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ABSTRACT 
Plug-in hybrid electric vehicle (PHEV) technology has the 

potential to help address economic, environmental, and national 

security concerns in the United States by reducing operating 

cost, greenhouse gas (GHG) emissions and petroleum 

consumption from the transportation sector. However, the net 

effects of PHEVs depend critically on vehicle design, battery 

technology, and charging frequency. To examine these 

implications, we develop an integrated optimization model 

utilizing vehicle physics simulation, battery degradation data, 

and U.S. driving data to determine optimal vehicle design and 

allocation of vehicles to drivers for minimum life cycle cost, 

GHG emissions, and petroleum consumption. We find that, 

while PHEVs with large battery capacity minimize petroleum 

consumption, a mix of PHEVs sized for 25-40 miles of electric 

travel produces the greatest reduction in lifecycle GHG 

emissions. At today’s average US energy prices, battery pack 

cost must fall below $460/kWh (below $300/kWh for a 10% 

discount rate) for PHEVs to be cost competitive with ordinary 

hybrid electric vehicles (HEVs). Carbon allowance prices have 

marginal impact on optimal design or allocation of PHEVs 

even at $100/tonne. We find that the maximum battery swing 

should be utilized to achieve minimum life cycle cost, GHGs, 

and petroleum consumption. Increased swing enables greater 

all-electric range (AER) to be achieved with smaller battery 

packs, improving cost competitiveness of PHEVs. Hence, 

existing policies that subsidize battery cost for PHEVs would 

likely be better tied to AER, rather than total battery capacity. 

 

1. INTRODUCTION 
Plug-in hybrid electric vehicle (PHEV) technology has 

been considered a potentially promising near-term route to 

addressing global warming and U.S. dependency on foreign oil 

in the transportation sector as the cost and weight of batteries 

are reduced [1]. PHEVs use large battery packs to store energy 

from the electricity grid and propel the vehicle partly on 

electricity instead of gasoline. Under the average mix of 

electricity sources in the United States, vehicles can be driven 

with lower operation cost and fewer greenhouse gas (GHG) 

emissions per mile when powered by electricity rather than by 

gasoline [2]. PHEVs have the potential to displace a large 

portion of the gasoline consumed by the transportation sector 

with electricity, since approximately 60% of U.S. passenger 

vehicles travel less than 30 miles per day [3]. Several 

automobile manufacturers have announced plans to produce 

PHEVs commercially in the future, including General Motors’ 

Chevrolet Volt, which will carry enough battery modules to 

store 40 miles worth of electricity [4] and Toyota’s plug-in 

version of the Prius, which will carry enough batteries for 

approximately 13 miles of electric travel [5]. 

The structure of a PHEV is similar to that of an ordinary 

hybrid electrical vehicle (HEV), except the PHEV carries a 

larger battery pack and offers plug-charging capability [6]. 

PHEVs store energy from the electricity grid to partially offset 

gasoline use for propulsion. The hybrid drivetrain has several 

advantages in terms of improving vehicle efficiency. First, the 

additional electric motor enables the engine to operate at its 

most efficient load more of the time, utilizing the batteries to 

smooth out spikes in power demand. Second, having an 

additional source of power in the form of an electric motor 

enables designers to select smaller engine designs with higher 

fuel efficiency and lower torque capabilities. Third, HEV and 

PHEV powertrains enable energy that is otherwise lost in 

braking to be captured to charge the battery and enable the 

engine to be shut off rather than idling when the vehicle is at 

rest.
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Figure 1. Energy flow in a PHEV with a split powertrain system 

 

We focus on the split configuration in our PHEV study 

because of its flexibility to perform similarly to a parallel or 

series drivetrain. The block diagrams in Figure 1 show the 

structure of the powertrain system in a split PHEV and its 

energy flow during operation. The system has two energy 

storage devices – a fuel tank for gasoline and a battery pack for 

electricity – and three power generation devices – an internal 

combustion engine, a traction motor and a control motor. The 

traction motor has higher power output than the control motor 

and delivers major electrical energy to propel the vehicle. The 

smaller control motor assists the engine to operate near its 

optimal efficiency range and balances torque and speed 

requirements. The power from the engine and motors is coupled 

by a planetary gear set and then delivered to the wheels. There 

are two different energy flow paths: electricity energy flow and 

gasoline energy flow. All electricity flow is bidirectional 

because the two motors can function as generators. 

Our design study focuses on PHEVs with an all-electric 

control strategy
1
, which disables engine operation in charge-

depleting mode (CD mode) and draws propulsion energy 

entirely from the battery until it reaches a target state of charge 

(SOC), as shown in Figure 1. The distance that a PHEV can 

travel on electricity alone with a fully charged battery is called 

its all-electric range (AER).
2
 Once the driving distance reaches 

the AER and the battery is depleted to the target SOC, the 

PHEV switches to operate in charge-sustaining mode (CS 

mode), and the gasoline engine provides energy to propel the 

vehicle and maintain battery charge near the target SOC. In CS 

mode, the PHEV operates similar to an ordinary HEV. 

The battery diagram in Figure 1 presents several 

definitions relevant to battery capacity. Total battery capacity is 

determined by the physical charge limits of the battery. Since 

manufacturing variability implies that every battery cell has a 

different physical charge limit, battery manufacturers often 

define 100% SOC at a more controllable level under the upper 

                                                           
1 A blended-strategy PHEV uses a mix of the electric motor and gasoline 

engine to power the vehicle in CD-mode, while an all-electric PHEV uses only 
electricity. We confine our scope to all-electric strategy for simplicity, since 

blended-strategy operation characteristics are sensitive to control parameters. 
2 AER is defined as energy-equivalent electric propulsion distance for 

blended-mode PHEVs, but we consider only  all-electric PHEVs here [7]. 

limit. The capacity window between 0% and 100% defines the 

usable capacity of the battery. Maximum, target, and minimum 

SOC are further determined by hybrid vehicle designers based 

on their design application. We define the capacity window 

between maximum and target SOC as design swing, and the 

ratio of discharged capacity to the usable capacity as depth of 

discharge (DOD), where DOD is a function of driving distance 

s. We further define state of energy (SOE) as the percent of 

energy remaining in the battery: SOE = energy remaining / 

energy capacity. If the battery voltage is constant with SOC, 

then SOC and SOE are equivalent; however, we use SOE in our 

model to account for voltage variation and focus on the 

quantity of interest. 

Generally, increased AER will result in a larger portion of 

travel propelled by electrical energy instead of gasoline; 

however, the distance the vehicle is driven between charges 

plays an important role in determining the PHEV’s advantage: 

Vehicles that are charged frequently can drive most of their 

miles on electric power, even with a relatively small battery 

pack, while vehicles that are charged infrequently require larger 

battery packs to cover longer distances with electric power [8]. 

