gr2, u/gr4}. Since δ(γ(g))

given by (3.28) is decreasing in wλ∗ , it suffices to show that (P) holds for wλ∗ = l/gr2.

Substituting for wλ∗ in δ(γ(g)), and using δ(ϕr(g)) ≥ 0, yields

ϕr(g1/g2) ≤ (g1/g2)− 1, (3.49)

which follows from (3.14). By symmetry, (P) holds for I2 = {1, 2}, I3 = {3, 4}.

III. I1 = {1}, I2 = {2, 3, 4}. Then, w = l/gr2 and w̄ = min{l/gr1, u/gr4}. By ϕr(g4) −
ϕr(g3)− ϕr(g2) ≥ −ϕr(g1), it suffices to show that

lag1 − alwa−1
λ∗ − gr1w

a
λ∗/r ≥ 0.
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The left-hand side of the above inequality is decreasing in wλ∗ and a lower bound on

it is attained at wλ∗ = l/gr1, which is equal to zero. By symmetry, (P) is valid for

I2 = {1, 2, 3}, I3 = {4}.

IV. I1 = {1, 2}, I2 = {3}, I3 = {4}. Then, w = max{l/gr3, u/gr4} and w̄ = min{l/gr2, u/gr3}.
Since δ(γ(g)) given by (3.32) is decreasing in wλ∗ , it suffices to show that δ(γ(g)) ≥ 0

for wλ∗ = w̄ or an upper bound on w̄. Substituting for wλ∗ = l/gr2 in δ(γ(g)), gives:

(g3/g2)
r/r + a(u/l)− (u/l)a(g4/g2) ≤ (g1/g2)− 1.

Over 1 ≤ u/l ≤ (g4/g2)
r, the left-hand side of the above inequality is increasing in

u/l. Substituting u/l = (g4/g2)
r, and using δ(ϕr(g)) ≥ 0, yields (3.49). By symmetry,

(P) holds for I1 = {1}, I2 = {2}, I3 = {3, 4}.

V. I1 = {1}, I2 = {2, 3}, I3 = {4}. Then, w = max{l/gr2, u/gr4} and w̄ = min{l/gr1, u/gr3}.
It is simple to check that the minimum of δ(γ(g)) given by (3.34) is attained at

wλ∗ = (l + u)/(gr2 + gr3). Thus, it suffices to show that

(1 + u/l)−a g1 + (1 + l/u)−a g4 ≥ (gr2 + gr3)
1/r . (3.50)

Over (g3/g2)
r ≤ u/l ≤ (g4/g1)

r, the left-hand side of (3.50) is decreasing in u/l.

Substituting u/l = (g4/g1)
r in (3.50), gives (gr1 + gr4)

1/r ≥ (gr2 + gr3)
1/r, which follows

from δ(ϕr(g)) ≥ 0. Thus, relation (P) is valid.

Finally, let us consider the case where Λ∗ contains a set of four nonzero multipliers; i.e.

δ(g) = δ(ϕr(g)) = 0. It follows that g̃1 = g̃2 and g̃3 = g̃4 (or g̃1 = g̃3 and g̃2 = g̃4), which

in turn implies γ(g̃1) = γ(g̃2) and γ(g̃3) = γ(g̃4) (or γ(g̃1) = γ(g̃3) and γ(g̃2) = γ((g̃4)).

Hence, δ(γ(g)) = 0 and any λ∗ ∈ Λ∗ is optimal for Problem (3.23). As discussed in

Theorem 3.1, the proofs for the cases where u ≤ 0 and l < 0 < u are straightforward.

As an interesting observation, if we let a > 1 and g(y) = y1y2 in the statement of

Proposition 3.3, then there exist regions over which all optimal multipliers in Problem CX1

are nonzero and their values depend on the x variables. This is due to the fact that,

while g(y) = y1y2, y ∈ H2
y is supermodular, ϕr(g(y)) is submodular for a > 1 and

is supermodular for a < 0. Thus, while it might seem counterintuitive, constructing

the convex envelope of φ = y1y2x
2 is considerably harder than constructing the convex

75



envelope of φ = y1y2/x. Employing a similar proof technique, we obtain the following

result for the concave envelope of the functions considered in Theorem 3.2.

Proposition 3.4. Let f(x) = (cTx+ d)
a
, a ∈ (0, 1), c ∈ R

m, d ∈ R, x ∈ Hm
x = {[x, x̄] ⊂

R
m : cTx+ d ≥ 0}, and let g(y1, y2), y ∈ H2

y be a component-wise convex function whose

restriction to vert(H2
y) is nonnegative. Define ϕr(u) = (ur − 1)/r, u ≥ 0, r = 1/(1 − a).

Denote by Λ′ and Λ′′ the sets of optimal multipliers in the descriptions of the concave

envelopes of g(y) and ϕr(g(y)) over H2
y, respectively. Let Λ

∗ = Λ′∩Λ′′. If Λ∗ is nonempty,

then it is contained in the set of optimal multipliers corresponding to the concave envelope

of φ = f(x)g(y1, y2).

Next, we consider the case where f(x) is exponential. We present the following propo-

sition without proof, since it follows from a line of arguments similar to those in Propo-

sition 3.3 by letting ϕr → ϕ0.

Proposition 3.5. Let f(x) = ac
T x+d, x ∈ Hm

x , c ∈ R
m, d ∈ R, and let g(y1, y2) be

nonnegative and component-wise concave. Define ϕ0(u) = log u, u > 0. Denote by Λ′

and Λ′′ the sets of optimal multipliers in the descriptions of convg and convϕ0(g) over

H2
y, respectively. Let Λ

∗ = Λ′ ∩ Λ′′. If Λ∗ is nonempty then, for any (x, y) in the domain

of φ = f(x)g(y1, y2) and any λ∗ ∈ Λ∗, there exists an optimal solution of CX1 with the

optimal multipliers given by λ∗.

Remark 3.4. In Propositions 3.3 and 3.5, the function ϕr(g), r ≤ 0 is undefined at

points y ∈ H2
y such that g(y) = 0, yet the results are valid for such cases. This can be

seen by replacing g(y) = 0 with g(y) = ε and letting ε ↘ 0 or defining ϕr = −∞, if

g(y) = 0. In the latter case, one can check the nonemptyness of Λ∗ using condition (3.6).

Namely, Λ∗ is nonempty if and only if the restrictions of g(y) and ϕr(g) to vert(H2
y) are

both submodular (supermodular).

We next present closed-form expressions for the convex envelopes of selected functions

of the forms considered in Proposition 3.3 and 3.5. We state the next two corollaries with-

out proofs, since the envelope expressions follow directly from the proofs of Theorems 3.1

and 3.3. In the following, the set {i, j, k} denotes the indices of the nonzero optimal

multipliers given by Lemma 3.3, rearranged such that (i) if a < 0, then gi ≤ gj ≤ gk and

(ii) if a > 1, then gi ≥ gj ≥ gk, where gr, r ∈ {i, j, k} denotes the value of g(y1, y2) at the

corresponding vertex of H2
y.

76



Corollary 3.6. Consider φ(x, y) = xag(y1, y2), a ∈ R \ {[0, 1]}, 0 < x ≤ x ≤ x̄. Let

g(y1, y2) be a nonnegative component-wise concave function and suppose that φ(x, y)

satisfies the conditions of Proposition 3.3. Define r = 1/(1−a) and α = λig
r
i +λjg

r
j+λkg

r
k.

Then, the convex envelope of φ is given by:

– if x ≤ x ≤ (1− λk)x+ λk min{(gk/gj)rx, x̄} :

convφ = (λigi + λjgj)x
a + λ1−a

k (x− (λi + λj)x)
agk,

– if (1− λk)x+ λk(gk/gj)
rx ≤ x ≤ min{αx/gri , λix+ (λj(gj/gk)

r + λk)x̄} :

convφ = λix
agi + (x− λix)

a
(

λjg
r
j + λkg

r
k

)1−a

,

– if λix+ λj max{x, (gj/gk)rx̄}+ λkx̄ ≤ x ≤ λix+ λj min{x̄, (gj/gi)rx}+ λkx̄ :

convφ = λix
agi + λ1−a

j (x− λix− λkx̄)
agj + λkx̄

agk,

– if αx/gri ≤ x ≤ αx̄/grk : convφ = xaα1−a,

– if max{αx̄/grk, (λi + λj(gj/gi)
r)x+ λkx̄} ≤ x ≤ (λi(gi/gj)

r + λj + λk)x̄ :

convφ = (x− λkx̄)
a
(

λig
r
i + λjg

r
j

)1−a

+ λkx̄
agk,

– if (1− λi)x̄+ λi max{x, (gi/gj)rx̄} ≤ x ≤ x̄ :

convφ = λ1−a
i (x− (λj + λk)x̄)

agi + (λjgj + λkgk)x̄
a.

Example 3.7. Let φ = y1y2/x, x ∈ [0.1, 1], y1 ∈ [0.1, 1], y2 ∈ [0.5, 1.5]. By Lemma 3.2,

ϕr(g) = 2(
√
y1y2 − 1) is supermodular and increasing in each argument. Thus, Part (v)

of Lemma 3.4 is satisfied and convφ is can be computed from Corollary 3.6. It follows
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that, over 20y1 + 18y2 ≥ 29, the convex envelope of φ is given by:

convφ =







































(20y1+18y2−29)2

12(18x+2y1+1.8y2−4.7)
− 5/3y1 − 5y2 + 55/6, if 0.1 ≤ x ≤ r1,

(12.25y1+4.66y2−8.21)2

9(9x+y1−1)
− 5/3(y1 − 1), if r1 ≤ x ≤ r2,

(0.93y1+0.52y2−0.48)2

x
, if r2 ≤ x ≤ r3,

(0.43y1+0.71y2−1.49)2

x−1.11y1−y2+1.61
+ 1.67y1 + 1.5y2 − 2.42, if r3 ≤ x ≤ r4,

0.18(y1−1)2

x−1.11y1+0.11
+ 1.67y1 + y2 − 1.67, if r4 ≤ x ≤ 1,

where r1 = .08y1+ 0.07y2− 0.02, r2 = 0.24y1 +0.13y2− 0.12, r3 = 0.76y1 +0.42y2 − 0.39,

and r4 = 0.5y1 + 0.5. Over 20y1 + 18y2 ≤ 29, we have:

convφ =







































0.5(1.11y1−0.11)2

x+0.11y1−0.11
+ 0.56(0.1− y1) + y2, if 0.1 ≤ x ≤ r5,

(0.79y1+0.39y2−0.27)2

(x+0.11y1+0.1y2−0.16)
− 0.56y1 − 0.5y2 + 0.8, if r5 ≤ x ≤ r6,

(0.54y1+0.16y2+0.09)2

x
, if r6 ≤ x ≤ r7,

(0.17−0.25y1+0.16y2)2

x−1.11y1+0.11
+ 0.55y1 − 0.06, if r7 ≤ x ≤ r8,

0.05(1.61−1.11y1−y2)2

x−1.11y1−y2+0.61
+ 0.56y1 + 0.15y2 − 0.13, if r8 ≤ x ≤ 1,

where r5 = 0.09y1 + 0.09, r6 = 0.24y1 + 0.07y2 + 0.04, r7 = 0.76y1 + 0.23y2 + .12, and

r8 = 0.47y1+0.42y2+0.32. To construct a convex underestimator of φ using a factorable

relaxation method, let t1 denote the convex envelope of y1y2 and denote by φ̃ the convex

envelope of t2 = t1/x given by Corollary 3.2. Then, over 20y1 + 18y2 ≤ 29, we obtain:

φ̃ =















1.5(0.35y1+0.07y2−0.07)2

x+0.035y1+0.007y2−0.107
− 0.17y1 − 0.035y2 + 0.53, if 0.1 ≤ x ≤ s1,

(0.35y1+0.07y2+0.15)2

x
, if s1 ≤ x ≤ s2,

0.024(0.5y1+0.1y2−1.55)2

x−0.34y1−0.07y2+0.07
+ 0.52y1 + 0.103(y2 − 1), if s2 ≤ x ≤ 1,

where s1 = 0.15y1+0.031y2+0.0695 and s2 = 0.28y1+0.056y2+0.13. Over 20y1+18y2 ≥
29, we obtain:

φ̃ =















1.5(1.03y1+0.69y2−1.07)2

(x+0.1y1+0.07y2−0.21)
− 0.52y1 − 0.34y2 + 1.03, if 0.1 ≤ x ≤ s3,

(1.04y1+0.69y2−0.85)2

x
, if s3 ≤ x ≤ s4,

0.024(1.5y1+y2−3)2

x−1.03y1−0.69y2+1.07
+ 1.55y1 + 1.03y2 − 1.6, if s4 ≤ x ≤ 1,

where s3 = 0.46y1 + 0.31y2 − 0.38 and s4 = 0.85y1 + 0.56y2 − 0.69. The gap closed by

convφ at y2 = 0.7 is depicted in Figure 3.4(a). Up to over 70% of the relaxation gap is
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(b) Example 3.8: φ = x2
√
y1 + y2 at y2 = 1.25

Figure 3.4: Gaps closed by the convex envelopes for Examples 3.7 and 3.8

closed by the convex envelope.

