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ABSTRACT 

DESIGN DECISION MAKING FOR MARKET SYSTEMS AND 

ENVIRONMENTAL POLICY WITH VEHICLE DESIGN APPLICATIONS 

by 

Ching-Shin Shiau 

Chair: Jeremy J. Michalek 

 

The goal of design decision making is to create products to satisfy functional 

requirements and meet consumer preferences in order to succeed in the marketplace. Using only 

engineering objectives and constraints may be insufficient to fully describe product performance 

as market and social objectives are involved in design decisions. This dissertation attempts to 

address three broad questions at the interface of engineering design, market systems, and public 

policy in an effort to provide insight for designers, consumers, and policy-makers. 

The first question, “How does market competition affect product design decisions?” is 

addressed in a game-theoretic framework. Methodology is proposed to account for competitor 

price reactions to a new product entrant, and the study results indicate that ignoring competitors’ 

pricing reactions can cause profit overestimation and impede the market performance of a new 

product design. Furthermore, mathematical analysis shows that consumer preference 

heterogeneity as a critical factor coupling engineering design and strategic market planning 

under long-run design competition. 

The second question, “What are the economic and environmental implications of plug-in 

hybrid electric vehicles (PHEVs)?” is addressed through vehicle performance simulation, driver 
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behavior characterization, and life cycle assessment. The results indicate charging between 

distances matters – PHEVs with small battery packs and short electric travel distances can 

outperform ordinary hybrid vehicles and large PHEVs if drivers charge frequently. PHEV design 

and allocation for various social objectives, including minimum petroleum consumption, life 

cycle costs and greenhouse gas emissions, are analyzed using an optimization framework. The 

study suggests that alternative PHEV designs are needed for different social targets, carbon 

allowance policy may have marginal impact to PHEV design under current US grid mix, and the 

subsidy on battery capacity can be less effective than that on all-electric range because recently 

developed battery technology allows maximum energy use in the batteries. 

The third question addressed is “How does public policy affect vehicle design in a 

competitive market?” A model integrating vehicle design, oligopolistic market competition, and 

Corporative Average Fuel Economy (CAFE) regulations is presented to analyze automakers’ 

design decisions. A distinctive pattern is identified in firms’ vehicle design responses to fuel 

economy standards at market equilibrium. The results imply that automakers may fail to improve 

their vehicle fuel economy when a high CAFE standard is imposed. Through a case study of 

powertrain design incorporating the estimates of recent automotive market data and fuel-

efficiency technology options, it is shown that fuel economy design responses are more sensitive 

to gasoline prices than CAFE policy. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Design decision making is a complex task, especially when multiple stakeholders’ 

concerns are involved. Designers have to go beyond engineering focus and consider other 

disciplines to meet different stakeholders’ demand and requirements. For example, the result of 

vehicle design decisions is a combination of performance requirements, consumer preferences, 

and governmental regulations. In order to avoid suboptimal decisions and make products succeed 

in the market, integrated studies to examine the implications across design, market and policy 

domains are needed. 

The research scope of this dissertation is illustrated in Figure 1.1, where the three circles 

represent the fundamental research regions: (1) product design, (2) market systems, and (3) 

public policy. This study focuses at the interfaces of the three regions, and the goal of this study 

is to characterize the influence of market factors and governmental policy to product design 

decisions and examine the potential implications. The three textboxes connecting to the 

crossover areas I, II and III in Figure 1.1 define the primary research topics in this thesis. The 

section and chapter numbers indicate where the research questions and answers are proposed. 
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Figure 1.1 Overview of dissertation research scope 

 

Area I is the crossover between product design and market systems. Research in this 

region generally focuses how various market factors affect product profitability and design 

decisions. This research category is defined as Product Design for Market Systems (Michalek, 

2008). This dissertation concentrates on analyzing the influence of demand modeling and market 

competition to design decisions. The motivation and the corresponding research question are 

presented in Section 1.2. 

Area II is the crossover between product design and policy. The particular research topic 

defined in this dissertation is Implications of Vehicle Electrification Technology, and the goal is 

to evaluate the potential benefits of electrified vehicles and bring useful suggestions to designers 

Product 
Design

Public 
Policy

Market 
Systems

Vehicle Design Decisions for 
Market and Policy

Product Design for 
Market Systems

Implications of Vehicle
Electrification Technology

II
III

I

Q: Section 1.2
A: Chapter 2 & 3

Q: Section 1.3
A: Chapter 4 & 5

Q: Section 1.4
A: Chapter 6
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and policy makers. More specifically, this dissertation focuses on the economic and 

environmental assessment of plug-in hybrid vehicle technology. The research scope and question 

are detailed in Section 1.3. 