Battery degradation and replacement also affect PHEV 

implications. Modern batteries have limited life, and frequent 

cycling leads to accelerated degradation, including reduction in 

battery capacity and increase in internal resistance caused by 

the growth of a solid-electrolyte interphase (SEI) layer and a 

solid film layer on the electrode during battery storage and 

cycling [9]. A commonly used model of battery degradation 

views degradation as an increasing function of DOD [10-13], 

implying that designers should avoid cycling batteries to a deep 

DOD. However, Peterson et al. [14] used realistic driving 

cycles to demonstrate that current LiFePO4 battery degrades as 

a function of energy processed, irrespective of DOD, which has 

implications for PHEV design.
3
 Here we use the Peterson 

model as a base case and examine DOD-based degradation in a 

sensitivity analysis. 

                                                           
3 This pattern was also observed experimentally by [15]. 

 

Control 
motor

Traction 
motor

Planetary gear set

Power 
to 

wheels

Electrical Energy Flow

Gasoline Energy Flow

Engine

Fuel 
tank

Power 
inverter

100%
Max SOC

Target SOC

Min SOC

DOD(s)

Physical limit of the battery

To
ta

l b
at

te
ry

 c
ap

ac
it

y

U
sa

b
le

 c
ap

ac
it

y

D
e

si
gn

 s
w

in
g

B
at

te
ry

 p
ac

k

0%
Driving distance s

SO
C

CD CS

AER



 3 Copyright © 2010 by ASME 

2. MODEL 
We pose a benevolent dictator optimization model to 

determine optimal vehicle type, design, and allocation for 

achieving social objectives of minimum equivalent daily cost, 

life cycle GHG emissions, and petroleum consumption from 

personal transportation.
4
 Figure 2 shows an overview of the 

modeling framework. For the single vehicle case, the objective 

function can be expressed as the integral of the corresponding 

quantity per day at each driving distance fO(x,s) times the 

probability distribution of daily driving distances fS(s) in the 

population of drivers: 

   

   

O S
0

minimize  ,

subject to ;   

f s f s ds


 

x
x

g x 0 h x 0

 
(1) 

where x is a vector of design variables that define the vehicle, s 

is the distance the vehicle is driven between charges, fO(x,s) is 

the value of the objective (equivalent cost, petroleum 

consumption, or GHG emissions) per day for vehicle design x 

when driven s miles per day, fS(s) is the probability density 

function for the distance driven per day, g(x) is a vector of 

inequality constraints and h(x) is a vector of equality 

constraints ensuring a feasible vehicle design. 

To extend this model to the case where different drivers are 

assigned different vehicles based on the distance driven per day, 

we incorporate a variable si that defines the cutoff point such 

that drivers who travel less than si per day are assigned the 

vehicle defined by xi and drivers who travel more than si per 

day are assigned the vehicle defined by xi+1. Extending this idea 

to multiple segments, the formulation for design and ordered 

allocation is given by 
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(2) 

In the following subsections, we first instantiate this 

formulation with specific models for the objective and 

constraint functions by specifying the distribution of distance 

driven per day, vehicle performance models, and the objective 

and constraint formulations. 

2.1 Distribution of Vehicle Miles Travelled per Day 
We use data from the 2009 National Household 

Transportation Survey (NHTS) [16] to estimate the distribution 

of distance driven per day over the population of drivers. The 

survey collected data by interviewing 136,410 households 

across the U.S. on the mode of transportation, duration, 

distance and purpose of the trips taken on the survey day. We fit 

                                                           
4 We model allocation of vehicles to drivers as a dictated assignment 

based on driver daily travel distance and do not model market mechanisms. As 

such, we find the best possible outcome for GHG emissions, which is a lower 
bound for market-based outcomes. 

the weighted driving data using the exponential distribution.
5
 

The distribution below represents the probability density 

function for vehicle miles traveled by drivers on the day 

surveyed: 

 S ;   0sf s e s    (3) 

The coefficient λ at maximum likelihood fit is 0.0296. Figure 3 

shows the exponential distribution and the histogram of the 

surveyed daily vehicle driving miles.
6
 

 

 
Figure 2. Framework of optimal PHEV design and allocation 

 

 
Figure 3. Probability density function for vehicle miles 

traveled per day 

2.2 Vehicle Performance Models 
We carry out vehicle performance simulations using the 

Powertrain System Analysis Toolkit (PSAT) vehicle physical 

simulator developed by Argonne National Laboratory [17]. 

PSAT is a Matlab/Simulink forward-looking simulation 

package that predicts vehicle performance characteristics at 

both the system level (e.g. fuel consumption) and the 

component level (e.g. engine torque and speed at each time 

step) over a given driving cycle using a combination of first 

principles and empirical component data. In our study, the 

body, powertrain and vehicle parameters for all PHEV and 

HEV simulations are based on the 2004 Toyota Prius model 

that uses the split powertrain system with an Atkinson engine, a 

permanent magnet motor, and a nickel-metal hydride (NiMH) 

                                                           
5 We excluded data entries of public transportation and also excluded 

drivers who traveled zero miles or more than 200 miles. We fit the distribution 

to the reported distance traveled on the survey day with the assumptions of (1) 

the survey data are representative of the population, and (2) the distance driven 
on the survey day is the same distance driven every day for that vehicle. 

6 The deviation between data and the exponential fit in the 0-4 mile region 

has little effect on results because 0-4 mile trips contribute little to the social 
objectives in this study (the curves in Figure 5(d), (e) and (f)) 
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battery pack. To account for structural weight needed to carry 

heavy battery packs, we include an additional 1 kg of structural 

weight per 1 kg of battery and motor weight. We created a 

comparable conventional vehicle (CV) model using a 

conventional powertrain and four-cylinder engine based on the 

Honda Accord to account for larger engine torque and power 

requirements, and the parameters that define the frontal area, 

drag coefficient and base weight are adjusted to match the Prius 

for fair comparison. The vehicle configuration parameters are 

included in Table A1 in the Appendix. 