Example 3.8. Let φ = x2
√
y1 + y2, x ∈ [0.1, 0.5], y1 ∈ [0, 1], y2 ∈ [0.5, 1.5]. By

Lemma 3.2, g(y) =
√
y1 + y2 is submodular and increasing in each argument. Thus,

Part (ii) of Lemma 3.4 is satisfied and convφ is can be obtained from Corollary 3.6. It

follows that over y2 − y1 ≥ 0.5, we have:

convφ =







































√
2
2

(x−0.1y2+0.05)2

1.5−y2
+ 0.003(y1 + 4y2 − 2), if 0.1 ≤ x ≤ r1,

(x−0.1y1)2

1.71−0.82y1−0.6y2
+ 0.016y1, if r1 ≤ x ≤ r2,

x2

1.71−0.18y1−0.6y2
, if r2 ≤ x ≤ r3,

(x+0.5y2−0.75)2

−0.41−0.18y1+0.82y2
− 0.18y2 + 0.26, if r3 ≤ x ≤ r4,

1.58 (x+0.5y1−0.5)2

y1
− 0.31y1 + 0.13y2 + 0.11, if r4 ≤ x ≤ 0.5,

where r1 = 0.21 − 0.07y2, r2 = 0.27 − 0.03y1 − 0.09y2, r3 = 0.6 − 0.06y1 − 0.21y2, and

r4 = 0.5− 0.11y1. Over y2 − y1 ≤ 0.5 the convex envelope of φ is given by:

convφ =







































√
2
2

(x−0.1y1)2

1−y1
+ 0.002(6y1 + 2y2 − 1), if 0.1 ≤ x ≤ r5,

(x−0.1y2+0.05)2

1.82−0.6y1−0.82y2
+ 0.016y2 − 0.008, if r5 ≤ x ≤ r6,

x2

1.51−0.6y1−0.18y2
, if r6 ≤ x ≤ r7,

(x+0.5y1−0.5)2

0.82y1−0.18y2+0.09
− 0.177(y1 − 1), if r7 ≤ x ≤ r8,

1.58 (x+0.5y2−0.75)2

y2−0.5
+ 0.13y1 − 0.31y2 + 0.33, if r8 ≤ x ≤ 0.5,

where r5 = 0.17 − 0.07y1, r6 = 0.24 − 0.09y1 − 0.03y2, r7 = 0.53 − 0.21y1 − 0.06y2, and

r8 = 0.56−0.11y2. To compare with a standard factorable relaxation, let t1 = y1+y2 and
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denote by φ̃ the convex envelope of t2 = x2
√
t1 given by Corollary 3.2. It follows that

φ̃ =















0.003 (y1+y2−20x−0.5)2

y1+y2−2.5
+ 0.008(y1 + y2 − 0.5), if 0.1 ≤ x ≤ s1,

x2

1.61−0.39(y1+y2)
, if s1 ≤ x ≤ s2,

(4x+y1+y2−2.5)2

5(y1+y2−0.5)
− 0.09(y1 + y2) + 0.22, if s2 ≤ x ≤ 1,

where s1 = 0.254− 0.062(y1+ y2) and s2 = 0.57− 0.14(y1+ y2). The gap closed by convφ

at y2 = 1.25 is depicted in Figure 3.4(b). Up to over 70% of the relaxation gap is closed

by the convex envelope.

Next, we present the envelope expressions for the case where f(x) is exponential. In

the following, the set {i, j, k} denotes the indices of the nonzero optimal multipliers given

by Lemma 3.3, rearranged such that (i) if a < 1, then gi ≤ gj ≤ gk and (ii) if a > 1, then

gi ≥ gj ≥ gk, where gr, r ∈ {i, j, k} denotes the value of g(y1, y2) at the corresponding

vertex of H2
y.

Corollary 3.7. Consider φ(x, y) = axg(y1, y2), a > 0, x ∈ [x, x̄] ⊂ R. Let g(y1, y2)

be a nonnegative component-wise concave function and suppose that φ(x, y) satisfies the

conditions of Proposition 3.5. Then, convφ is given by:

– if x ≤ x ≤ min {(λi + λj)x+ λkx̄, x+ λk loga(gj/gk)} :

convφ = (λigi + λjgj)a
x + λka

(x−(λi+λj)x)/λkgk,

– if x+λk loga(gj/gk) ≤ x ≤ min{x+λj loga(gi/gj)+λk loga(gi/gk), λix+λj loga(gk/gj)+
(λj + λk)x̄} :

convφ = λia
xgi + (λj + λk)a

(x−λix)/(λj+λk)(g
λj

j g
λk

k )1/(λj+λk),

– if λix+ λj max{x, x̄+ loga(gk/gj)}+ λkx̄ ≤ x ≤ λix+ λj min{x+ loga(gi/gj), x̄}+
λkx̄ :

convφ = λia
xgi + λja

(x−λix−λkx̄)/λjgj + λka
x̄gk,

– if x+ λj loga(gi/gj) + λk loga(gi/gk) ≤ x ≤ x̄+ λi loga(gk/gi) + λj loga(gk/gj) :

convφ = gλi

i g
λj

j g
λk

k a
x,
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– if max{x̄+ λi loga(gk/gi) + λj loga(gk/gj), (λi + λj)x+ λkx̄+ λj loga(gi/gj)} ≤ x ≤
x̄+ λi loga(gj/gi) :

convφ = (λi + λj)a
(x−λk x̄)/(λi+λj)(gλi

i g
λj

j )1/(λi+λj) + λka
x̄gk,

– if max{x̄+ λi loga(gj/gi), λix+ (λj + λk)x̄} ≤ x ≤ x̄ :

convφ = λia
(x−(λj+λk)x̄)/λigi + (λjgj + λkgk)a

x̄.

Example 3.9. Let φ = (2y1 − y2) exp(−x), x ∈ [−0.5, 1.0], y1 ∈ [0.6, 1.5], y2 ∈ [0.1, 1.0].

Then g(y) is modular, increasing in y1 and decreasing in y2. Thus, Part (iv) of Lemma 3.4

holds and convφ is given by Corollary 3.7. Hence, over y1 + y2 ≤ 1.6, we have

convφ =































1−y2
0.19

exp
(

−0.9x−0.45
1−y2

)

+ 3.3y1 + 3.66y2 − 5.31, if 0.1 ≤ x ≤ r1,

y1−0.6
0.9

exp
(

−0.9x+0.025y1−0.37y2−0.72
y1−0.6

)

− 0.37y1 + 0.55, if r1 ≤ x ≤ r2,

y1+y2−1.6
0.45

exp
(

−0.9x+0.5y1−y2+0.25
y1+y2−1.6

)

− 0.37y1 − 1.18y2 + 1.73, if r2 ≤ x ≤ r3,

1.5−y1
4.5

exp
(

−0.9x+y1−0.6
1.5−y1

)

+ 0.82y1 − 0.37y2 − 0.12, if r3 ≤ x ≤ 1.0,

where r1 = −0.41y2 − 0.09, r2 = 1.25y1 − 0.41y2 − 0.84, and r3 = 2.56y1 − 2.84. Over

y1 + y2 ≥ 1.6, the convex envelope of φ is given by:

convφ =































y1−0.6
0.31

exp
(

−0.9x+0.5y1−0.75
y1−0.6

)

− 2.01y1 − 1.65y2 + 3.19, if 0.1 ≤ x ≤ r5,

1−y2
0.55

exp
(

−0.9x+0.97y1−0.09y2−0.88
1−y2

)

− 0.74y2 + 1.07, if r5 ≤ x ≤ r6,

1.6−y1−y2
0.82

exp
(

−0.9x+y1+0.5y2−1.1
1.6−y1−y2

)

+ 1.18y1 + 0.37y2 − 0.75, if r6 ≤ x ≤ r7,

y2−0.1
4.5

exp
(

−0.9x−y2+1
y2−0.1

)

+ 0.74y1 − 0.45y2 + 0.008, if r7 ≤ x ≤ 1.0,

where r5 = 1.08y1−1.15, r6 = 1.08y1−0.59y2−0.56, and r7 = 1.19−1.89y2. Alternatively,

defining t1 = 2y1 − y2 and employing the result of Corollary 3.3 to underestimate t2 =

t1 exp(−x), we obtain:

φ̃ =















2.9s exp
(

0.5(s−1)−x
s

)

+ 0.33(1− s), if − 0.5 ≤ x ≤ −0.5 + 2.67s,

0.2 exp(−x)14.5s, if − 0.5 + 2.67s ≤ x ≤ 1 + 2.67(1− s),

0.2(1− s) exp
(

s−x
1−s

)

+ 1.07s, if 1 + 2.67(1− s) ≤ x ≤ 1.0,
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Figure 3.5: Gap closed by the convex envelope of φ = (2y1 − y2) exp(−x) at y2 = 0.4 for
Example 3.9

where s = 0.37(2y1 − y2 − 0.2). As shown in Figure 3.5, convφ at y2 = 0.4 closes up to

over 75% of the relaxation gap in comparison to the recursive relaxation.

In Examples 3.8 and 3.9, in order to construct φ̃, we utilized the convex envelopes

of t2 = x2
√
t1 and t2 = t1 exp(−x) that are not currently implemented in global solvers.

Standard factorable relaxations are much weaker than φ̃ for both examples.

3.5 Conclusions

In this chapter, we studied the problem of constructing the convex envelope of a lsc

function defined over a compact convex set. We showed that, if the generating set of the

convex envelope of the function under consideration can be expressed as the union of a

finite number of closed convex sets, then the envelope representation problem can be recast

as a convex optimization problem via a nonlinear change of variables. While characterizing

the generating set is not an easy task, in general, we identified several important functional

classes for which the aforementioned condition is satisfied. At the computational level, and

in particular for general-purpose global solvers, it is highly advantageous to have closed-

form expressions for the envelopes of functions that appear frequently as building blocks

in nonconvex problems. With this goal in mind, we further studied nonnegative functions

that are products of convex and component-wise concave functions and derived closed-

form expressions for the convex envelopes of various functional forms in this category. In

addition to extending this type of analysis to other important functional classes, future

research should investigate the computational implications of integrating the proposed

82



envelopes in a global solver and study their effect on the convergence rate of branch-and-

bound algorithms in applications.
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Chapter 4

Convex envelopes of products of

convex and component-wise concave

functions

In this chapter, we consider functions of the form φ(x, y) = f(x)g(y) over a box, where

f(x), x ∈ R is a nonnegative monotone convex function with a power or an exponential

form, and g(y), y ∈ R
n is a component-wise concave function which changes sign over the

vertices of its domain. Utilizing the results of Chapter 3, we derive closed-form expressions

for convex envelopes of various functions in this category. We demonstrate via numerical

examples that the proposed envelopes are significantly tighter than popular factorable

programming relaxations.

4.1 Introduction

In Chapter 3, we derived a sufficient condition under which the envelope representation

problem is equivalent to a certain convex optimization problem. Namely, the generating

set of the function under consideration is representable as a union of finitely many closed

convex sets. We then studied functions of the form φ(x, y) = f(cTx + d)g(y), c, x ∈ R
m,

d ∈ R, y ∈ R
n over a box, where f(·) is a nonnegative convex function with a power or an

exponential form and g(y) is a nonnegative component-wise concave function. Motivated

by diverse applications [8, 14], in this chapter, we relax the nonnegativity requirement on

g(y), i.e. , we permit g(y), y ∈ R
n, to take both negative and positive values over the
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vertices of the box over which the function is defined. The convex function f(x) is required

to be nonnegative, univariate, and monotone with a power or an exponential form. Under

these assumptions, we present closed-form expressions for the convex envelopes of a wide

class of functions of the form φ(x, y) = f(x)g(y). Together with the results of Chapter 3,

the proposed envelopes cover over 30% of the nonconvex functions that appear in the

popular GLOBALLib [14] and MINLPLib [8] collections.

The remainder of the chapter is organized as follows. In Section 4.2, we present a brief

review of the material from Chapter 3 that we will use in this chapter. In Section 4.3, we

derive closed-form expressions for convex envelopes of functions of the form φ = f(x)g(y)

over a box, where f(x), x ∈ R is a nonnegative convex function and g(y), y ∈ R
n is a

component-wise concave function. In Section 4.4, we focus on functions that are products

of univariate convex and bivariate component-wise concave functions, and present explicit

characterizations of convex envelopes for various functional types that appear frequently

in nonconvex optimization problems.

4.2 Preliminaries

Throughout this chapter, φ denotes a lsc function defined over a compact convex

set C. The set of extreme points of C will be denoted by vert(C), and the epigraph

of φ over C will be denoted by epiCφ. The convex envelope of φ over C, denoted by

convCφ, is defined as the highest convex function that lies below φ on C, and is given by

convCφ = inf{t : (x, t) ∈ Φ}, where Φ is the convex hull of epiCφ. When the domain is

clear from the context, we may drop the subscript C from convCφ. Since φ is lsc and C is

compact, the set of extreme points of the convex hull of epiCφ is the minimal set sufficient

to characterize convCφ (cf. Theorem 18.5 in [47]). In the global optimization literature,

the projection of this set on C is often referred to as the generating set of φ over C and

will be denoted by GCφ.

As we discussed in Chapter 3, unless the generating set is finite (i.e. the convex

envelope is polyhedral), employing the standard disjunctive programming approach for

constructing convCφ leads to a highly nonconvex optimization problem. In a similar vein

to Chapter 3, we assume that GCφ is representable as a union of finitely many closed

convex sets, i.e. GCφ = ∪i∈ISi, where Si ⊂ C is a nonempty closed convex set that

can be algebraically expressed by a collection of closed convex functions gij such that
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Si = {u ∈ C : gij(u) ≤ 0, j = 1, . . . , mi} for all i ∈ I = {1, . . . , p}. Under these

assumptions, for any x ∈ C, the value of convCφ(x) is equal to the optimal value of the

following convex NLP:

min
xi,λi

∑

i∈I λiφ (x
i/λi)

s.t.
∑

i∈I x
i = x

∑

i∈I λi = 1

λi ≥ 0, ∀i ∈ I

λigij (x
i/λi) ≤ 0, j = 1, . . . , mi, i ∈ I,







































(4.1)

where xi is a point in the set λiSi and λi ∈ [0, 1] denotes the convex multiplier associated

with Si. Now, consider a continuously differentiable function g(y) over a box Hn
y ⊂ R

n.