Area III is the crossover of design, market and policy. The specific research topic 

defined for this section is Vehicle Design Decisions for Market and Policy. Under this broad 

scope, this dissertation confines the research direction to a problem of vehicle powertrain design, 

oligopolistic competition and fuel efficiency standards, and the research statement is elaborated 

in Section 1.4. 

Research in the overlapping area between market systems and public policy can be found 

in the economic and policy literature, where the main focus is to obtain policy implications by 

conducting economic or econometric analyses, such as regression model, market simulation, etc. 

These studies usually do not have direct implications about product design, but they provide the 

useful fundamentals for connecting design, market and policy systems. 

1.2 Product Design for Market Systems 

The goal of design for market systems is to integrate social and economic science into 

product design processes and help designers make successful design decisions in the marketplace 

(Michalek, 2008). One key market aspect considered by designers in their decision making is 

consumer preference (Michalek, 2005). In the perspective of design theory and methodology, 

researchers have developed various tools, such as Quality Function Deployment (QFD) and 

Value Opportunity Analysis (VOA), to evaluate design concepts on customer requirements and 

engineering performance (Ullman, 1992; Cagan and Vogel, 2002; Dieter and Schmidt, 2008). In 

perspective of design automation, many studies to integrate quantitative demand model into 

design decision making have been conducted (Wassenaar and Chen, 2003; Luo et al., 2005; 
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Michalek et al., 2005; Wassenaar et al., 2005; Besharati et al., 2006; Lewis et al., 2006; Michalek 

et al., 2006; Williams et al., 2008; Orsborn et al., 2009). These works provide methodologies for 

designers to integrate consumer preference components into their product design decisions. 

Compared to above studies, this dissertation has an alternative focus - market competition. It is 

another crucial market factor that can affect product design, but has been limitedly discussed in 

the design community. This leads to the first research question in this thesis: 

 

How does market competition affect product design decisions? 

 

Two types of market competition, short-run and long-run competition, are distinguished 

by their definitions in economics. Table 1.1 shows the assumptions for the two competition types 

with regard to commodity and differentiated products. For commodities, firms compete on price 

or quantity because product attribute is essentially homogenous. The short-run commodity 

competition assumes that production technology is not changed in a relative short period of time, 

and marginal cost is fixed. In contrast, the long-run commodity competition accounts for firms’ 

production technology changes over a longer timeframe, and thus lower marginal costs can occur 

(Stockman, 1996). For differentiated products, they compete not only on prices but also 

characteristics (product attributes). It is known that market competition can increase the firms’ 

incentives to differentiate their product for avoiding pure price competition (Berry, 1992; 

Mazzeo, 2002). Differentiating product features through design decisions is what designers most 

concern, and therefore this study concentrates on the competition of differentiated products. 
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Table 1.1 Definitions for short- and long-run market competition 

 Commodity Differentiated Product 

Short-

Run 

No change in 

production technology 

Price Competition 

Competitors change prices only but no 

design and technology changes occur 

Long-

Run 

New production 

technology occurs 

Design and Price Competition 

Product price, design and technology 

changes occur in the market 

 

 

The distinction between short- and long-run competition of differentiated product can be 

recognized by the occurrence of design and technology changes, as shown in Table 1.1. The 

technology change here may include innovative engineering design for creating new product 

features and new production technology for unit cost reduction. Within the scope of 

differentiated product competition, three classes are further defined: (1) Class I: design with no 

market competition – competitors are assumed fixed or nonexistent; (2) Class II: design with 

short-run competition – the design attributes of competitor products are fixed, but that 

competitors will adjust prices in response to a new entrant; (3) Class III: design with long-run 

competition – this scenario represents competition over a sufficiently long time period that all 

firms in the market are able to redesign their products as well as set new prices competitively. 