For the PHEV design, the Prius engine size is scaled by the 

peak power output from the base engine (57 kW) using a linear 

scaling algorithm. Similarly, the motor is scaled from the base 

motor (52 kW) linearly. Both the engine and motor weights are 

also scaled proportionally to the peak power. We use the Saft 

Li-ion battery module in the PSAT package for the PHEV 

energy storage device. Each cell in the module weighs 0.378 

kg, with a modified specific energy of 100 Wh/kg and has a 

battery cell energy capacity of 21.6 Wh with a nominal output 

voltage of 3.6 volts. The weight of each 3-cell module is 1.42 

kg after accounting for a packaging factor of 1.25. The battery 

size and capacity are scaled by specifying the number of cells 

in the battery pack. We assume an 800W base electrical hotel 

load on the PHEV, the HEV and the CV. To estimate the 

performance of a PHEV, we use the U.S. Environmental 

Protection Agency’s Urban Dynamometer Driving Schedule 

(UDDS) driving cycle [18] to calculate simulated electrical 

efficiency (miles/kWh) in CD-mode for PHEVs, and gasoline 

efficiency (mpg) in CS-mode for PHEVs as well as for HEVs 

and CVs. We also perform a simulated performance test to 

calculate the time required to accelerate the vehicle from 0 to 

60 miles per hour (mph) in the CD-mode and in the CS mode.
7
 

Because the petroleum consumption, cost, and GHG 

emissions per mile associated with HEVs and CVs are 

independent of the number of miles driven per day, we focus on 

PHEV design and take the HEV and CV to have fixed designs. 

The HEV design is identical to the Prius model, which has a 

configuration of peak engine power 57 kW, motor power 52 

kW, NiMH battery size 168 cells (1.3 kWh), fuel efficiency 

60.1 miles per gallon, and 0-60 mph acceleration time 11.0 

seconds. Similarly, our CV has an engine size 126 kW and fuel 

efficiency 29.5 miles per gallon, and 0-60 mph acceleration 

time 11.0 seconds. For the PHEVs, the design variables x 

consist of the engine scaling factor x1, motor scaling factor x2, 

battery pack scaling factor x3, and battery SOE swing x4. To 

reduce computational time and support global optimization, we 

created a set of polynomial meta-model fits as functions of x 

for the PHEV using discrete simulation data points: (1) CD-

mode electricity efficiency E (mile per kWh); (2) CS-mode 

fuel efficiency G (mile per gallon); (3) CD-mode 0-60 mph 

acceleration time tCD (second); (4) CS-mode 0-60 mph 

acceleration time tCS (second); (5) CD-mode battery energy 

                                                           
7 Our simulation results are generally optimistic for all vehicles in that 

they do not account for factors such as vehicle wear, improper maintenance and 

tire pressure, aggressive driving cycles, extremely electric accessory loadings, 
or terrain and weather variation.  

processed (charging and discharging) per mile μCD (kWh/mile); 

(6) CS-mode battery energy processed per mile μCS 

(kWh/mile); and (7) final SOC after multiple US06 aggressive 

driving cycles in CS mode uCS (starting at the target SOC). 

Metamodels of E and G are used to calculate energy 

consumption; tCD and tCS are used to ensure comparison of 

equivalent-performance vehicles; μCD and μCS are usd to 

calculate battery degradation, and uCS is used to ensure the 

engine is capable of providing average power needs in CS 

mode. We evaluated the four output values using PSAT over a 

grid of values for the inputs x1={30, 45, 60}/57, x2={50, 70, 90, 

110}/52, x3={200, 400, 600, 800, 1000}/1000 and multivariate 

polynomial functions were fit to the data using least squares.
8
 

The general form of the cubic fitting function fm3 is defined as 

(the subscript 3 indicates the PHEV case, which will be 

discussed later). 

  3 3 3 2 2
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    
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    

x

 
(4) 

where the am terms are the coefficients for function m. The 

polynomial fitting coefficients for E, G, tCD, tCS, μCD, μCS and 

uCS are listed in Table A1 in Appendix.
9
 The maximum 

metamodel error among the test points is 0.1 miles/kWh, 0.1 

miles/gallon, 0.5 seconds, 0.02 kWh, and 0.5% for electrical 

efficiency, gasoline efficiency, acceleration time, energy 

processed, and final SOC, respectively. 

2.3 Electric Travel and Battery Degradation 
To calculate each objective function, we first define the 

distance driven on electric power sE and the distance driven on 

gasoline sG as a function of the vehicle’s AER sAER and the total 

distance driven per day s. Assuming one charge per day, sE and 

sG are given by 

 
 

 
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AER

E

AER AER

AER

G

AER AER

if 
,

if 

0 if 
,

if 

s s s
s s

s s s

s s
s s

s s s s


 




 
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x
x

x
x

 
(5) 

For PHEVs, we assume that the battery is charged to max 

SOC once per day. For HEVs and CVs, there is no electrical 

travel; thus HEV and CV can be seen as special cases with 

sAER=0, so that sE=0 and sG=s. Assuming constant efficiencyE 

(mile per kWh) in CD-mode, the AER of a PHEV can be 

calculated from the energy capacity per battery cell κ=0.0216 

kWh/cell, the (scaled) number of cells x3, and the design swing 

x4:  

   AER 3 4 E1000s x x x  (6) 

                                                           
8 SOE design swing specification (x4) is not relevant for these 

performance tests. 
9 We truncated the acceleration data points greater than 13.0 seconds to 

improve the metamodel fit, and fit μCD, μCS and uCS using quadratic terms to 
avoid over-fitting. 
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Figure 4. (a) Rosenkranz DOD-based degradation model; (b) 

Peterson energy-based degradation model 

 

We consider two distinct battery degradation models from 

the literature and examine their implications for PHEV design. 

The Rosenkranz model [12], which has been used in prior 

PHEV studies [10-13], views battery degradation as a function 

of DOD per charge cycle, as shown in Figure 4 (a), which 

cannot predict additional degradation due to energy use in CS 

mode. In contrast, the Peterson model [14] was constructed by 

cycling modern A123 LiFePO4 cells under representative 

driving cycles (non-constant C-rate) and measuring capacity 

fade as a function of energy processed, including intermediate 

charging and discharging over the driving cycle.
10

 Results show 

relative energy capacity fade as a linear function of normalized 

energy processed while driving and while charging, as shown in 

Figure 4 (b). 