Let the convex envelope of g(y) over Hn
y be polyhedral. By Proposition 3.1, GHn

y
g(y) =

vert(Hn
y ). Thus, Problem (4.1) simplifies to the following LP:

min
λi

∑

i∈I λig(ŷi)

s.t.
∑

i∈I λiŷi = y
∑

i∈I λi = 1

λi ≥ 0, ∀i ∈ I,



























(4.2)

where ŷi, i ∈ I = {1, . . . , 2n} denote the vertices of Hn
y . By Proposition 3.2, if g(y),

y ∈ vert(Hn
y ) is submodular, then an optimal solution of (4.2) can be obtained as follows.

Given any y ∈ Hn
y , let ỹk = (yk−yk)/(ȳk−yk), k ∈ {1, . . . , n}. Denote by π a permutation

of {1, . . . , n} such that ỹπ(1) ≥ ỹπ(2) ≥ ... ≥ ỹπ(n). Let ek denote the kth unit vector in

R
n. Then, the set of n + 1 vertices of Hn

y with nonzero optimal multipliers are ν = {νj :
νj = y+(ȳ−y)∑j−1

k=1 e
π(k), j = 1, . . . n+1}. Finally, the values of the optimal multipliers

associated with νj are given by λ̃1 = 1− ỹπ(1), λ̃j = ỹπ(j−1) − ỹπ(j), j = 2, . . . , n, λ̃n+1 =

ỹπ(n). Let Ĩ = {i ∈ I : ŷi = νj , for some j ∈ {1, . . . , n+1}} and, for each i ∈ Ĩ, let q(i) be

equal to a j such that ŷi = νj. Then, the set λ∗ given by:

λ∗i =

{

λ̃q(i), if i ∈ I
0, otherwise,

(4.3)

is an optimal solution of Problem (4.2).
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4.3 Convex envelopes of products of convex and

component-wise concave functions

Consider a function φ(x, y) = f(x)g(y) on a box C = [x, x̄] × [y, ȳ]. Let f(x), x ∈
[x, x̄] ⊂ R be a nonnegative monotone convex function with one of the following forms:

(i) f(x) = xa, a ∈ R \ {[0, 1]} and (ii) f(x) = ax, a > 0. Let the function g(y),

y ∈ Hn
y = [y, ȳ] ⊂ R

n be component-wise concave In Chapter 3, we considered the case

where g(y) is nonnegative. It is simple to check that convCφ is polyhedral if g(y) is

nonpositive over the vertices of Hn
y . Thus, in the following, we assume that the sign

of g(y) changes over vert(Hn
y ). It should be noted that the results of this section are

applicable for φ(x, y) = f̃(x)g(y), where f̃(x) = f(cx + d), for some c, d ∈ R, by letting

u = cx + d, u = min{cx, cx̄} + d, ū = max{cx, cx̄} + d, and using the fact that, if

ψ = f(u)g(y), D = [u, ū] × Hn
y , then convCφ(x, y) = convDψ(cx + d, y). Denote by ŷi,

i ∈ I = {1, . . . , 2n}, the vertices of Hn
y . Let IN = {i ∈ I : g(ŷi) < 0}, IP = I \ IN , and

I0 = {i ∈ IP : g(ŷi) = 0}. Then, by Proposition 3.1 and Corollary 3.1, the generating set

of φ over C is given by:

GCφ = {(x, ŷi), x ≤ x ≤ x̄, i ∈ IP \ I0} ∪ {{x, ŷi}, x ∈ {x, x̄}, i ∈ I0 ∪ IN}.

It follows that the number p of convex components in GCφ and, hence, the size of Prob-

lem (4.1) increase exponentially in the dimension of C. In order to construct convCφ, we

employ a sequential convexification approach. We first convexify φ(x, y) over the vertices

of Hn
y where g(y) is negative. Since φ(x, ŷi) = f(x)g(ŷi) is a univariate concave function

for all i ∈ IN , the convex envelope of φ(x, ŷi), i ∈ IN over [x, x̄] is affine. For notational

simplicity, let ∆x = x̄ − x and ∆f = f(x̄) − f(x). Then, it follows from (4.1) that, for
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any (x, y) ∈ C, the value of convCφ(x, y) can be found by solving

(CN) min
xi,λi

∑

i∈IN

(

∆f

∆x
xi +

x̄f(x)− xf(x̄)

∆x
λi

)

g(ŷi) +
∑

i∈IP

λif
(

xi/λi
)

g(ŷi)

s.t.
∑

i∈I
xi = x (4.4)

∑

i∈I
λiŷi = y

∑

i∈I
λi = 1

λix ≤ xi ≤ λix̄, ∀i ∈ I (4.5)

λi ≥ 0, ∀i ∈ I,

where, as in (4.1), the variables are xi and λi for all i ∈ I, for a total number of 2n+1

variables. Problem CN is convex and continuous. However, due to the presence of per-

spective expressions λif(·/λi), the objective function of CN is not differentiable at any

point where λi = 0 for some i ∈ IP . As we will demonstrate later, over a large region

of C, optimal solutions of CN are in fact points of non-differentiability. Thus, efficient

gradient-based convex solvers cannot be easily employed to solve Problem CN. Motivated

by this discussion, in the remainder of this chapter, we are interested in solving CN an-

alytically to derive explicit characterization of convCφ. In Section 3.4.1 of Chapter 3, we

addressed the case where g(y) is a univariate function. We will henceforth assume that

n ≥ 2.

Before proceeding further, we recall the concept of generalized means (see Chapter III

of [17] for an exposition), which we will use in the following proofs to simplify the formulas.

Let b = {bs, s ∈ S} denote a set of nonnegative numbers with a set of nonnegative

weighting coefficients given by µ = {µs, s ∈ S}. Let ω(x), mins∈S bs ≤ x ≤ maxs∈S bs, be

a continuous and strictly monotonic function. The weighted mean of the set b associated

with ω(·) is defined as:

Ωω (b, µ,S) = ω−1

(
∑

s∈S µsω(bs)
∑

s∈S µs

)

, (4.6)

where ω−1(·) denotes the inverse function. For example, if we let ω(x) = x or ω(x) = log x,

then (4.6) simplifies to the weighted arithmetic and geometric means of b, respectively.
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Define

ϕr(x) =

∫ x

1

vr−1dv =
xr − 1

r
, x > 0, r ∈ R \ {0}. (4.7)

It follows that limr→0Ωϕr(x)(b, µ,S) = Ωlog(x)(b, µ,S). For notational simplicity, we denote

Ωϕr
(·), by Ωr(·), in the sequel. In particular, ϕ0(x) = log(x) and Ω0(·) = Ωlog(x)(·). Since

ϕr(x) is an increasing function of r, for −∞ < r < 1, we have:

ϕr(x) ≤ x− 1. (4.8)

We now present the main result of this section. To wit, under certain assumptions, we

solve Problem CN analytically and derive closed-form expressions for the convex envelope

of φ(x, y) over C.

Theorem 4.1. Let the convex function f(x), x ∈ [x, x̄] ∈ R be nonnegative and monotone

with one of the following forms: (i) f(x) = xa, a ∈ R \ {[0, 1]} and (ii) f(x) = ax, a > 0.

Suppose that g(y), y ∈ Hn
y is a component-wise concave function such that its restriction

to vert(Hn
y ) is submodular and nondecreasing (or nonincreasing) in every argument. Then,

given any (x, y) ∈ C, there exists an optimal solution of Problem CN with the optimal

multipliers λ∗ given by (4.3).

Proof. If IN = ∅, the result follows from the proofs of Theorem 3.1. We will henceforth

assume that IN 6= ∅. We start by partially minimizing CN with respect to xi, i ∈ I,

assuming the last two sets of inequalities are inactive. First, consider the case IP \ I0 6= ∅.
Writing the KKT conditions for CN with respect to xi, i ∈ I, yields:

∆fg(ŷi)/∆x = f ′ (xj/λj
)

g(ŷj), ∀i ∈ IN , j ∈ IP \ I0, (4.9)

where f ′(x) denotes the derivative of f(x). By monotonicity of f(x) over [x, x̄], it follows

that the expressions in the right- and left-hand sides of (4.9) have opposite signs. Thus,

no optimal solution of CN is attained in the relative interior of its feasible region. We

next present the proof for the case where f(x) is decreasing. By symmetry, a similar line

of arguments holds for an increasing f(x). Denote by gi, i ∈ I the value of g(y) at the

vertices ofHn
y such that g1 ≤ g2 ≤ . . . ≤ g2n . Let IN = {1, . . . , r−1} and IP = {r, . . . , 2n}.

Since by assumption IN and IP are nonempty, we have 2 ≤ r ≤ 2n. From (4.5) and (4.9),

it follows that at any optimal solution of CN (i) if λix < xi < λix̄ for some i ∈ IN , then
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xi = λix̄ for all i ∈ IP \ I0 and (ii) if λix < xi < λix̄ for some i ∈ IP \ I0, then xi = λix

for all i ∈ IN . Thus, two cases arise:

– xi = λix̄ for all i ∈ IP \ I0. First, suppose that I0 = ∅ and gi1 6= gi2 for all i1, i2 ∈ IN .

By (4.4), (4.5), and (4.9), over

x

r−j
∑

i=1

λi + x̄
2n
∑

i=r−j+1

λi ≤ x ≤ x

r−j−1
∑

i=1

λi + x̄
2n
∑

i=r−j

λi, ∀ j = 1, . . . , r − 1, (4.10)

we have xi = λix, for all i = 1, . . . r − j − 1, xi = x− x
∑r−j−1

k=1 λk − x̄
∑2n

k=r−j+1 λk for

i = r − j, and xi = λix̄, for all i = r − j + 1, . . . , r − 1. Substituting for xi, i ∈ I in

Problem CN, we obtain the following LP:

min
λi

∑r−j
i=1 λi

(

f(x)gi − ∆f
∆x
xgr−j

)

+
∑2n

i=r−j+1 λi
(

f(x̄)gi − ∆f
∆x
x̄gr−j

)

+∆f
∆x
xgr−j

s.t.
∑

i∈I λiŷi = y
∑

i∈I λi = 1

λi ≥ 0, ∀i ∈ I.







































(4.11)

By Proposition 3.2, the set λ∗ given by (4.3) is optimal for Problem (4.11), if and only

if the function κ(g) : vert(Hn
y ) → R, given by

κ(g) =

{

f(x)gi − ∆f
∆x
xgr−j, if i ∈ {1, . . . , r − j}

f(x̄)gi − ∆f
∆x
x̄gr−j, if i ∈ {r − j + 1, . . . , 2n}.

(4.12)

is submodular. Since f(x) is nonnegative, it follows that κ(g) is increasing in gi, i ∈ I.

Denote by κ̂(u), a continuous extension of κ(g) over the interval u ∈ [g1, g2n], defined

as follows:

κ̂(u) =

{

f(x)u− ∆f
∆x
xgr−j, if u ∈ [g1, gr−j]

f(x̄)u− ∆f
∆x
x̄gr−j, if u ∈ [gr−j, g2n].

(4.13)

Note that κ̂(u) = κ(g) at all u = gi, i ∈ I. By (4.13), κ̂(u) consists of two affine

segments intersecting at u = gr−j. Furthermore, since f(x) is decreasing by assumption,

the slope of the second segment is less than the slope of the first one. It follows that

κ̂(·) is concave and increasing over an interval which contains the range of gi, i ∈ I.

Hence, by Part (i) of Lemma 3.1, κ(g) is submodular and λ∗ is optimal for (4.11).
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Next, let I0 6= ∅. Define I ′ = {1, . . . , r− j}∪ I0, for some j ∈ {1, . . . , r−1}. Then, over

x
∑

i∈I′
λi + x̄

∑

i∈I\I′
λi ≤ x ≤ x

r−j−1
∑

i=1

λi + x̄

2n
∑

i=r−j

λi,

we have xi = λix, for all i = 1, . . . r−j−1, xi = x−∑k∈I0 x
k−x∑r−j−1

k=1 λk−x̄
∑

k∈I\I′ λk

for i = r − j, and xi = λix̄, for all i ∈ I \ I ′. Since the objective function of CN is

increasing in xi for all i ∈ IN , we conclude that its minimum is attained when xk = λkx̄

for all k ∈ I0. Thus, the result follows. Now, suppose that gl = . . . = gq, for some

{l, . . . , q} ⊆ IN . Then, over x
∑q

i=1 λi + x̄
∑2n

i=q+1 λi ≤ x ≤ x
∑l−1

i=1 λi + x̄
∑2n

i=l λi, we

have xi = λix, for all i ∈ {1, . . . , l − 1}, ∑q
i=l x

i = x − x
∑l−1

i=1 λi − x̄
∑2n

i=q+1 λi, and

xi = λix̄, for all i ∈ {q + 1, . . . , r − 1}. Substituting for xi, i ∈ I in Problem CN, we

obtain (4.11) with r − j = q. Thus, λ∗ is optimal.

We now consider the case IP = ∅, i.e. r = 2n + 1. As we discussed earlier, convCφ is

polyhedral in this case. In addition, as it follows from the above argument, over the

regions defined by (4.10), this polyhedral envelope is given by the objective function

of (4.11), where the optimal multipliers are given by (4.3).