The flows of design decision, market reaction, and market outcome of these three classes are 

illustrated in Figure 1.2. 
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Figure 1.2 Classifications of design problems with differentiated product competition 

 

 

While most design research in the literature belong to Class I (competition ignored), this 

study focuses on the Class II and III problems because market competition might affect product 

performance in the marketplace and thus product design decisions. In Chapter 2, an efficient 

optimization approach to solve Class II problems is proposed, and multiple case studies are 

solved using the method for demonstration. In Chapter 3, an investigation is carried out to 

examine the influence of consumer preference heterogeneity and channel structure in Class III 

design problems. 

The study results show that market competition can affect optimal product design 

decisions. Specifically, traditional optimization approaches ignoring market competition could 

result in profit overestimation and deter the market performance of the product optimized. The 

study also demonstrates that modeling consumer heterogeneity is critical in a product design 
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problem of long-run product competition – treating consumer taste variations as negligible noise 

makes design decisions disengaged from market systems. In addition to these findings, the 

solution approaches presented in the two chapters provide useful tools for designers to perform 

product design optimization with accounting for competitors’ pricing reactions in the market. 

1.3 Implications of Vehicle Electrification Technology 

Developing new vehicle technology is automobile industry’s response to consumer 

preferences (e.g. fuel economy and safety) and public concerns (e.g. foreign oil dependency and 

global warming) (MacLean and Lave, 2003). Among several potential vehicle technologies to 

address the above issues, plug-in hybrid electric vehicles (PHEVs) have been considered as a 

promisingly near-term approach to reduce lifecycle greenhouse gas (GHG) emissions and 

petroleum consumption in the U.S. transportation sector. A PHEV functions by using large 

rechargeable storage batteries that utilize electricity from the electrical grid and provide a portion 

of the propulsion energy (Romm, 2006; EPRI, 2007; Samaras and Meisterling, 2008; Bradley 

and Frank, 2009). Since approximately 60% of U.S. passenger vehicle miles are traveled by 

vehicles driving less than 30 miles per day (BTS, 2003), PHEVs may be able to displace a large 

portion of gasoline consumption with electricity. Several automobile manufacturers have 

announced plans to produce PHEVs commercially in the future, including General Motors’ 

Chevrolet Volt (Bunkley, 2008) and Toyota’s plug-in version of the Prius (Toyota, 2009). 

However, many factors may affect the potential benefits of PHEVs, such as battery technology 

(Duvall, 2004; Pesaran et al., 2007; Lemoine, 2008), source of electrical grid (Samaras and 

Meisterling, 2008; Sioshansi and Denholm, 2009), driving behaviors (Gonder et al., 2007; 

Moawad et al., 2009), etc.  These uncertainties form the second research question in this 

dissertation: 
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What are the design and policy implications of plug-in hybrid technology? 

Chapter 4 and 5 are dedicated to seek possible answers to this question. In Chapter 4, an 

analysis for the impacts of battery weight and driving distance between charges to PHEV 

performances is presented by comparing several PHEV designs to ordinary hybrid vehicles and 

conventional gasoline vehicles. The study in Chapter 5 takes a step further by posing a PHEV 

design optimization model with accounting for U.S. drivers’ daily driving patterns and battery 

degradation. The investigation results show that PHEVs have implications in reducing petroleum 

consumption, life cycle cost and GHG emissions if PHEV designs are optimized to the 

corresponding social objectives, while the effect of allocating vehicles to the right drivers with 

various daily driving distances becomes secondary. Specifically, PHEVs with small to medium 

battery capacity can have lower average life cycle cost than conventional gasoline vehicles and 

ordinary hybrid vehicles (e.g. Toyota Prius) if drivers charge their plug-in vehicles frequently. A 

series of sensitivity analyses show that the economic performances of PHEVs are directly 

affected by battery cost, fuel price and electricity price. Imposing high carbon allowance price 

would not improve the cost competency of PHEVs unless the regional grid mix has large portion 

of renewable (low carbon intensity) energy source. Another important finding is that new lithium 

ion battery technology allows vehicle designers to maximize usable energy in the battery pack 

without shortening the battery life significantly; limiting usable energy window in the battery 

design may cause suboptimal design and hinder the expected benefits of PHEVs. 

1.4 Vehicle Design Decisions for Market and Policy 

Governmental policy and regulations are initiated to address public concerns. While 

designers often concentrate on product performance and profitability during product design, 
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design decisions do have policy implications (Michalek et al., 2004). For example, U.S. 

automakers’ vehicle designs are affected by safety requirements (NHTSA, 2006), emission 

standards (EPA, 2007), and fuel economy regulations (EPA, 2007). Regulatory factors may enter 

design problems in the form of additional constraints, penalty costs or new objectives. When 

product design is under the influences of both market factors and governmental regulations, the 

implications in design decisions ought to be examined by integrated study of design, market and 

policy. 