Peterson model: The daily energy processed while driving 

wDRV and charging wCHG a PHEV can be expressed as 

    E
DRV CD E CS G CHG

E B

, ;   ,
s

w s s s w s 
 

  x x  
(7) 

where μCD and μCS are energy processed per mile (kWh/mile) in 

CD and CS mode, respectively, and ηB is battery charging 

efficiency 95%. We assume that energy processed for daily 

charging is equal to net energy consumed in electrical travel per 

day. The relative energy capacity decrease can be calculated by 

the energy processed in driving and charging per cycle per cell 

per original cell energy capacity: 

 
 

DRV DRV CHG CHG
P

3

,
1000

w w
r s

x

 




x  

(8) 

where αDRV = 3.46×10
−5

 and αCHG = 1.72×10
−5

 are the 

coefficients for relative energy capacity fade. These coefficients 

are derived from the same data set described in [14].
11

 If the 

battery end-of-life is defined as the point when the drop in 

relative energy capacity is rEOL, the battery life θBAT, measured 

in days (or, equivalently, cycles), can be calculated as 

                                                           
10 Deep discharging cycles may cause power fade in Li-ion battery cell 

[15], which we ignore in this study. 
11 The regression in [14] focused on finding the degradation from energy 

arbitrage, but in this paper the regression variables were chosen to enable 
predictions about degradation due to driving and recharging. 

 
   

EOL 3 EOL
BAT 1

P DRV CD E CS G CHG E E B

1000
,

r x r
s

r s s s




     


 
 

x  
(9) 

The rEOL criterion is defined at 20% [14] . 

Rosenkranz model: To estimate battery life using the 

Rosenkranz model, DOD needs to be calculated first. Because 

we assume energy consumption is constant in CD-mode, 

energy consumption is proportional to electric travel distance. 

If we define maximum SOC at 100%, the energy-based DOD δ 

is equal to the ratio of electric travel distance sE to the 

maximum distance that could be traveled on total battery 

energy capacity: 

 
 

E E
4

AER E 3

,
1000

s s
s x

s x


 
 x  

(10) 

The battery life charge cycle θBAT is estimated using the 

degradation curve in Figure 4 (a): 

 
 

1.46

1.46 E
BAT

E 3

, 1441 1441
1000

s
s

x
 

 




 

    
 

x  (11) 

2.4 Objective Functions 
The three objectives, net petroleum consumption, GHG 

emissions, and cost, are functions of vehicle design variables x 

and the distance traveled per day s. We define the functions as 

follows: 

Petroleum consumption: The average petroleum 

consumed per day fG(x,s) is given by 

 
 

 
G

G

G

,
,

s s
f s




x
x

x
 (12) 

For the HEV and CV cases, Eq. (12) reduces to s/G.
12

 

Life cycle greenhouse gas emissions: The operating (use 

phase) GHG emissions νOP represents the average GHG 

emissions in kg CO2 equivalent (kg-CO2-eq) per day associated 

with the lifecycle of gasoline and electricity used to propel the 

vehicle:
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OP G

E C G

, ,
,

( ) ( )

s s s s
s


 
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x x
x

x x
 (13) 

where ηC=88% for battery charging efficiency [20], vE = 0.752 

kg-CO2-eq per kWh for electricity emissions
13

, and vG = 11.34 

kg-CO2-eq per gallon for gasoline life cycle emissions. Total 

life cycle GHG emissions further includes the GHGs associated 

with production of the vehicle and battery. The average total 

lifecycle GHG emissions per day fV(x,s) is 

   
   

VEH BAT
V OP

VEH BRPL

, ,
,

v
f s s

s s




 
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x
 

(14) 

where θVEH = sLIFE/s is the vehicle life in days, sLIFE = 150,000 

miles
14

 is the vehicle life in miles, θBRPL is the battery 

                                                           
12 Petroleum makes up less than 1.6% of the U.S. electricity grid mix [19], 

and we ignore it here. 
13 The life cycle GHG emissions of electricity is estimated based on the 

average emissions 0.69 kg-CO2-eq/kWh of the US grid mixture [21] with 9% 
transmission loss [22].  

14 We assume that all vehicles must be replaced every 150,000 miles, 

which represents the U.S. average vehicle life [23]. This assumption may be 
unrealistic for vehicles driven very short or very long daily distances because 
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replacement effective life (defined below), vBAT = 1000x3κvB is 

battery pack manufacturing emissions, vB = 120 kg-CO2-eq per 

kWh for Li-ion battery and 230 kg-CO2-eq per kWh for NiMH 

battery is the life cycle GHG emissions associated with battery 

production, vVEH = 8,500 kg-CO2-eq per vehicle is the life cycle 

GHG emissions associated with vehicle production (excluding 

emissions from battery production) [2]. 

Battery replacement scenarios: We consider two battery 

replacement scenarios. The first is battery leasing: batteries are 

assumed to be replaced at the rate that they reach end of life, 

regardless of vehicle life. This simple and optimistic case 

essentially assumes that used batteries can be swapped from 

vehicle to vehicle until they reach end of life, and θBRPL = θBAT. 

The second scenario is buy-lease: If the battery outlasts the 

life of the vehicle, a single battery pack must be purchased – 

partial payment for batteries is not allowed, and old batteries 

are not placed into new vehicles. But if the vehicle outlasts the 

battery, battery replacement is managed by lease. In this 

scenario, θBRPL = min(θBAT , θVEH). 

Equivalent annualized cost (EAC): To calculate EAC, 

we define a nominal discount rate rN, an inflation rate rI, and 

the real discount rate rR = (1+rN)/(1+rI) - 1 [24]. The net present 

value P of vehicle ownership is the sum of the cost of vehicle 

operation, vehicle production, and battery costs over the vehicle 

life: 
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where D is driving days per year (D = 300 days in this study), T 

is vehicle life in years  (T(s) = θVEH/D = sLIFE/(sD)), B is battery 

life in years (B(x,s) = θBAT(x,s)/D). The operating cost per day 

cOP is the sum of the cost of electricity needed to charge the 

battery and the cost of gasoline consumed: 
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R is capital recovery factor as a function of discount rate r and 

time period N in year [24]: 
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The net present value of battery leasing cost is calculated by 

calculating the EAC of the battery over its life B using R(rN, B) 

and then summing the present value of annual battery cost over 

the vehicle life T. The EAC of vehicle ownership is 

P*R(rN,T(s)). We divide by D to obtain EAC per driving day: 

                                                                                                       
other time-based factors also play a role in vehicle deterioration. However, 

these factors are only significant for regions of the objective function's 

integrand that are relatively insignificant to the integrated objective function, 
and they do not provide a significant source of error. 