– xi = λix for all i ∈ IN . First, suppose that all multipliers are nonzero and the

inequalities λix ≤ xi ≤ λix̄ are inactive for all i ∈ I ′ = IP \ I0 . From (4.4) and (4.9)

xi/λi =
g
1/(1−a)
i

∑

j∈I′ λjg
1/(1−a)
j

(

x− x
∑

j∈IN

λj −
∑

j∈I0

xj

)

, ∀i ∈ I ′, (4.14)

if f(x) = xa, and

xi/λi =

(

∑

j∈I′
λj loga (gj/gi) + x− x

∑

j∈IN

λj −
∑

j∈I0

xj

)

/
∑

j∈I′
λj , ∀i ∈ I ′, (4.15)

if f(x) = ax. From (4.14) and (4.15) it follows that xi, i ∈ I ′ is decreasing in
∑

j∈I0 x
j .

Since the objective function of CN is decreasing in xi for all i ∈ I ′, at any optimal

solution of CN, we have xi = λix for all i ∈ I0. Define r = 1/(1 − a), if f(x) = xa

and r = 0, if f(x) = ax. For notational simplicity, we will denote Ωr(g, λ, J), J ⊆ I,

as defined in (4.6), by Ωr(J). Substituting xi = λix, i ∈ I0 in (4.14) and (4.15), we
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obtain:

xi/λi = τa

(

Ωr(I
′)τ−1

a

((

x− x
∑

j∈IN∪I0

λj

)

/
∑

j∈I′
λj

)

/gi

)

, ∀i ∈ I ′, (4.16)

where (i) τa(u) = u1/(a−1), if f(x) = xa and (ii) τa(u) = loga u, if f(x) = ax. Fur-

thermore, τ−1
a (·) denotes the inverse of τa(·). Now, partition IP as IP = I1 ∪ I2 ∪ I3,

where I1 and I3 denote the sets of indices with the associated xi in (4.5) at their lower

and upper bounds, respectively. Since f(x) is decreasing by assumption, it follows that

τa(u) is decreasing in u. Hence, by (4.16) we have xr/λr ≤ xr+1/λr+1 ≤ . . . ≤ x2
n

/λ2n .

Consequently, let I1 = {r, . . . , s − 1}, I2 = {s, . . . , t} and, I3 = {t + 1, . . . , 2n}. For

consistency, if s = r, we set I1 = ∅ with gs−1 = 0. Similarly, if t = 2n, then I3 = ∅
with gt+1 = +∞. Moreover, suppose that I2 is nonempty. As discussed in the proof of

Theorem 3.1, this assumption is without loss of generality. Define

xλ =

(

x− x
∑

i∈IN∪I1

λi − x̄
∑

i∈I3

λi

)

/
∑

i∈I2

λi.

Substituting xi = λix for all i ∈ IN ∪ I1, xi = λix̄ for all i ∈ I3 in CN, and minimizing

the resulting problem with respect to xi, i ∈ I2, yields:

xi/λi = τa
(

Ωr(I2)τ
−1
a (xλ)/gi

)

, ∀i ∈ I2. (4.17)

From (4.5) and (4.17), it follows that:

xλ ≥ max
{

τa
(

gsτ
−1
a (x)/Ωr(I2)

)

, τa
(

gt+1τ
−1
a (x̄)/Ωr(I2)

)}

, (4.18)

and

xλ ≤ min
{

τa
(

gs−1τ
−1
a (x)/Ωr(I2)

)

, τa
(

gtτ
−1
a (x̄)/Ωr(I2)

)}

, (4.19)

where the lower bounds in (4.18) are obtained from the conditions xs ≥ λsx and

xt+1 ≥ λt+1x̄, and the upper bounds in (4.19) correspond to xs−1 ≤ λs−1x and xt ≤ λtx̄.
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Substituting (4.17) in Problem CN, yields

min
λi

f(x)
∑

i∈IN∪I1 λigi +
(
∑

i∈I2 λi
)

f (xλ) Ωr(I2) + f(x̄)
∑

i∈I3 λigi

s.t.
∑

i∈I λiŷi = y
∑

i∈I λi = 1

λi ≥ 0, ∀i ∈ I.



























(4.20)

We now prove that λ∗ given by (4.3) is optimal for (4.20) by demonstrating that it sat-

isfies the KKT conditions for this problem. Since the feasible regions of Problems (4.2)

and (4.20) are identical, λ∗ is feasible for (4.20). It is simple to show that (see the proof

of Theorem 3.1 for details), λ∗ satisfies the KKT conditions for Problem (4.20), if and

only if the function γ(g) : vert(Hn
y ) → R, where γ(gi) is the partial derivative of the

objective function of (4.20) with respect to λi, and is given by

γ(gi) =















f(x)gi − xf ′(xλ∗)Ωr(I2), if i ∈ IN ∪ I1
(f(xλ∗) (1 + ϕr(gi/Ωr(I2)))− xλ∗f ′(xλ∗))Ωr(I2), if i ∈ I2

f(x̄)gi − x̄f ′(xλ∗)Ωr(I2), if i ∈ I3,

(4.21)

is submodular. We first show that γ(g) is a nondecreasing function of gi, i ∈ I, i.e. for

any i, j ∈ I, if gi ≤ gj, then γ(gi) ≤ γ(gj). Since f(x) is nonnegative and ϕr(u), u ≥ 0

as defined in (4.7), is increasing in u, we conclude that if i, j ∈ IN ∪ I1, or i, j ∈ Ik,

k ∈ {2, 3}, then γ(gi) is increasing in gi. Thus, the following cases arise:

(i) i ∈ IN ∪ I1, j ∈ I2. In this case, ∆γ = γ(gj)− γ(gi) is given by

∆γ = (f(xλ∗) (1 + ϕr(gj/Ωr(I2)))− (xλ∗ − x)f ′(xλ∗)) Ωr(I2)− f(x)gi. (4.22)

Since j ∈ I2, by (4.18), we have xλ∗ ≥ τa (gjτ
−1
a (x)/Ωr(I2)). Over this region,

the right-hand side of (4.22) is decreasing in xλ∗ . First, consider the case i ∈ I1.

By (4.19), xλ∗ ≤ τa (giτ
−1
a (x)/Ωr(I2)). Thus, a lower bound on ∆γ can be obtained

by letting xλ∗ = τa (giτ
−1
a (x)/Ωr(I2)), which is given by ∆γ ≥ f(x)giϕr(gj/gi).

Since f(x) is decreasing by assumption, gi ≤ gj and 0 ≤ r < 1. From (4.7),

it follows that ϕr(gj/gi) ≥ log(gj/gi) ≥ 0. Thus, we have γ(gi) ≤ γ(gj). Now,

consider the case i ∈ IN . Clearly, if I1 6= ∅, then the result follows from the

above argument by noting that γ(gi) is increasing in gi, i ∈ IN ∪ I1. Thus, let
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I1 = ∅. By (4.19), a lower bound on ∆γ is attained at xλ∗ = τa (gjτ
−1
a (x̄)/Ωr(I2)).

Substituting for xλ∗ in (4.22), yields ∆γ ≥ (f(x̄)− f ′(x̄)∆x)gj − f(x)gi > 0, where

the second inequality holds since f ′(x) and gi are both negative by assumption.

(ii) i ∈ I2, j ∈ I3. In this case, ∆γ, as defined in Part (i), is given by

∆γ = f(x̄)gj − (f(xλ∗) (1 + ϕr(gi/Ωr(I2))) + (x̄− xλ∗)f ′(xλ∗))Ωr(I2). (4.23)

By (4.18) and (4.19), τa (gjτ
−1
a (x̄)/Ωr(I2)) ≤ xλ∗ ≤ τa (giτ

−1
a (x̄)/Ωr(I2)). Over

this region, the right-hand side of (4.23) is decreasing in xλ∗ . Substituting xλ∗ =

τa (giτ
−1
a (x̄)/Ωr(I2)) in (4.23), gives ∆γ ≥ f(x̄)(gj − gi) ≥ 0. Thus, γ(gi) ≤ γ(gj).

(iii) i ∈ IN ∪ I1, j ∈ I3. In this case, there exists some k ∈ I2 such that gi ≤ gk ≤ gj.

By Part (i), γ(gi) ≤ γ(gk) and by Part (ii), γ(gk) ≤ γ(gj). Hence, we have

γ(gi) ≤ γ(gj).

As in the previous part, we now introduce a continuous extension of γ(g), denoted by

γ̂(·) which is concave and nondecreasing over an interval that contains the range of gi,

i ∈ I, with γ̂(u) = γ(g) for all u = gi, i ∈ I. It follows that λ∗ is optimal for (4.20).

Consider the function γ̂(u), u ∈ [g1, g2n ], defined as follows:

γ̂(u) =







































f(x)u− xf ′(xλ∗)Ωr(I2), if u ∈ [g1, gs−1]

γ(gs−1) +
γ(gs)−γ(gs−1)

gs−gs−1
(u− gs−1), if u ∈ [gs−1, gs]

(f(xλ∗) (1 + ϕr(u/Ωr(I2)))− xλ∗f ′(xλ∗)) Ωr(I2), if u ∈ [gs, gt]

γ(gt) +
γ(gt+1)−γ(gt)

gt+1−gt
(u− gt), if u ∈ [gt, gt+1]

f(x̄)u− x̄f ′(xλ∗)Ωr(I2), if u ∈ [gt+1, g2n ].

(4.24)

As we showed earlier, γ(gi) is nondecreasing in gi, i ∈ I. It follows that γ̂(u) is also

nondecreasing over u ∈ [g1, g2n ]. Further, since ϕr(ν), ν ≥ 0 is a concave function,

γ̂(u) is piece-wise concave. Namely, γ̂(u) is concave over u ∈ [gs, gu], and is affine over

u ∈ [gi, gj], for all (i, j) ∈ {(1, s− 1), (s− 1, s), (t, t+ 1), (t+ 1, 2n)}. Denote by d−(u0)

and d+(u0), respectively, the left and right derivatives of γ̂(u) at some u0 ∈ [g1, g2n ].

It is simple to check that, to establish the concavity of γ̂(u), it suffices to show that

d+(u0) ≤ d−(u0) for all u0 ∈ {gs−1, gs, gt, gt+1}; namely, γ̂(u) has a nonincreasing

slope over [g1, g2n]. By symmetry, one needs to only consider u0 = gs−1 and u0 = gs.
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First, let u0 = gs−1. In this case, it suffices to show that

(f(xλ∗) (1 + ϕr(gs/Ωr(I2)))− (xλ∗ − x)f ′(xλ∗))Ωr(I2) ≤ f(x)gs. (4.25)

By (4.18), it follows that the left-hand side of (4.25) is nonincreasing in xλ∗ . Thus, an

upper bound on it is attained at xλ∗ = τa(gsτ
−1
a (x)/Ωr(I2)) and equals the right-hand

side of (4.25). Thus, (4.25) is valid and, as a result, d+(u0) ≤ d−(u0) at u0 = gs−1.

Next, let u0 = gs. By (4.24), we need to show that the following relation is valid:

f(xλ∗) (1 + ϕr(ĝ)− (xλ∗ − x)f ′(xλ∗))Ωr(I2)− f(xλ∗)ĝr−1∆g ≥ f(x)gs−1, (4.26)

where ĝ = gs/Ωr(I2) and ∆g = gs−gs−1. It can be shown that, as a function of xλ∗ , the

left-hand side of (4.26) attains a local maximum in the interior of the domain. Thus,

it suffices to check the following cases:

(i) xλ∗ = τa(gs−1τ
−1
a (x)/Ωr(I2)). Substituting for xλ∗ in (4.26), we obtain

ϕr (gs−1/gs) ≤ (gs−1/gs)− 1,

which follows from (4.8).

(ii) xλ∗ = τa(gsτ
−1
a (x)/Ωr(I2)). It is simple to check that, in this case, the left-hand

side of (4.26) equals its right-hand side.

It follows from the above arguments that γ̂(·) is concave and nondecreasing over the

range of g. Hence, by Part (i) of Lemma 3.1, γ(gi), i ∈ I is submodular and, as a result,

λ∗ is optimal for (4.20). This completes the proof.

Remark 4.1. The result of Theorem 4.1 is valid for any function g(y) with a polyhedral

convex envelope over Hn
y . It is important to note that component-wise concavity is only a

sufficient condition for polyhedrality of convHn
y
g(y). However, recognition of component-

wise concave functions is relatively simple and these functional forms appear frequently

in nonconvex optimization problems.

Now, let us revisit the case where g(y) is nonpositive over the vertices of Hn
y ; i.e.

convCφ(x, y) is polyhedral. As it follows from the proof of Theorem 4.1, to derive the
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closed-form expression for the convex envelope, no assumption on the form of the convex

function f(x) is required. More precisely, we have the following corollary.

Corollary 4.1. Consider the function φ = f(x)g(y), (x, y) ∈ C = [x, x̄] × Hn
y . Let

f(x), x ∈ [x, x̄] ⊂ R be nonnegative convex and let g(y), y ∈ Hn
y be a component-wise

concave function such that its restriction to vert(Hn
y ) is nonpositive, submodular and

nondecreasing (or nonincreasing) in every argument. Denote by gi, i ∈ I, the value of

g(y) at the vertices of Hn
y such that (i) if f(x) ≥ f(x̄), then g1 ≤ g2 ≤ . . . ≤ g2n , and (ii)

if f(x) ≤ f(x̄), then g1 ≥ g2 ≥ . . . ≥ g2n . Let q(j) = 2n − j + 1 for all j ∈ I. Then, over

x

q(j)
∑

i=1

λ∗i + x̄

2n
∑

i=q(j)+1

λ∗i ≤ x ≤ x

q(j)−1
∑

i=1

λ∗i + x̄

2n
∑

i=q(j)

λ∗i , ∀ j ∈ I,

the convex envelope of φ over C is given by:

q(j)
∑

i=1

λ∗i

(

f(x)gi −
∆f

∆x
xgq(j)

)

+

2n
∑

i=q(j)+1

λ∗i

(

f(x̄)gi −
∆f

∆x
x̄gq(j)

)

+
∆f

∆x
xgq(j),

where the set λ∗ is given by (4.3).