   

 

 
 

 

 

1

C N

N 1

OP VEH N

R

1

BAT N

1

BAT N

, , ( )

, ( )
     , ( )

, ( )

Buy: , ( )
           

Lease: , ( , )

f s P R r T s D

R r T s
c c R r T s D

R r T s

c R r T s D

c R r B s D









  

 


 


x

x

 

(18) 

The vehicle cost (excluding battery pack) cVEH is the sum of 

vehicle base cost cBASE = $11,183, engine cost cENG(x1) = 

17.8×(57x1) + 650, and motor cost cMTR(x2) = 26.6×(52x2) + 

520 [25].
15

 The battery pack cost cBAT = 1000x3κcB, where Li-

ion battery unit cost cB = $400/kWh (for PHEV only), and 

NiMH battery unit cost = $600/kWh (for HEV only) in our base 

case [29].
16

 We use the 2008 annual average residential 

electricity price cE = $0.11 per kWh [31], and the 2008 annual 

average gasoline price cG = $3.30 per gallon [32] in our base 

case. For HEV and CV, sE = 0, and operating cost consists only 

of gasoline cost. We ignore the possibility of vehicle to grid 

energy arbitrage for PHEVs, since net earning potential is 

estimated to be low [33], especially under a mass adoption 

scenario. In the base case of this study, we assume zero 

discounting. By applying l'Hôpital's rule, the capital recovery 

factor reduces to 1/N: 
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Thus Eq. (18) can be simplified to 
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(20) 

The above equation has the same structure as the average 

lifecycle GHG function fV(x,s) in Eq. (14). 

2.5 Constraint Functions 
To ensure fair comparison, we require that all vehicles 

meet a minimum acceleration constraint of 0-60 mph in less 

than 11 seconds. Because we have limited our scope to  all-

electric PHEVs, we require the acceleration constraint to be 

satisfied both in CD mode, using electric power alone, and in 

CS mode, where the gasoline engine is also used. The resulting 

constraints are tCD(x) < 11s and tCS(x) < 11s. Additionally, we 

require the gasoline engine to be large enough to provide 

                                                           
15 To obtain a comparable vehicle base cost cBASE (excluding engine, 

motor and battery) among PHEV, HEV and CV, we use the 2008 Prius 

manufacturer suggested retail price (MSRP) $21,600 and subtract a 20% dealer 
mark-up [26], a NiMH battery pack of $3,250, base engine cost $1,665 and 

base motor cost $1,902 in our cost estimation. We assume 20% dealer mark-up 

for the Prius NiMH battery replacement cost $3,900 [27].The engine and motor 
costs are estimated using a cost model from the literature [13] and converted 

into 2008 dollars using the producer price index [28]. The resulting vehicle base 

cost is cBASE = $11,183. We ignore vehicle and battery salvage value. 
16 Future battery costs are uncertain. The Li-ion battery cost $400/kWh 

[29] and NiMH battery cost $600/kWh [30] are chosen to represent an 

optimistic but realistic estimate of near term battery costs in mass production, 
and we examine a range of costs in our sensitivity analysis. 
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average power for the vehicle in CS mode under an aggressive 

US06 driving cycle while maintaining the target SOC level in 

the battery. The resulting constraint is uCS(x) > 32%. Finally, we 

impose simple bounds on the decision variables: 30/57 ≤ x1 ≤ 

60/57, 50/52 ≤ x2 ≤ 110/52, 200/1000 ≤ x3 ≤ 1000/1000, 0 ≤ x4 

≤ 0.8 to avoid metamodel extrapolation. Any active simple 

bounds would imply a modeling limitation rather than a 

physical optimum. As we will later show, across all cases, of 

the simple bounds only the upper bounds on battery size and 

swing are ever active. The upper bound on battery size is 

reached only when minimizing petroleum consumption, since 

more battery is always preferred for this objective. The upper 

bound on swing is taken as a practical constraint since (1) SOC 

cannot be measured precisely, so the battery must be held safely 

away from the physical capacity, where explosion can occur, 

(2) battery resistance, which is relatively flat over most of the 

SOC window, rises considerably near 0% SOC, causing a drop 

in efficiency and power output and an increase in heat 

generation, and (3) batteries are typically considered “dead” 

when their usable capacity fades to 80% of original capacity. 

3. RESULTS AND DISCUSSION 
We use the Peterson battery degradation model (Eq. (8)), 

the buy-lease battery replacement scenario (θBRPL= min(θBAT, 

θVEH)), and two driver segments (n=2) as our base case. We 

reformulate the problem into a factorable algebraic nonconvex 

mixed-integer nonlinear programming (MINLP) model
17

 that 

can be solved using the GAMS/BARON convexification-based 

branch-and-reduce algorithm [35]. 

3.1 Optimal Solutions 
The optimal vehicle type, design and allocation ranges for 

each case are summarized in Table 1. The performance values 

of CV and HEV are included in the first two columns of Table 1 

for comparison. To further examine the optimal solutions, we 

plot the following function values at the optimal solution x
*
 as a 

function of driving distance per day in Figure 5: (1) life cycle 

equivalent cost, GHG emissions and petroleum consumption 

per-mile fO(x
*
,s)/s; and (2) the population-weighted equivalent 

cost, GHG emissions and petroleum consumption per day 

fO(x
*
,s)·fS(s). The area under the population-weighted curve is 

the objective function. In each case, we compare the CV and 

HEV performance with the optimal PHEV design. 

The optimal solution for minimum petroleum consumption 

reduces to a single PHEV87 design with the maximum allowed 

battery size allocated to all drivers.
18

 Such a solution is 

expected since a large-capacity PHEV can travel long distances 

without using gasoline. Figure 5(a) shows the petroleum 

consumption per mile with respect to daily driving distance. No 

gasoline is consumed for driving distances under the AER of 87 

miles. The fF(x
*
,s)·fS(s) plot in Figure 5(d) illustrates that 

moving all drivers from the CV to a the PHEV87 reduces net 

                                                           
17 The detailed reformulation is presented in a companion paper focusing 

global optimization formulation and methodological contributions [34]. 
18 We use the notation PHEVx to denote a PHEV with an AER of x miles. 

petroleum consumption per person per day (the area under the 

curve) by 96%. 

The optimal solution for minimum GHG emissions is to 

allocate a medium-range PHEV40 to drivers who can charge 

every 87 miles or less (92% of drivers and 72% of VMT per 

day) and allocate a shorter-range PHEV25 to drivers who 

charge less frequently. There are two intersection points 

between the two PHEV GHG curves in Figure 5(b), and the 

optimal single cutoff point is located at the first intersection.
19

 

Although the PHEV40 GHG curve surpasses the PHEV25 after 

87 miles, the difference between two is almost 

indistinguishable, and the portion of the population driving 

greater than 87 miles/day is small. Assigning all drivers high-

AER PHEVs can significantly reduce petroleum consumption, 

but medium-AER PHEVs reduce the number of underutilized 

batteries in these vehicles, reducing the emissions associated 

with battery production as well as the emissions associated with 

reduced vehicle efficiency caused by carrying heavy batteries. 

While the most vehicles travel short distances each day (Figure 

3), the majority of the GHG emissions are produced by those 

vehicles that travel 25- 45 miles/day (Figure 5(e)). A substantial 

reduction in GHG emissions is achieved by allocating PHEVs 

to drivers rather than HEVs or CVs, and a modest additional 

gain is possible by segmenting the population and allocating the 

right PHEV to the right driver. 

 

 

Table 1. Optimization results for minimum fuel, petroleum, 
and GHG emissions objectives 

Optimization 

Objective 
  

Minimum 

Petroleum 

Minimum 

GHGs 

Minimum 

Cost 

Optimal Vehicle Set CV HEV PHEV PHEV PHEV PHEV HEV 

Allocation  (miles) 0-200 0-200 0-200 0-87 87-200 0-51 51-200 

AER (miles) − − 87 40 25 34 − 

Engine power (kW) 126 57 47 47 43 46 57 

Motor power (kW) − 52 81 71 73 70 52 

Battery cells − 168 1000† 435 269 376 168 

Battery design swing − − 0.8† 0.8† 0.8† 0.8† − 

Battery capacity (kWh) − 1.3 21.6 9.4 5.8 8.1 1.3 

CD eff. (miles/kWh) − − 5.05 5.29 5.35 5.31 − 

CS eff. (mpg) 29.5 60.1 58.1 60.0 60.7 60.3 60.1 

CD accel. (sec) − − 11.0 11.0 11.0 11.0 − 

CS accel. (sec) 11.0 11.0 9.0 9.1 10.3 9.4 11.0 

Final SOC − − 0.32 0.32 0.32 0.32 − 

Petroleum (gallon 
per person-day) 

1.12 0.55 0.04 0.18 0.32 

GHGs (kg-CO2-eq  

per person-day) 
14.6 8.20 8.12 7.77 7.91 

Cost ($  

per person-day) 
6.82 5.26 6.22 5.60 5.21 

Reduction from CV % − − −96% −47% −24% 
†Variable limited by model boundary     

 

 

 

 

                                                           
19 More intersection points are needed (n>2) to identify more than two 

vehicle regions. 
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Figure 5. Optimal PHEV design and allocations for 

minimizing petroleum consumption, life cycle cost, and 
GHG emissions for the base case scenario 

 

The minimum cost solution in the base case is to assign 

PHEV34s to drivers who can charge 51 miles or less (78% of 

drivers and 44% of VMT/day) and assign ordinary HEVs to 

drivers who charge less frequently. Figure 5(c) shows notable 

differences in cost trends among the two vehicles. However, 

when population weighting is included, the fC(x
*
,s)·fS(s) curves 

in Figure 5(f) reveals that the gap in net cost between the HEV 

and optimized PHEVs is small. Hence we conduct a series of 

sensitivity analyses to examine the minimum cost solutions 

under various scenarios. 

An important observation on the optimal PHEV designs is 

that the optimal battery design swing for all three objective 

functions is the upper bound: 80%. The degradation mechanism 

based on energy-processed implies that for minimum life cycle 

cost, GHG emissions and petroleum consumption, designers 

should allow the maximum possible range of the battery to be 

used, even though this will require battery replacement for 

some drivers. 

3.2 Sensitivity analyses 
We conduct sensitivity analyses to examine the minimum 

cost solutions for various scenarios, which include: (1) single-

vehicle allocation model, (2) three-vehicle allocation model, (3) 

battery leasing scenario, (4) Rosenkranz battery degradation 

model, (5) low Li-ion battery cost $250/kWh, (6) high Li-ion 

battery cost $1000/kWh, (7) low NiMH battery cost at $440/ 

kWh, (8) high NiMH battery cost $700/kWh, (9) low electricity 

price $0.06/kWh, (10) high electricity price $0.30/kWh, (11) 

low gasoline price at $1.50 per gallon, (12) high gasoline price 

at $6.0 per gallon, (13) carbon allowance price $10 per metric 

ton of CO2 equivalent (ton-CO2-eq), (14) carbon allowance 

price $100/ton-CO2-eq, (15) nominal discount rate 5%, and 

(16) nominal discount rate 10%.
20

 The optimal vehicle types 

and allocations for the sensitivity analyses are shown in Figure 

6. The horizontal axis of the chart is the percentage of 

population covered by the allocated vehicles. The values of 

VMT percentage over the population and total equivalent cost 

per person per driving day are included for each optimal 

vehicle choice, and the cutoff daily mileage point is labeled 

where appropriate.  

First, we tested sensitivity to the number of vehicle 

segments, examining the optimal solutions of single-vehicle 

and 3-vehcile allocation cases. For the single-vehicle case, 

ordinary HEV is the optimum choice for the entire range. The 

3-vehice case shows that the range covered by PHEV34 in the 

base case is replaced by PHEV29 for the range of 0-33 miles 

and PHEV41 for the range of 33-54 miles. The allocation of 

HEV for longer driving distance is essentially not affected. 

Moreover, the minimum cost per person-day in the 3-vehicle 

case is only 0.2% lower than the base case, while the cost of the 

single-vehicle case is 1% higher. The results indicate that the 

two vehicle model in the base case is robust, and cases with 

more than three vehicles result in only minor improvements. 

The battery leasing scenario does not change the optimal 

vehicle decisions in the base case because the optimized 

PHEV34 has a battery life shorter than vehicle life within 53 

miles driving range, where buy-lease is equivalent to the 

leasing scenario (min(θBAT, θVEH) = θBAT). The Rosenkranz 

DOD-based degradation model, which encourages shallow 

swing to preserve battery life, results in a PHEV13 with 7.3 

kWh battery at 32% SOE swing (a battery size equivalent to a 

PHEV32 with a 80% swing) for drivers below 24 miles/day and 

an HEV for the remainder. Thus, the best use strategy for 

PHEV batteries depends on the degradation mechanism. 

Planned PHEVs such as the Chevrolet Volt report a battery 

swing of around 50% in order to maintain battery life [36]. The 

Rosenkranz model is based on older battery technology, 

constant rate charge and discharge, and it cannot account for 

degradation in CS-mode. The latest data tested on LiFePO4 

cells with realistic driving cycles suggests that designers should 

consider using smaller battery packs with larger swing, even if 

the cost to replace the battery is accounted for. 