For functions satisfying the conditions of Theorem 4.1, the closed-form expressions

for the convex envelopes are given by the objective functions of (i) Problem (4.11) over

the regions defined by (4.10), and (ii) Problem (4.20) over the regions given by inequal-

ities (4.18) and (4.19). In the following section, we will investigate the strength of these

envelopes in comparison to standard factorable relaxations.

4.4 Convex envelopes of products of convex and bi-

variate component-wise concave functions

In this section, we consider functions of the form φ(x, y) = f(x)g(y1, y2) over C =

[x, x̄] × H2
y, where, as in Section 4.3, f(x), [x, x̄] ⊂ R is a nonnegative convex function

with a power or an exponential form. However, we restrict our attention to the case of a

bivariate component-wise concave g(y) that takes both negative and positive values over

H2
y. In Theorem 4.1, in addition to component-wise concavity, we assume that the re-

striction of g(y) to the vertices of Hn
y is submodular and nondecreasing (or nonincreasing)
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in every argument. These assumptions were key in proving the decoupling between the

optimal multipliers λ∗ and x variables. For the bivariate g(y), however, similar results can

be obtained in a more general setting. This generalization is due to the fact that, over

H2
y, there exist two candidate sets of multipliers for Problem (4.2), and the optimality of

each can be stated in terms of submodularity or supermodularity of g(y) over vert(H2
y),

as given by Lemma 3.3.

Let ĝ(y) denote the restriction of g(y) to the vertices ofH2
y. Suppose that ĝ(y) is super-

modular, nondecreasing in y1 and nonincreasing in y2. Consider the mapping T (y1) = y1

and T (y2) = y
2
+ ȳ2 − y2. It follows that the restriction of g′(y) = g(T (y)) to vert(H2

y)

is submodular and nondecreasing in both arguments. Thus, the result of Theorem 4.1 is

valid for this case. Now, let ĝ(y) be nonmonotone in at least one argument or be constant

over at least one edge of H2
y (i.e. g̃i = g̃j for some (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}). It

follows that one of the following cases arises:

(i) min{g̃2, g̃3} ≤ min{g̃1, g̃4}, and max{g̃2, g̃3} ≤ max{g̃1, g̃4},

(ii) min{g̃1, g̃4} ≤ min{g̃2, g̃3}, and max{g̃1, g̃4} ≤ max{g̃2, g̃3}.

It is simple to verify that, for all above configurations, the sign of δ(g), as defined in the

statement of Lemma 3.3, is implied by the ordering pattern of g̃i, i ∈ I. For example,

consider the supermodular function g(y) = y1y2, where y1 < 0 < ȳ1 and 0 < y
2
< ȳ2.

It follows that g̃2 < g̃1 < g̃3 < g̃4, which implies δ(g) > 0. More generally, if g(y) =

g1(y1)g2(y2), where g1(y1) is a nonnegative affine function and g2(y2) is a concave function

with g2(y2) < 0 < g2(ȳ2), then we have δ(g) > 0 (resp. δ(g) < 0), if g1 is increasing

(resp. decreasing). As another example, consider the bilinear function g(y) = y1y2 with

y
1
< 0 < ȳ1 and y

2
< 0 < ȳ2. In this case, we have max{g̃2, g̃3} < min{g̃1, g̃4}, which

in turn implies δ(g) > 0. We can further generalize this example to g(y) = g1(y1)g2(y2),

where g1(y1) and g2(y2) are affine functions both of which change sign over their domains.

It follows that (i) if g(ȳ1)g(ȳ2) ≥ 0, then δ(g) > 0, and (ii) if g(ȳ1)g(ȳ2) ≤ 0, then δ(g) < 0.

Motivated by these examples, we now show that, if the sign of δ(g) is implied by the

ordering pattern of g̃i, i ∈ I, then the optimal multipliers corresponding to convH2
y
g(y)

are also optimal for the envelope representation problem of φ(x, y) = f(x)g(y1, y2) over

C.
The proof of Theorem 4.1 involved two main steps: (i) the function κ(g) defined in

accordance with Problem (4.11) is submodular over vert(Hn
y ), and (ii) the function γ(g)
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given by (4.21) and associated with Problem (4.20) is submodular over vert(Hn
y ). Under

the submodularity and monotonicity assumptions on g(y), y ∈ vert(Hn
y ), it follows that

the set λ∗ given by (4.3) is optimal for CN. For bivariate g(y), let δ(κ) = κ(g̃1)− κ(g̃2)−
κ(g̃3) + κ(g̃4) and δ(γ) = γ(g̃1) − γ(g̃2) − γ(g̃3) + γ(g̃4). By Lemma 3.3, if δ(g)δ(κ) ≥ 0

and δ(g)δ(γ) ≥ 0, there exists an optimal set of multipliers corresponding to convH2
y
g(y)

that is also optimal for the envelope representation problem of φ(x, y) over C. In the

proof of Theorem 4.1, in order to prove the submodularity of κ(g) and γ(g), we first

demonstrated that both functions are nondecreasing in gi, i ∈ I. This implies that, if

ĝ(y1, y2) is nonmonotone in at least one argument or is constant along any edge of H2
y,

the signs of δ(κ) and δ(γ) are also implied by the ordering pattern of g̃i, i ∈ I, and hence

are the same as the sign of δ(g). Let δ(g) = 0. It is simple to check that g̃i1 = g̃i2 and

g̃i3 = g̃i4, where I = {i1, i2, i3, i4}. Since by assumption IN 6= ∅, we have (i) |IN | = 2

with IN = {i1, i2} and I2 = {i3, i4} or (ii) |IN | = 4. It can be shown that, in both cases,

δ(κ) = δ(γ) = 0, i.e. any feasible solution of Problem (4.2) is optimal for the envelope

representation problem of φ(x, y) over C. Thus, we have

Proposition 4.1. Let the convex function f(x), x ∈ [x, x̄] ∈ R be nonnegative and

monotone with one of the following forms (i) f(x) = xa, a ∈ R \ {[0, 1]}, (ii) f(x) = ax,

a > 0. Let g(y1, y2), y ∈ H2
y be component-wise concave with IN 6= ∅. Denote by ĝ(y) the

restriction of g(y1, y2) to vertices of H2
y. We have the following cases:

(i) If ĝ(y) is submodular and nondecreasing (or nonincreasing) in both arguments, then

the set of multipliers given by (3.46) is optimal for the envelope representation problem

of φ = f(x)g(y1, y2) over C.

(ii) If ĝ(y) is supermodular, nondecreasing in y1 and nonincreasing in y2, then the set

of multipliers given by (3.47) is optimal for the envelope representation problem of

φ = f(x)g(y1, y2) over C.

(iii) If ĝ(y) is nonmonotone in at least one argument or is constant over any edge of

H2
y, then the optimal multipliers in the description of convH2

y
g(y) are also optimal for

the envelope representation problem of φ = f(x)g(y1, y2) over C.

Next, we present closed-form expressions for the convex envelope of φ = f(x)g(y1, y2)

over C, assuming g(y) attains negative values over one, two, three, and all four vertices

of H2
y in turn. We state several corollaries without proofs since the results are immediate
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from the proof of Theorem 4.1. In the following, {i, j, k} denotes the index set of nonzero

multipliers given by Proposition 4.1, such that gi ≤ gj ≤ gk, where gi, i ∈ I denotes

the value of g(y) at vert(H2
y). As in the proof of Theorem 4.1, let (i) τa(u) = u1/(a−1),

if f(x) = xa and (ii) τa(u) = loga u, if f(x) = ax. For notational simplicity, we denote

Ωr(λ, g, I
′), I ′ = {i1, . . . ik}, by Ωr(i1, . . . , ik), where, as before, r = 1/(1 − a), if f = xa

and r = 0, if f(x) = ax. We provide the envelope expressions for the case where f(x) is

decreasing. By symmetry, the formulas for the increasing f(x) can be similarly obtained.

For a quantitative comparison of the proposed envelopes and conventional factorable

relaxations, we compute the percentage of the gap closed by convCφ at x ∈ C as

(convCφ(x)− φ̃(x))/(φ(x)− φ̃(x))× 100%,

where φ̃ denotes a convex underestimator of φ obtained by a standard factorable relaxation

scheme.

Corollary 4.2. Consider φ = f(x)g(y1, y2), C = [x, x̄]× H2
y, where f(x), x ∈ [x, x̄] ⊂ R

is nonnegative convex and decreasing with one of the following forms: (i) f(x) = xa,

a ∈ R\{[0, 1]} and (ii) f(x) = ax, a > 0. Suppose that g(y), y ∈ H2
y, is a component-wise

concave function with g1 < 0 ≤ g2 ≤ g3 ≤ g4, and ĝ(y) satisfies one of the conditions of

Proposition 4.1. Then, the convex envelope of φ(x, y) over C is given by:

– x ≤ x ≤ (1− λk)x+ λk min{x̄, τa(gj/gk)x} :

convφ = (λigi + λjgj)f(x) + λkf

(

x− (λi + λj)x

λk

)

gk,

– (1− λk)x+ λk min{x̄, τa(gj/gk)x} ≤ x ≤ λix+ λj max{x, τa(gk/gj)x̄}+ λkx̄ :

convφ = λif(x)gi + (λj + λk)f

(

x− λix

λj + λk

)

Ωr(j, k),

– λix+ λj max{x, τa(gk/gj)x̄}+ λkx̄ ≤ x ≤ λix+ (1− λi)x̄ :

convφ = λif(x)gi + λjf

(

x− λix− λkx̄

λj

)

gj + λkf(x̄)gk,

– λix+ (1− λi)x̄ ≤ x ≤ x̄ : convφ = ∆f/∆x(x− x̄)gi + (λigi + λjgj + λkgk)f(x̄).
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Example 4.1. Let φ = (y1 + y2)/x, x ∈ [1, 5], y1 ∈ [−2, 1], y2 ∈ [1, 3]. Then, by Part

(i) of Proposition 4.1, the convex envelope of φ is given by Corollary 4.2. Thus, over

3y2 − 2y1 ≥ 7, we have:

convφ =



























4(y1+2)2

3(3x+y1−1)
− y1/3 + y2 − 8/3, if 1 ≤ x ≤ (y1 + 5)/3,

(2y1+3y2+1)2

18(2x+y2−3)
+ 0.5(y2 − 3), if (y1 + 5)/3 ≤ x ≤ s1,

(2y1−3y2+7)2

6(6x−10y1+3y2−29)
+ 4/15y1 + 0.5y2 − 29/30, if s1 ≤ x ≤ 2y2 − 1,

0.2(x+ y1 + y2)− 1, if 2y2 − 1 ≤ x ≤ 5,

where s1 = (10y1 + 9y2 + 23)/12. Over 3y2 − 2y1 ≤ 7, convφ is given by:

convφ =



























2(y2−1)2

(2x+y2−3)
+ y1 − y2 + 2, if 1 ≤ x ≤ 0.21y2 + 0.79,

3(0.47y1+0.29y2+0.65)2

3x+y1−1
+ (y1 − 1)/3, if 0.21y2 + 0.79 ≤ x ≤ s2,

(2y1−3y2+7)2

3(6x+2y1−15y2+13)
+ y1/3 + 0.4y2 − 11/15, if s2 ≤ x ≤ (4y1 + 11)/3,

0.2(x+ y1 + y2)− 1, if (4y1 + 11)/3 ≤ x ≤ 5,

where s2 = 0.85y1 + 0.73y2 + 1.96. To compare with a standard factorable relaxation, let

t = y1 + y2. Utilizing the convex envelope of the fractional term t/x [25, 61], we obtain

the following convex underestimator for φ:

φ̃1 =

{

0.2(y1 + y2 − 4) + 0.16(y1+y2+1)2

x+0.2(y1+y2−4)
, if 1 ≤ x ≤ 0.8(y1 + y2) + 1.8,

0.2(y1 + y2 + x)− 1, if 0.8(y1 + y2) + 1.8 ≤ x ≤ 5.

Alternatively, a convex underestimator of φ can be constructed by first disaggregating φ

as φ = y1/x + y2/x, and then employing the convex envelope of the fractional term to

obtain φ̃2 = conv(y1/x) + conv(y2/x). The percentage of relaxation gaps of φ̃1 and φ̃2

closed by convφ at y2 = 2.8 are depicted in Figures 4.1(a) and 4.1(b), respectively. Up to

over 85% of the gap is closed by the convex envelope in both cases.

Corollary 4.3. Consider φ = f(x)g(y1, y2), C = [x, x̄]× H2
y, where f(x), x ∈ [x, x̄] ⊂ R

is a nonnegative convex and decreasing function with one of the following forms: (i)

f(x) = xa, a ∈ R \ {[0, 1]} and (ii) f(x) = ax, a > 0. Suppose that g(y), y ∈ H2
y is a

component-wise concave function with g1 ≤ g2 < 0 ≤ g3 ≤ g4, and ĝ(y) satisfies one of

the conditions of Proposition 4.1. We have the following cases:

(i) If ĝ(y) is nonmonotone in both arguments, then convCφ(x, y) is given by:
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Figure 4.1: Gap closed by the convex envelope of φ = (y1+y2)/x at y2 = 2.8 in Example 4.1

– x ≤ x ≤ λkx̄+ (1− λk)x :

convφ = (λigi + λjgj)f(x) + λkf

(

x− (1− λk)x

λk

)

gk,

– λkx̄+ (1− λk)x ≤ x ≤ λix+ (1− λi)x̄ :

convφ = λif(x)gi +∆f/∆x(x− λix− (1− λi)x̄)gj + (λjgj + λkgk)f(x̄),

– λix+ (1− λi)x̄ ≤ x ≤ x̄ : convφ = ∆f/∆x(x− x̄)gi + (λigi + λjgj + λkgk)f(x̄).