The cases of high Li-ion battery cost, low gas price and 

high electricity price are not beneficial to PHEVs, and therefore 

the HEV is the low cost choice for all drivers in the range. The 

result of the low electricity price case shows that a PHEV40 has 

lower cost for most drivers, and the ordinary HEV remains 

preferable for long distance driving. Low electricity prices can 

be associated with off-peak charging; however, with high 

PHEV penetration and consequent demand for off-peak 

charging, off-peak rates will not remain as low. Similarly, lower 

battery costs or higher gasoline prices improve the economic 

performance of PHEVs and make them cost competitive for a 

wide range of drivers. We also examine two additional cases 

                                                           
20 Among the 16 sensitivity analysis cases, the Rosenkranz and nominal 

discount rate cases are solved using local NLP solver with multi-start. The cost 

functions of these cases do not have closed-form expressions and require 
numerical integration. 
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with low and high HEV NiMH battery cost at $440/kWh and 

$700/kWh, respectively [30]. The result indicates the HEV 

allocation range varies between 42-200 and 58-200 miles, but 

PHEV is still the low-cost choice for the drivers with short to 

medium daily distances. 

 

 
Figure 6. Optimal vehicle allocations for various scenarios. 
The base case assumes the buy-lease battery replacement 

scenario, the Peterson battery degradation model, 
$400/kWh Li-ion battery cost, $600/kWh NiMH battery cost, 

$3.30/gal gasoline, $0.11/kWh electricity, $0/ton CO2-eq 
allowance price, and zero discounting 

 

It is worth noting that we apply 3-vehcile models for 

solving the low Li-ion battery cost and high gas price cases. 

The reason is that we found dual-vehicle allocations result in a 

choice of low-AER PHEVs for longer driving distances to 

reduce weight of underutilized batteries, since a large number 

of miles are traveled beyond the AER. In these cases, the dual-

PHEV cost curves have two intersection points, and the optimal 

cutoff is located at the second intersection point. In both cases 

with the 3-vehicle allocation model, the optimal solutions 

allocate medium-AER PHEVs to drivers with low daily driving 

distances, larger-AER PHEVs to driver have medium travel 

distance, and smaller PHEVs for the drivers who take long 

trips. 

We examine the solution variations with two GHG 

allowance price levels, $10 and $100 per ton-CO2-eq, by 

internalizing GHG emissions externalities to the cost objective 

function.
21

  The carbon costs do not alter the vehicle design 

decisions significantly but extend the allocation range of 

PHEVs slightly. PHEV life cycle costs must already be 

comparable to HEV costs before carbon prices influence the 

least-cost solution. 

The last two sensitivity analysis cases consider nominal 

discount rates rN = 5% and 10% with an inflation rate rI = 3%, 

the average from 2003-2008 [39]. A higher discount rate makes 

PHEVs less attractive relative to HEVs and CVs because the 

vehicle purchase cost paid upfront is higher, and fuel cost 

savings occur in the future. At a 5% discount rate, CV is the 

optimal choice for drivers who travel less than 2.4 miles per 

day. The optimal PHEV is a smaller 23-mile AER and covers 

58% rather than 78% of the population on PHEV34s in the base 

case. At a 10% discount rate, PHEVs are not part of the least-

cost solution, and HEV is the least cost alternative for 94% of 

population and 99% of VMT. It should be noted that the ranges 

covered by CV in these cases have lower population and VMT 

coverage than that in practice because the weighted frequencies 

in 0-4 miles are less than the ones in exponential fitting (Figure 

3). At $400/kWh li-ion pack costs, PHEVs are part of the least 

cost solution for discount rates below 7%. At a 10% nominal 

discount rate, PHEVs are part of the least cost solution for 

battery pack prices below $300/kWh. 

4. CONCLUSIONS 
We construct an optimization model to determine optimal 

vehicle design and allocation of conventional, hybrid, and plug-

in hybrid vehicles to drivers in order to minimize life cycle 

cost, petroleum consumption, and GHG emissions. 

We find that (1) minimum petroleum consumption is 

achieved by assigning large capacity PHEVs to all drivers; (2) 

minimum life cycle GHG emissions are achieved by assigning 

PHEV40s to drivers who travel less than 87 miles/day (92% of 

drivers and 74% of VMT/day) and PHEV25s to drivers who 

travel further; and (3) minimum life cycle cost is achieved in 

our base case by assigning medium-range PHEV34s to drivers 

who travel less than 51 miles/day (78% of drivers and 45% of 

VMT/day) and HEVs to drivers who travel further. Optimal 

allocation of vehicles to drivers appears to be of second-order 

importance for net social cost and GHG emissions compared to 

an overall shift from CVs to HEVs or PHEVs. Additionally, life 

cycle costs of HEVs and PHEVs are comparable, particularly 

                                                           
21 An externality cost study by the National Research Council estimated 

the range of environmental damage costs of carbon emissions as $10 to $100 
per ton-CO2-eq, with a middle estimate of $30 [37]. We examine the $10/ton 

and $100/ton cases, which also covers the 2020 carbon allowance prices of 

$20-$93/ton projected from the Waxman-Markey bill by the Department of 
Energy [38]. 
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42 miles/day

PHEV29(6.9kWh@80%)
26%VMT

PHEV41
22%VMT

HEV
52%VMT

33 miles/day 54 m/d

HEV

*solved by multi-start

PHEV23(5.3kWh@80%)
28%VMT

2 miles/day
HEV

72%VMT
CV
0.2%

35 miles/day

CV
1%VMT

HEV
99%VMT

6 miles/day
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for drivers who charge frequently, and the least-cost solution is 

sensitive to the discount rate and the price of gasoline, 

electricity, and batteries. Relative to our base case of $3.30/gal 

gasoline, $0.11/kWh electricity, $400/kWh Li-ion batteries, 

$600/kWh NiMH batteries, and 0% discount rate PHEVs are 

part of the least-cost solution for gas prices above $3.03/gal, 

electricity prices below $0.14/kWh, battery prices below 

$460/kWh or nominal discount rates below 7%. Carbon 

allowance prices have marginal impact on optimal PHEV 

design or penetration, even at $100/ton. For example, when 

driven 34 miles per day, an HEV has life cycle emissions about 

0.2 kg CO2-eq/day greater than the PHEV34. A $100/ton 

allowance price translates to a $0.02/day penalty for the HEV 

relative to the PHEV35, which is about 0.4% of the equivalent 

daily cost of each vehicle. With the current average U.S. grid 

mix the relative incentive is small, even at high allowance 

prices. Decarbonization of the electricity grid is needed for 

allowance prices to be significant in PHEV competitiveness. 