(ii) Otherwise, over the triangular sub-region ofH2
y as defined by Lemma 3.3, where g(y)

is negative over one vertex, the convex envelope of φ over C is given by Corollary 4.2,

and over the sub-region where g(y) attains negative values over two vertices, convCφ

is given by the expressions in Part (i).

Example 4.2. Let φ = y1y2/x, x ∈ [0.1, 1], y1 ∈ [−1, 1], y2 ∈ [0.1, 1]. In this case, g(y) is

nonmonotone in y2. Thus, Part (iii) of Proposition 4.1 and Part (ii) of Corollary 4.3 are

satisfied. Then, over 0.9y1 + 2y2 ≥ 1.1, we have

convφ =



























(0.5y1+1.1y2−0.6)2

x+0.05y1+0.11y2−0.16
+ 5y1 − 1.1y2 − 3.9, if 0.1 ≤ x ≤ s1,

(0.5y1+0.76y2−0.26)2

x+0.05y1−0.05
+ 5y1 − 5, if s1 ≤ x ≤ s2,

0.12(y2−1)2

x−0.45y1−1.1y2+0.56
+ 5.5y1 + 1.1y2 − 5.6, if s2 ≤ x ≤ s3,

10x+ y1 + y2 − 11, if s3 ≤ x ≤ 1,

where s1 = 0.11y1 + 0.24y2 − 0.03, s2 = 0.45y1 + 0.76y2 − 0.21, and s3 = 0.45y1 + 0.55.
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Figure 4.2: Gap closed by the convex envelope of φ = y1y2/x at y1 = 0.5 in Example 4.2

Over 0.9y1 + 2y2 ≤ 1.1, the convex envelope of φ is given by:

convφ =















0.5(y1+1)2

20x+y1−1
+ 0.5y1 − 10y2 + 0.5, if 0.1 ≤ x ≤ s3,

x+ 0.1y1 − 10y2, if s3 ≤ x ≤ 1.1− y2,

10x+ 0.1y1 − y2 − 9.9, if 1.1− y2 ≤ x ≤ 1.

Now, let t̃ denote the convex envelope of the bilinear term y1y2. Then, employing

the convex envelope of the fractional term [61, 25], we obtain φ̃ = conv(t̃/x), which is a

convex underestimator of φ and is given by:

φ̃ =

{

5(y1+y2)2

20x+y1+y2−2
+ 5(y1 + y2 − 2), if 0.1 ≤ x ≤ r1,

10x+ y1 + y2 − 11, if r1 ≤ x ≤ 1,

over 0.9y1 + 2y2 ≥ 1.1, where r1 = 0.1 + 0.45(y1 + y2), and by

φ̃ =

{

0.05(y1−10y2+11)2

20x+0.1y1−y2−0.9
+ 0.5y1 − 5y2 − 4.5, if 0.1 ≤ x ≤ r2,

10x+ 0.1y1 − y2 − 9.9, if r2 ≤ x ≤ 1,

over 0.9y1 + 2y2 ≤ 1.1, where r2 = 0.595 + 0.045(y1 − 10y2). Compared to the factorable

relaxation, the gap closed by the convex envelope of φ at y1 = 0.5 is depicted in Figure 4.2.

As can be seen, up to 90% of the relaxation gap is closed by convφ.

Now, suppose that g1 ≤ g2 ≤ g3 < 0 < g4. From the proof of Theorem 4.1, it follows

that, given any nonnegative nonincreasing convex f(x) over x ≤ (1 − λ4)x + λ4x̄, we

have xi = λix, i ∈ {1, 2, 3} and x4 = x − (1 − λ4)x. First, let ĝ(y) be submodular and

nondecreasing (or nonincreasing) in both arguments. In this case, δ(γ) = γ(g1)− γ(g2)−
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γ(g3) + γ(g4), where γ(gi) is given by (4.21), simplifies to:

δ(γ) = f(x)(g1 − g2 − g3) + (f(xλ∗)− (xλ∗ − x)f ′(xλ∗)) g4. (4.27)

It is simple to check that δ(γ) is nonincreasing in xλ∗ . Thus, an upper bound on δ is

obtained by letting xλ∗ = x in (4.27). This gives δ(γ) ≤ f(x)δ(g), which in turn implies

δ(g)δ(γ) ≥ 0. We can further relax the assumptions on g(y) for this case as well. In

Proposition 4.1, we did not address two cases: (i) ĝ(y) is supermodular and nondecreasing

(or nonincreasing) in both arguments and (ii) ĝ(y) is submodular, nondecreasing in y1 and

nonincreasing in y2. First, note that the two cases are equivalent after applying an affine

transformation. Thus, let ĝ(y) be supermodular and nondecreasing in each argument,

i.e. δ(g) = g1 − g2 − g3 + g4 ≥ 0. First, consider the function δ(γ), given by (4.27). We

are interested in finding a sufficient condition under which δ(γ) ≥ 0 (i.e. δ(g)δ(γ) ≥ 0).

Recall that δ(γ) is nonincreasing in xλ∗ . Thus, if δ(γ) ≥ 0 for xλ∗ = x̄, then the result

follows. Substituting for xλ∗ in (4.27), we conclude that, if

g1 − g2 − g3 + (f(x̄)− f ′(x̄)∆x) /f(x)g4 ≥ 0, (4.28)

then δ(γ) is nonnegative. Since (f(x̄) − f ′(x̄)∆x)/f(x) ≤ 1 and g4 > 0, the above

inequality does not follow from supermodularity of g(y). Next, consider the function κ(g)

defined by (4.12). It is simple to check that κ(gi), i ∈ I is supermodular when

g1 − g2 + f(x̄)/f(x)(−g3 + g4) ≥ 0. (4.29)

We now show that, condition (4.28) is implied by condition (4.29). Since g3 < 0, and f(x)

is nonincreasing, we have g1 − g2 − g3 + f(x̄)/f(x)g4 > g1 − g2 + f(x̄)/f(x)(−g3 + g4).

Further, since g4 > 0, it follows that g1 − g2 − g3 + (f(x̄)− f ′(x̄)∆x)/f(x)g4 ≥ g1 − g2 −
g3 + f(x̄)/f(x)g4. Hence, the left-hand side of (4.28) is always greater than the left-hand

side of (4.29). Thus, we have the following result:

Corollary 4.4. Consider φ = f(x)g(y1, y2), C = [x, x̄]× H2
y, where f(x), x ∈ [x, x̄] ⊂ R

is a nonnegative convex and nonincreasing function. Suppose that g(y), y ∈ H2
y is a

component-wise concave function with g1 ≤ g2 ≤ g3 < 0 < g4, and that either (1) ĝ(y)

satisfies one of the conditions of Proposition 4.1, or (2) g1−g2+f(x̄)/f(x)(−g3+g4) ≥ 0.
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Then, we have the following cases:

(i) If ĝ(y) satisfies the conditions of Part (i) or Part (ii) of Proposition 4.1, then convCφ

is given by Part (i) of Corollary 4.3.

(ii) Otherwise, over the triangular sub-region of H2
y given by Lemma 3.3, where g(y) is

negative over all three vertices, the convex envelope of φ over C is affine, and over

the other sub-region, convCφ is given by the expressions in Part (i) of Corollary 4.3.

Example 4.3. Let φ = (
√
y1 − y2) exp(−x), x ∈ [0, 1], y1 ∈ [0, 1], y2 ∈ [0.1, 2]. Then,

Part (ii) of Proposition 4.1 and Part (ii) of Corollary 4.4 are satisfied. It follows that,

over 1.9y1 + y2 ≥ 2, the convex envelope of φ is given by:

convφ =















(0.95− 0.47y2) exp
(

−x
1.05−0.53y2

)

+ y1 − 0.53y2 − 0.95, if 0 ≤ x ≤ s1,

0.63x+ y1 − 0.37y2 − 1.26, if s1 ≤ x ≤ y1,

1.26x+ 0.37(y1 − y2)− 1.26, if y1 ≤ x ≤ 1,

where s1 = 1.05− 0.53y2. Over 1.9y1 + y2 ≤ 2, we have

convφ =















0.9y1 exp (−x/y1) + 0.1y1 − y2, if 0 ≤ x ≤ y1,

0.063x+ 0.37y1 − y2, if y1 ≤ x ≤ s1,

1.26x+ 0.37(y1 − y2)− 1.26, if s1 ≤ x ≤ 1.

To construct a factorable relaxation, let t1 =
√
y1 and t2 = t̃1 − y2, where t̃1 is the affine

underestimator of t1 over y1 ∈ [0, 1]. Then, the convex envelope of t2 exp(−x) given by

Corollary 3 in [25], is a convex underestimator of φ:

φ̃ =







0.31(y1 − y2 + 2) exp
(

−2.9x
y1−y2+2

)

+ 0.69(y1 − y2)− 0.62, if 0 ≤ x ≤ r1,

1.26x+ 0.37(y1 − y2)− 1.26, if r1 ≤ x ≤ 1,

where r1 = 0.34(y1− y2+2). The two relaxations are compared in Figure 4.3 at y2 = 0.2.

Up to over 70% of the relaxation gap of the factorable underestimator is closed by the

convex envelope. Relaxation φ̃ employs the convex envelope of t2 exp(−x) and is stronger

than the factorable relaxations currently implemented in global solvers.

Finally, consider the case where g(y) is nonpositive over the vertices of H2
y. It follows

from the proof of Theorem 4.1 that, if δ(κ(g))δ(g) ≥ 0, there exists an optimal set of
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Figure 4.3: Gap closed by the convex envelope of φ = (
√
y1 − y2) exp(−x) at y2 = 0.2 in

Example 4.3

multipliers in the description of convH2
y
g(y) that is also optimal for the convex envelope

of φ(x, y) over C. A similar line of arguments as in the case |IN | = 3 gives

Corollary 4.5. Consider φ = f(x)g(y1, y2), C = [x, x̄]×H2
y, where f(x), x ∈ [x, x̄] ⊂ R is

a nonnegative convex function. Suppose that g(y), y ∈ H2
y is a component-wise concave

function with (i) g1 ≤ . . . ≤ g4 ≤ 0 if f(x̄) ≤ f(x), and (ii) g4 ≤ . . . ≤ g1 ≤ 0 if

f(x) ≤ f(x̄). Moreover, assume that one of the following conditions is met:

(1) ĝ(y) satisfies one of the conditions of Proposition 4.1,

(2) f(x)(g1 − g2) + f(x̄)(−g3 + g4) ≥ 0.

Then, the convex envelope of φ over C is given by:

– x ≤ x ≤ (1− λk)x+ λkx̄ : convφ = (λigi + λjgj + λkgk)f(x) + ∆f/∆x(x− x)gk,

– (1− λk)x+ λkx̄ ≤ x ≤: λix+ (1− λi)x̄ :

convφ = (λigi + λjgj)f(x) + ∆f/∆x (x− (1− λk)x− λkx̄) gj + λkf(x̄)gk,

– λix+ (1− λi)x̄ ≤ x ≤ x̄ : convφ = ∆f/∆x(x− x̄)gi + (λigi + λjgj + λkgk)f(x̄),

where {i, j, k} is the index set of nonzero multipliers in Proposition 4.1, rearranged such

that (i) if f(x) ≤ f(x̄), then gk ≤ gj ≤ gi, and (ii) if f(x̄) ≤ f(x), then gi ≤ gj ≤ gk.
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Example 4.4. Let φ = (y1y2 − 2)/ log x, x ∈ [10, 100], y1 ∈ [0, 1], y2 ∈ [1, 2]. Then, Part

2 of Corollary 4.5 is satisfied and over y1 + y2 ≥ 2, the convex envelope of φ is given by:

convφ =















(2y1 + y2 − 4)/ log(10), if 10 ≤ x ≤ s1,

0.5(0.01x+ 3y1 + y2 − 6.11)/ log(10), if s1 ≤ x ≤ 10(9y1 + 1),

(0.01x+ y1 + 0.5y2 − 3.11)/ log(10), if 10(9y1 + 1) ≤ x ≤ 100,

where s1 = 90(y1 + y2)− 17. Over y1 + y2 ≤ 2, we have

convφ =















(0.006x+ y1 − 2.06)/ log(10), if 10 ≤ x ≤ 10(9y1 + 1),

0.063x+ 0.37y1 − y2, if 10(9y1 + 1) ≤ x ≤ s2,

(0.01x+ 0.5y1 − 2.11)/ log(10), if s2 ≤ x ≤ 100,

where s2 = 90(y1+ y2)− 80. To construct a factorable relaxation, let t1 = conv(y1y2)− 2,

t2 = log x and let φ̃ = conv(t1/x). Then, over y1 + y2 ≥ 2, we have

φ̃ =

{

(2y1 + y2 − 4)/ log(10), if 10 ≤ x ≤ r1,

(0.01x+ y1 + 0.5y2 − 3.11)/ log(10), if r1 ≤ x ≤ 100,

where r1 = 45(2y1 + y2)− 80 and over y1 + y2 ≤ 2, φ̃ is given by:

φ̃ =

{

(y1 − 2)/ log(10), if 10 ≤ x ≤ 5(9y1 + 2),

(0.01x+ 0.5y1 − 2.11)/ log(10), if 5(9y1 + 2) ≤ x ≤ 100,

The two relaxations are compared in Figure 4.4 at y2 = 1.2. Up to over 50% of the

relaxation gap is closed by the convex envelope.

4.5 Conclusions

We derived explicit characterizations for the convex envelopes of various functions that

are products of convex and component-wise concave functions. These functional types

appear frequently as sub-expressions in nonconvex optimization problems. In particular,

we assumed that the component-wise concave function takes both negative and positive

values over the domain of definition, which complements our earlier work in Chapter 3.

Via several examples, we demonstrated that the proposed envelopes reduce significantly
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Figure 4.4: Gap closed by the convex envelope of (y1y2 − 2)/ logx at y2 = 1.2 in Exam-
ple 4.4

the relaxations gaps of conventional factorable relaxations. In future work, we plan to

incorporate the new envelopes into a global optimization solver and investigate their

computational implications in the context of solving a variety of applications.
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Chapter 5

A Lagrangian-based global

optimization approach for

quasi-separable nonconvex nonlinear

optimization problems

In this chapter, we develop a deterministic approach for global optimization of non-

convex quasi-separable problems encountered frequently in engineering systems design.

Our branch-and-bound based optimization algorithm applies Lagrangian decomposition

to generate tight lower bounds by exploiting the structure of the problem and enable

parallel computing of subsystems and use of efficient dual methods. We apply the ap-

proach to two product design applications: (i) product family optimization with a fixed

platform configuration and (ii) product design using an integrated marketing-engineering

framework. Results show that Lagrangian bounds are much tighter than the factorable

programming bounds implemented by the global solver BARON, and the proposed lower

bounding scheme shows encouraging scalability, enabling solution of some highly nonlinear

problems that cause difficulty for existing solvers.

5.1 Introduction

Large-scale quasi-separable optimization problems arise frequently in mechanical de-

sign applications [67, 30, 28]. Several decomposition methods have been introduced for
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solving these problems efficiently. However, all existing approaches employ either local

solvers [30, 27, 66, 32] or stochastic global techniques [24]. In the context of deterministic

global optimization, the special structure of quasi-separable problems can be exploited

to develop sharp bounding schemes that improve the convergence rate of the algorithm

significantly. In this chapter, we develop an efficient algorithm for global optimization of

nonconvex quasi-separable problems [22]. For obtaining tight lower bounds, the original

problem is converted to a block-separable formulation by relaxing the coupling constraints

using Lagrangian relaxation. The separable dual function is then decomposed into smaller

subproblems, which can be solved for global optimality efficiently using a commercial

global solver. The approximate dual optimal value, provides a tight lower bound for the

branch-and-bound tree.

While the algorithmic constructs employed here are based on known Lagrangian relax-

ation and branch-and-bound techniques, the main contributions of this study are twofold.

First, we show that the lower bounds generated by the proposed approach are much

tighter than those created via convexification of the all-in-one problem using factorable

programming techniques that are implemented in a commercial global optimization solver.

Second, we are able to solve for the first time some realistic and highly nonconvex me-

chanical engineering design problems, for which we demonstrate that global solutions are

significantly better than those obtained by prior approaches.

The remainder of this chapter proceeds as follows. In Section 5.2, the general formu-

lation for lower bounding through Lagrangian decomposition is developed. The product

family optimization problem is formulated in Section 5.3 and solved for a family of electric

motors. The joint marketing-engineering product design problem is defined in Section 5.4

and demonstrated through a weight scale design case study. Finally, conclusions and

future work are discussed in Section 5.5.

5.2 Proposed method

Using the concept of functional dependence table (FDT) [67], we define a quasi-

separable problem as one with a block arrowhead FDT structure (see Figure 5.1). Let

xi and Xi with i ∈ {1, . . . , n} denote the local variables and the ground set for the ith

sub-problem, respectively, where n is the total number of sub-problems. Define y and

g as the linking variables and constraints, that couple the subproblems. For the system
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Figure 5.1: Functional dependence table: (a) arrowhead structure for the original problem,
(b) introducing local copies of linking variables yi and consistency constraints c, and (c)
relaxing the coupling constraints (g, c) and applying Lagrangian decomposition

to be decomposable, both the objective and linking constraints are assumed to have an

additive structure. Hence, one can formulate a quasi-separable problem as follows:

min

n
∑

i=1

fi(xi, y)

s.t. xi ∈ Xi, ∀i ∈ {1, . . . , n} (5.1)
n
∑

i=1

gi(xi, y) ≤ 0

To allow for decomposition, Problem (5.1) should be reformulated to make the FDT

block diagonal. First, local copies of linking variables are introduced in each subproblem

(yi, ∀i ∈ {1, . . . , n}). Next, consistency constraints (c) are added to ensure all copies

attain equal values at the optimal solution:

min
n
∑

i=1

fi(xi, yi)

s.t. xi ∈ Xi ∀i ∈ {1, . . . , n} (5.2)
n
∑

i=1

gi(xi, yi) ≤ 0

c(y1, . . . , yn) = 0.
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The next step is to relax the coupling constraints. This will be explained in the next

section. Similar to any branch-and-bound based method, main steps are lower bounding,

upper bounding, and branching. We shall detail on each of these stages in the following

sections.

5.2.1 Lower bounding

Let x̃i = [xi, yi], and g̃ = [
∑

i g(xi, yi), c(y1, . . . , yn)]. Applying Lagrangian relaxation

to the coupling constraints in Problem (5.2), we obtain the following Lagrangian function:

L(x̃, λ) =

n
∑

i=1

fi(x̃i) + λT g̃i(x̃i).

Hence, the dual function is given by

q(λ) =

n
∑

i=1

inf
x̃i∈Xi

(fi(x̃i) + λT g̃i(x̃i)), (5.3)

where λ ∈ R
|g̃|
+ denotes the vector of Lagrange multipliers. From (5.3) it follows that for

a fixed λ, the dual function is separable and therefore decomposes into n independent

sub-problems. Thus, the dual problem can be written as:

max
λ∈R|g̃|

+

n
∑

i=1

qi(λ), (5.4)

where

qi(λ) = inf
x̃i∈Xi

(fi(x̃i) + λT g̃i(x̃i)).

By the weak duality theorem, any dual value is a lower bound for the optimal primal value

[7]. Thus, solving the dual problem (even approximately) provides a lower bound for the

branch-and-bound algorithm. Further, the separable structure of the dual function allows

for fast computation of the dual subproblems, which is an important feature for efficiency

of dual methods [7]. An approximate optimal value of (5.4) can be found using any non-

differentiable convex optimization approach. Subgradient methods are among the most

popular non-differentiable convex optimization methods [54], and they have been used

extensively for solving the dual problems by generating a sequence of dual feasible points
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using a single subgradient at each iteration:

λk+1 = P+(λ
k + αkḡk), (5.5)

where ḡk denotes a subgradient of the dual function at λk and αk is a positive step size at

the kth iteration. P+ represents the projection over the nonnegative orthant. There are

several schemes for selecting αk; we adopt a diminishing step size rule, which converges

to a maximizing point of (5.4), if the following conditions are met [7]:

lim
k→∞

αk = 0,

∞
∑

k=1

αk → ∞,

∞
∑

k=1

(αk)2 ≤ ∞.

In each iteration, all sub-problems are solved in parallel globally. Next, the multipliers

are updated according to (5.5), and the iterative procedure continues for kmax number of

iterations. Therefore, a lower bound for (5.1) is given by:

LB = max
k∈K

(

n
∑

i=1

qi(λ
k)
)

, K = {1, . . . , kmax}. (5.6)

5.2.2 Upper bounding

In general, any feasible point of (5.1) can serve as an upper bound (UB) to the global

minimum. These bounds enhance the algorithmic convergence by pruning the nodes of

the branch-and-bound tree that do not contain any solution better than the best known

feasible point. In the proposed approach, in every node of the branch-and-bound tree,

after lower bounding, Problem (5.1) is locally optimized using the dual optimal value as

the starting point, the local solution is compared with the incumbent, and UB is updated

accordingly.

5.2.3 Branching

In any node of the branch-and-bound tree, if the difference between the lower and

upper bounds falls within a user-specified tolerance, that node is pruned and the upper

bound is updated. Otherwise, the feasible region is partitioned into two subsets, and the

two new nodes are added to the list of open nodes. We adopt a depth-first search rule for

node selection. Branching decisions can be made by computing a violation that measures
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the dual infeasibility introduced by relaxing the coupling constraints. For instance, if

the coupling constraints are consistency constraints, the variance of each linking variable

among its subproblems is calculated and the one with the maximum violation is selected

as the branching variable, using the mean value of that variable among its copies as the

branching point.

5.3 Application No. 1: product families

A product family is a set of products that share some components to reduce the

manufacturing cost while maintaining variant distinctiveness to attract a range of mar-

ket segments. Among more than forty approaches in the literature [55], there exists no

approach that guarantees global optimality for the general problem. Existing methods

either use local optimization techniques or rely on stochastic global optimizers. In this

study, we assume that the platform configuration is selected a priori.

Consider a family of n products with r platforms. Let xi, i ∈ I = {1, . . . , n} be the

ith variant distinct components and yj, j ∈ J = {1, . . . , r} be the platform components,

each shared among a subset of variants. Define Sj for all j ∈ J as the index set of variants

present in the jth platform and Ui as the index set of shared components present in the ith

variant Ui = {j ∈ J : i ∈ Sj}. Let fi and gi denote the objective function and constraints

for the ith product, respectively. The product family optimization problem is formulated

as follows:

max
∑

i∈I,j∈Ui

fi(xi, yj)

s.t. gi(xi, yj) ≤ 0, ∀j ∈ Ui, ∀i ∈ I.

Hence, individual product designs are coupled through the platform components. First,

we introduce copies of common components for each variant present in that platform: yjk

for all k ∈ Sj and j ∈ J . Next, we add the consistency constraints enforcing these copies

113



to be equal:

max
∑

i∈I,j∈Ui

fi(xi, yji)

s.t. gi(xi, yji) ≤ 0, ∀j ∈ Ui, ∀i ∈ I

yjk =
1

|Sj|
∑

k′∈Sj

yjk′, ∀k ∈ Sj , ∀j ∈ J.

The above consistency constraints require that each copy of a shared component be equal

to the average of all of its copies. Relaxing the consistency constraints and applying

Lagrangian decomposition, the ith Lagrangian subproblem is given by:

max fi(xi, yji) +
∑

j∈Ui

yji

(

λji −
∑

u∈Ui

λui
|Su|

)

(5.7)

s.t. gi(xi, yji) ≤ 0, ∀j ∈ Ui, ∀i ∈ I,

where λjk ∈ R for all j ∈ J and k ∈ Sj denote the Lagrange multipliers associated

with the consistency constraints. The lower bounding step involves global optimization

of individual variants in parallel followed by a subgradient update of the multipliers us-

ing (5.5) for a predefined number of iterations. We select as the branching variable, the

y element with the largest variance among its copies and the corresponding mean value

as the branching point.

5.3.1 Case study: universal electric motors

The universal electric motor product family example has been applied as a case study

to compare the efficiency of various approaches in the product family optimization liter-

ature [55]. In this example, the goal is to design a family of electric motors that satisfy a

variety of torque requirements while reducing manufacturing cost through sharing compo-

nents. Among the existing objective-function formulations, the following are considered

for comparison purposes:

(i) Goal programming [38]: the objective is to minimize undesirable deviation of mass

and efficiency from their targets, given by 0.5 kg and 70%, respectively. Namely,

the deviation value for any motor that weighs less than 0.5 kg and has an efficiency

of 70% or more is set to zero.
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(ii) Direct optimization of mass and efficiency [24]: the objective function is defined as

the weighted sum of mass and efficiency over the entire family

f =

n
∑

i=1

w1(1− ηi) + w2m
∗
i ,

where ηi and m
∗
i denote efficiency and normalized mass for the ith motor, respec-

tively, and w1 and w2 are weight coefficients.

Comparison of alternative optimizers

To highlight the need for deterministic global optimization, two examples employing

a local solver and a stochastic global optimizer were selected from the literature and

solved for global optimality using BARON. Throughout this section, the relative termination

tolerance between upper and lower bounds is set to 0.01%.

(i) Messac et al. [37] used physical programming for optimizing a family of ten electric

motors treating radius and thickness as platform variables along with the goal pro-

gramming objective function. The same problem was solved using BARON. Results

are compared in Table 5.1; by switching from a local to a global optimizer, the

optimal family on average is 8.0% more efficient and weighs 7.4% less.

(ii) Simpson et al. [55] used genetic algorithm (GA) to optimize a family of ten electric

motors to jointly determine the optimal platform selection and variant design using

the direct objective function formulation. To compare the solution quality, one of

the Pareto optimal solutions with radius and thickness shared among all products

was selected and optimized using BARON holding the platform configuration fixed

(see Table 5.1). The GA-reported solution is a product family that on average is

7.9% less efficient and weighs 9.2% more than the global optimum.