Using recent LiFePO4 battery degradation models based on 

energy-processed in place of former DOD-based degradation 

models, we find that life cycle cost, GHG emissions and 

petroleum consumption are minimized by utilizing the 

maximum battery swing (80% in our model) and offering 

drivers a corresponding longer AER. This contrasts with current 

practice of restricting swing to values near 50% to improve 

battery life. Our results suggest that with LiFePO4 cells, PHEV 

designers should optimally utilize full battery capacity and 

replace batteries as needed, rather than design unused battery 

capacity into the vehicle with the corresponding weight and 

cost implications. Allowing up to 80% swing rather than 

restricting swing to 50% reduces life cycle cost of PHEVs by 

1%, GHGs by 2% and petroleum consumption by 65% in our 

model. Because cost implications are relatively small, other 

factors, such as logistics, customer satisfaction, and incentives, 

may play a significant role in determining battery swing in 

PHEV design. Current incentives for PHEVs, such as those 

outlined in the American Recovery and Reinvestment Act [40], 

provide subsidies based on battery size, rather than usable 

battery capacity or all-electric range. This creates a disincentive 

to increase swing because achieving a particular AER with a 

larger battery pack at lower swing will earn more incentives 

than achieving the same AER with a smaller battery pack at 

higher swing. Thus, PHEV subsidies would likely be better tied 

to PHEV AER, rather than battery capacity. 

5. LIMITATIONS AND FUTURE WORK 
The proposed model contains a number of assumptions that 

should be understood in order to interpret results meaningfully. 

These assumptions fall into four major categories: decision 

scope, driver behavior, technology scope, and endogeneity. 

We examine a benevolent dictator's optimal choices of 

vehicle design and allocation to meet personal transportation 

needs in the U.S. with minimum equivalent daily cost, GHG 

emissions, or petroleum consumption. This scenario is useful 

for understanding the relationship between design / allocation 

and social objectives; however, market behavior may deviate. 

In particular, consumers may value purchase price over future 

petroleum cost savings with hyperbolic discounting, and they 

may value correlated vehicle attributes that are not considered 

here, such as convenience or interior space [41]. 

Secondly, we make several assumptions about driver 

behavior. While we account for across-driver heterogeneity in 

daily distance traveled, we lack data on within-driver variation. 

Accounting for this variation would be expected to increase 

petroleum consumption and GHG emissions from PHEVs 

slightly. Additionally, we assume each PHEV driver charges 

once per day, and we ignore the cost of charging infrastructure. 

Allowing multiple daily charges would require additional 

charging infrastructure and would give PHEVs a longer 

effective AER [42]. Finally, we use the UDDS cycle to estimate 

vehicle efficiency for all drivers, ignoring regional variation in 

driving style, terrain, weather, and grid characteristics [43-46]. 

In particular, our optimistic efficiency predictions may have 

implications for optimal battery pack sizing, and our use of 

average U.S. grid characteristics to calculate GHG emissions 

may over- or under-estimate emissions associated with 

particular regions and charge timing [46]. Future work will 

examine regional and marginal implications of PHEV charging 

time, location, and infrastructure. 

The third class of modeling assumptions involves 

technology scope. We assume a fixed Li-ion battery technology 

for PHEVs with performance models based on a Saft cell and 

degradation data from A123 cells. In practice different battery 

designs may be used for different vehicle systems [10, 47, 48], 

and we leave such assessment for future work. We assume a 

static battery technology with a base cost of $400/kWh installed 

pack cost, intended to represent an optimistic but realistic 

future scenario, particularly for thick-electrode high-energy 

batteries used for larger packs [10, 29]. Dynamics of 

technology advancement and cost reduction could have 

strategic implications for vehicle system design and allocation 

[49]. We examine only energy-processed based degradation 

mechanisms and ignore calendar (storage) degradation 

mechanisms that affect batteries when not in use. Future work 

is needed to characterize these time-based mechanisms. We also 

limit our study to all-electric PHEVs. Blended-mode PHEVs 

that make use of the gasoline engine during CD-mode offer 

additional control flexibility and the ability to design vehicles 

with smaller motors and battery packs [50]. Analysis of 

blended-mode PHEVs requires examination of the space of 

control strategy variables, and we leave this for future work. 

Finally, we treat gasoline prices and grid characteristics as 

exogenous factors. A significant shift to PHEVs may influence 

the price of gasoline, electricity, or batteries or the mix of 

electricity generation modes (because of new plant construction 

or increase in off-peak demand) [46]. We leave examination of 

these potentially endogenous relationships for future work. 
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APPENDIX 
 

Table A1. Vehicle configurations in simulation 

Module Property CV HEV PHEV 

Vehicle 

body & 

chassis 

F/R weight ratio 0.6/0.4 

Drag coefficient 0.26 

Frontal area (m2) 2.25 

Tire specs P175/65 R14 

Body mass (kg) 824 

Engine 
Power (kW) 126 57 30-60 

Mass (kg) 296 114 50-110 

Motor 
Power (kW) - 52 50-110 

Mass (kg) - 65 40-143 

Battery 
No. of cells - 168 200-1000 

Mass (kg) - 36 60-419 

Electrical 

accessory 
Power (kW) 0.8 0.8 0.8 

 Net weight (kg) 1709 1520 1497-1995 

 

Table A2. Polynomial coefficients of the PHEV performance 
meta-model 

fm3 ηE ηG tCD tCS μCD
* μCS

* uCS
* 

m 1 2 3 4 5 6 7 

am1 0.008 2.214 1.457 3.334    

am2 0.154 1.087 -5.496 -2.266    

am3 0.353 5.578 -28.46 -20.26    

am4 -0.005 -0.815 0.913 0.414    

am5 -0.005 0.510 -0.881 -3.524    

am6 -0.025 1.562 -1.050 -0.286    

am7 0.000 2.212 -0.308 -10.11    

am8 -0.057 -0.613 2.044 1.951    

am9 -0.043 0.254 15.61 10.31    

am10 -0.016 -0.159 0.336 5.808    

am11 -0.001 -8.906 -4.634 -6.932 0.010 0.466 -0.194 

am12 -0.805 -6.095 31.48 15.80 0.011 -0.008 -0.005 

am13 -0.656 -15.21 34.02 39.20 0.053 -0.018 0.047 

am14 0.057 0.089 1.153 7.901 0.000 -0.014 0.000 

am15 0.080 -3.274 1.169 6.582 0.008 -0.038 0.011 

am16 0.342 2.498 -32.06 -30.12 -0.003 0.010 -0.001 

am17 -0.191 2.622 3.405 -6.734 0.097 -0.890 0.382 

am18 1.189 9.285 -54.47 -26.39 0.038 0.077 0.019 

am19 -0.347 5.837 9.570 -4.098 0.370 0.400 -0.077 

am20 4.960 57.68 44.23 32.10 2.196 1.441 0.140 
* The terms are fit with quadratic form. 

 