Scalability and decomposition

In both previous examples, the all-in-one problem was solved using BARON without

Lagrangian decomposition because both cases are relatively small-scale problems. In this

section, we demonstrate the effect of increasing the problem size on the convergence rate

of the global solver. The electric motor product family was optimized for 5, 10, 15, and 20
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Table 5.1: Average mass and efficiency for the electric motor product family using alter-
native optimization schemes

Example 1 Example 2

Ref. [37] BARON Ref. [55] BARON

Mass (kg) 0.672 0.622 0.660 0.599
Efficiency (%) 0.629 0.684 0.621 0.674

products, respectively, under various platform configurations. First, for all cases, the all-

in-one formulation was solved using BARON. Computational time for each family is listed

in Table 5.2. Results show that while BARON is quite efficient for relatively small problems,

it slows down significantly when increasing the size of the problem. Namely, by increasing

the number of products from 5 to 15, the computational time increases exponentially, and

the solver fails to find a feasible solution for 20 products. As we shall detail next, this

undesirable trend is due to weak lower bounds created by convex underestimations.

Next, we apply the proposed Lagrangian-based approach to solve the same problem

using a randomized incremental subgradient method for lower bounding. In each iteration,

one individual motor is selected randomly and optimized globally using BARON. Next, the

multipliers are updated using relation (5.1) and the process is repeated for 20 iterations.

CONOPT was used as the local solver for upper bounding, using the dual solution as the

starting point. Table 5.2 shows that while the proposed method is slower than BARON for

five products, it outperforms the commercial solver as the number of products increases,

showing an almost linear complexity within this range. The key feature of the decomposed

algorithm is that it only uses BARON for optimizing a single product at a time, for which the

solver is quite fast and efficient, to generate lower bounds using Lagrangian decomposition.

These tight lower bounds then enable fast convergence of the branch-and-bound tree for

the entire family.

Table 5.3 compares the lower bounds at the root node of the branch-and-bound tree

for the families of Table 5.1 using Lagrangian versus factorable bounds generated by

BARON. The Lagrangian bounds at the root node are within 1% of the optimal solution

whereas factorable programming bounds are much weaker. Therefore, although comput-

ing Lagrangian bounds are more expensive than the factorable bounds, their high quality

reduces the overall execution time significantly.
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Table 5.2: Computational time of the electric motor product family for all-in-one versus
decomposition approach

Computational time (s)

No. of products BARON (all-in-one) Proposed method

5 26 31
10 690 77
15 2725 108
20 – 156

Table 5.3: Factorable versus Lagrangian bounds at the root node for electric motor prod-
uct family

No. of products Optimal solution Lagrangian bounds Factorable bounds

5 1.748 1.736 0.167
10 3.426 3.419 0.323
15 5.112 5.101 0.265
20 6.646 6.638 0.015

5.4 Application No. 2: design for maximum profit

Designing products for the maximum profit through simultaneous consideration of

consumers preferences and engineering constraints has received great attention in recent

years [41, 31, 29]. However, prior approaches have employed either local solvers [41] or GAs

[31, 29] to solve the nonconvex problem and therefore do not guarantee global optimality.

In this example, we adapt the formulation proposed in [41] to solve the joint marketing-

engineering product design problem. Using the logit function for demand modeling and

the latent class model for capturing preference heterogeneity, the all-in-one problem can
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be formulated as follows:

max
x,η

Π = q(p− cv)− cI

s.t. g(x) ≤ 0, h(x) = 0

z = r(x) (5.8)

xmin ≤ x ≤ xmax, pmin ≤ p ≤ pmax

zmin ≤ z ≤ zmax

∆ẑζωηζω ≤ yζω ≤ ∆ẑζωηζ(ω−1), ∀ω ∈ {2, . . .Ωζ − 1}
∆ẑζ2ηζ1 ≤ yζ2 ≤ ∆ẑζ2, 0 ≤ yζΩζ

≤ ∆ẑζΩζ
ηζ(Ωζ−1)

ηζω ∈ {0, 1}, ∀ζ ∈ {1, . . . , Z}, ∀ω ∈ {2, . . . ,Ωζ − 1},

where

∆ẑζω = ẑζω − ẑζ(ω−1), ∀ω ∈ {2, . . .Ωζ − 1}

q = Q
(

m
∑

i=1

si
evi

1 + evi

)

, vi = vi0(βi0, p̂) +

Z
∑

ζ=1

viζ(βiζ , ẑζ)

viζ = βiζ1 +

Ωζ
∑

ω=2

(βiζω − βiζ(ω−1)

ẑMζω − ẑMζ(ω−1)

)

yζω, zζ = ẑζ1 +

Ωζ
∑

ω=2

yζω

vi0 = βi01 +

Ωζ
∑

ω=2

(βi0ω − βi0(ω−1)

p̂ω − p̂(ω−1)

)

y0ω, p = p̂1 +

Ωζ
∑

ω=2

y0ω,

and Π denotes the profit; q is the product demand, which is a function of product at-

tributes z and price p. cV and cI are unit variable and investment costs, respectively.

si denotes the size of the ith market segment and Q is the overall market size. Product

utility in each segment vi is assumed to have a continuous form using piecewise linear

interpolation over the discrete part-worths (β), obtained from conjoint analysis. The in-

cremental cost formulation [44] is applied to represent piecewise linear functions, which

requires introduction of intermediate continuous y and binary z variables. x denotes the

design variables; g and h are inequality and equality engineering constraints, respectively.

Product attributes are related to the engineering variables through equality constraints

z = r(x). As we will illustrate in the next section, BARON cannot close the relaxation gap

of all-in-one formulation in a reasonable time.
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Following the same scheme introduced in [41], Problem (5.8) can be decomposed into

marketing and engineering subproblems, by first introducing marketing zM and engi-

neering zE product attribute copies along with the consistency constraints zM = zE ,

and subsequently relaxing the consistency constraints in the Lagrangian decomposition

framework. Applying the aforementioned steps, we obtain:

(i) Marketing sub-problem:

max
p,zM

Π = q(p− cv)− cI −
Z
∑

ζ=1

λζz
M
ζ

s.t. pmin ≤ p ≤ pmax, zmin ≤ zM ≤ zmax

∆ẑMζωηζω ≤ yζω ≤ ∆ẑMζωηζ(ω−1), ∀ω ∈ {2, . . .Ωζ − 1} (5.9)

∆ẑMζ2ηζ1 ≤ yζ2 ≤ ∆ẑMζ2 , 0 ≤ yζΩζ
≤ ∆ẑMζΩζ

ηζ(Ωζ−1)

ηζω ∈ {0, 1}, ∀ζ ∈ {1, . . . , Z}, ∀ω ∈ {2, . . . ,Ωζ − 1},

where

∆ẑMζω = ẑMζω − ẑMζ(ω−1), ∀ω ∈ {2, . . .Ωζ − 1}

q = Q
(

m
∑

i=1

si
evi

1 + evi

)

, vi = vi0(βi0, p̂) +
Z
∑

ζ=1

viζ(βiζ , ẑζ)

viζ = βiζ1 +

Ωζ
∑

ω=2

(βiζω − βiζ(ω−1)

ẑMζω − ẑMζ(ω−1)

)

yζω, zζ = ẑζ1 +

Ωζ
∑

ω=2

yζω

vi0 = βi01 +

Ωζ
∑

ω=2

(βi0ω − βi0(ω−1)

p̂ω − p̂(ω−1)

)

y0ω, p = p̂1 +

Ωζ
∑

ω=2

y0ω.

(ii) Engineering sub-problem:

max
x

Z
∑

ζ=1

λζz
E
ζ

s.t. g(x) ≤ 0, h(x) = 0

zE = r(x) (5.10)

xmin ≤ x ≤ xmax, pmin ≤ p ≤ pmax

zmin ≤ zE ≤ zmax.
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In each iteration, Problems (5.9) and (5.10) are solved in parallel, followed by a subgra-

dient update of the multipliers. Moreover, the branching variable and branching point

selection are defined similar to the first example.

5.4.1 Case study: dial read-out weight scale

The weight scale design problem was introduced in [41] as a case study for the in-

tegrated marketing-engineering approach. The same example is used here to show the

efficiency of the decomposition approach. Each scale is represented by 5 product at-

tributes, denoted by z, 8 design variables, denoted by x, and 14 engineering constraints.

First, the all-in-one problem (5.8) was optimized using BARON. After 24 hours, the upper

bound was 87.76 with a relative gap of 32.1% from the lower bound. However, using

the proposed decomposition method with a relative gap tolerance of 0.1%, the algorithm

terminated after 4 hours and 26 minutes (Table 5.4). BARON and DICOPT were employed

to solve the upper bounding and lower bounding problems, respectively. Upper bounds

generated at the root node, using factorable technique and Lagrangian decomposition,

are compared in Table 5.5. Lagrangian bounds are reported after 20 subgradient iter-

ations: while requiring more computation than the factorable approach, the tightness

of Lagrangian bounds lowers the overall execution time significantly, consistent with the

conclusion from the first example.

Table 5.4: Optimal scale design marketing attributes

Attributes (z) Lower bound Optimal value Upper bound

z1 : weight capacity 200.0 250.0 400.0
z2 : aspect ratio 0.75 1.040 1.33
z3 : platform area 100.0 140.0 140.0
z4 : tick mark gap 0.0625 0.1237 0.1875
z5 : number size 0.75 1.432 1.750
p : price 10.0 25.0 30.0

Lower bound: 66.436 Upper bound: 66.497

Relative gap: % 0.092
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Table 5.5: Factorable versus Lagrangian bounds at the root node for scale design

Upper bound (millions)- Relative gap (%)

All-in-one (BARON) Proposed method

122.530-84.43 68.850-3.63

Global optimum (millions): 66.436

5.5 Conclusions

We presented a deterministic method for global optimization of nonconvex quasi-

separable problems. The decomposable structure of the problem was exploited to provide

tight lower bounds for the branch-and-bound algorithm using Lagrangian decomposition.

Two important mechanical design applicaions were considered and demonstrated through

case studies taken from the literature. Results were compared with those obtained from

solving the all-in-one problem using BARON. While BARON is efficient for the small-scale

problems, the computational effort increases exponentially with the size of the problem.

In contrast, the proposed approach proved to be scalable, and the Lagrangian lower

bounding scheme was capable of generating tight bounds in both examples. Results show

that solutions reported in the literature using local solvers and stochastic global methods

are significantly suboptimal, and without a lower bound the modeler cannot be sure of the

solution quality. However, this guaranteed global optimality comes with a considerable

increase in the computational cost compared with local solvers. Thus, deterministic global

solvers are preferable when the computational cost is affordable.
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Chapter 6

Conclusions and future research

We conclude by summarizing the main contributions of this thesis and outlining some

directions of future research.

In Chapter 2, we proposed a new method to outer-approximate convex transformable

or G-convex functions. For a given G-convex function, there exist infinitely many choices

for the transforming function, and the tightness of the proposed relaxation depends on

the form of the transforming function. We developed a simple criterion to compare the

sharpness of resulting relaxations, and demonstrated that the tightest possible relaxation

has a well-defined mathematical description. This is the key advantage of the proposed

method over existing transformation techniques in the global optimization literature, all

of which suffer from too many degrees of freedom and unknown theoretical properties.

We then applied the proposed relaxation to a wide class of functions that appear fre-

quently in nonconvex problems. Namely, we considered signomials, product and ratios of

convex and/or concave functions and log-concave functions. We provided theoretical and

numerical comparisons of the proposed approach with a widely used factorable relaxation

scheme. In all instances, new relaxations were considerably tighter.

At the numerical level, in addition to a generic implementation of the proposed relax-

ations in a global solver, the new convexification technique can be employed to develop

customized algorithms for solving a variety of challenging applications to global optimal-

ity. Some examples include, training artificial neural networks, portfolio optimization,

and positioning product lines for the maximum profit. At the theoretical level, it would

be interesting to further investigate the favorable properties of other classes of generalized

convex functions in the context of global optimization. For instance, by definition, a func-
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tion is quasi-convex if and only if its sub-level sets are convex. Quasi-convex functions are

the broadest class of generalized convex functions and frequently appear as component

functions of nonconvex optimization problems. In the context of factorable programming,

we exploit the convexity of the epigraph of intermediate expressions and generate sup-

porting hyperplanes that bound nonconvex functions. An interesting question is how one

can exploit the convexity of the sub-level sets of quasi-convex functions to generate lifting

inequalities that serve as strong cuts for the epigraph of the function.

In Chapters 3 and 4, we studied the problem of constructing the convex envelope of

a nonconvex function over a compact convex set. We proposed a convex formulation for

constructing the convex envelope of a lsc function whose generating set is representable

as a union of finite number of closed convex sets. We conducted an extensive survey

in GLOBALLib and MINLPLib test problems and identified three major functional classes

that satisfy this sufficient condition. These functions constitute over 60% of nonconvex

functions that appear in these two libraries. We then focused on one class, namely,

functions that are products of convex and component-wise concave functions. We derived

explicit characterizations for the convex envelopes of a wide range of such functions.

Through numerous examples, all taken from real-world applications, we demonstrated

that the proposed envelopes reduce significantly the relaxation gaps of standard factorable

relaxations. A natural future direction is to consider the other two functional categories

and reduce the complexity of the envelope representation problem (ideally solve it) for

those functions. On the numerical side, implementing these new classes of cutting planes

would have an immediate impact on the efficiency of global solvers.

Finally, in Chapter 5, we studied a rather different convexification approach, namely,

Lagrangian relaxation. We considered nonconvex quasi-separable optimization problems,

a structure that occurs frequently in engineering systems design applications. The de-

composable structure of the problem was exploited to provide tight lower bounds for the

branch-and-bound algorithm using Lagrangian decomposition. We considered two appli-

cations in mechanical design, product family optimization and design for maximum profit.

The proposed approach proved to be scalable, and the Lagrangian lower bounding scheme

was capable of generating tight bounds in both examples. An interesting future direction

is to equip a general-purpose global solver with such alternative bounding schemes and

study the empirical properties of Lagrangian bounds in a variety of applications.
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