Particularly, this dissertation study focuses on the interaction between vehicle designs 

and fuel efficiency standards. This direction is motivated by the recent changes in the Corporate 

Average Fuel Economy (CAFE) standards (NHTSA, 2006) due to the requirements in the 

Energy Independence and Security Act (EISA) (US Congress, 2007). The CAFE regulations 

state that automobile manufacturers are required to maintain a fleet average fuel economy above 

a specified standard set for a vehicle fleet, i.e. passenger car or light truck. If the criterion is not 

followed, manufacturers would be penalized based on the total fleet sales and the mpg (miles per 

gallon) falling behind the standard. Recently, higher fuel efficiency standards have been 

proposed separately by the U.S. federal agency (NHTSA, 2009), California state government 

(CARB, 2004) and European Union (European Parliament, 2008). All these policies have shown 

a trend on increasing fuel economy standards. This leads to third research question in this 

dissertation: 

 

How does CAFE policy affect vehicle design decisions in a competitive market? 
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Chapter 6 is dedicated to answer this question by conducting a structural analysis for 

observing the vehicle design changes as different levels of CAFE standards are imposed. The 

impacts of fuel economy standard, inflated CAFE penalty, and gasoline price are tested in a case 

study of automaker vehicle design, which comprises of vehicle simulation, fuel-saving 

technology and recent automotive demand estimates. The study results show that automakers’ 

vehicle design decisions for profit maximization under generic demand model and various levels 

of CAFE standards follow a unique pattern: Vehicle design responses do not always bind with 

CAFE regulations; vehicle designs become disengaged when the fuel efficiency threshold is too 

low or high. The results also show that CAFE penalty parameter (per vehicle per mpg violated) 

plays a distinct role in affecting firm’s design decisions; i.e. when automakers fail to response to 

high CAFE standards, increasing penalty may be an alternative tool to improve fleet fuel 

economy. The sensitivity analysis on gasoline price variation indicates that firms’ vehicle 

designs are more sensitive to fuel cost than CAFE standards. 

 

While the research path of this dissertation study does not necessarily follow the 

sequence of above topics, the center is always product design decision making. The purpose of 

this dissertation research is not to create a do-it-all model to solve all problems, but to understand 

their fundamental structure, to pose practical solution strategies, and to perform case studies for 

reaching useful implications. 
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CHAPTER 2. PRODUCT DESIGN FOR PRICE COMPETITION 

This chapter focuses on product design for price competition – the Class II problem 

described in Section 1.2. Prior approaches in the literature have ignored competitor reactions to a 

new product entrant. Under a game-theoretic framework, this chapter proposes an optimization 

framework for finding optimal product design solutions on competitors’ pricing reactions in the 

market. The approach is tested with three product design case studies from the marketing and 

engineering design literature. The results show that new product design under Stackelberg and 

Nash equilibrium cases are superior to ignoring competitor reactions. The solution outcome 

implies that a product that would perform well in current market may perform poorly in the 

market that the new product will create. The efficiency, convergence stability, and ease of 

implementation of the proposed approach enables practical implementation for new product 

design problems in competitive market systems. The content in this chapter is based on the 

publication by Shiau and Michalek (2009). 

2.1 Literature Review 

Table 2.1 lists prior studies for price competition in product design and distinguishes 

them by solution approach, demand model type, equilibrium type, case studies, and presence of 

design constraints. The solution approach is the method used for finding the design solution 

under price competition. The demand model type specifies the market demand function 

formulation. Equilibrium type distinguishes Nash and Stackelberg models (Fudenberg and Tirole, 

1991): Nash equilibrium refers to a point at which no firm can achieve higher profit by 
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unilaterally selecting any decision other than the equilibrium decision. The Stackelberg case, also 

known as the leader-follower model, assumes that the leader is able to predict the responses of 

followers, in contrast with the Nash model, which assumes that each firm only observes 

competitor responses. The Stackelberg case is appropriate for cases where one player is able to 

“move first,” and the introduction of a new product entrant is a case where the firm could exploit 

this first-move advantage. The penultimate column in Table 2.1 identifies whether the model 

incorporates design constraints representative of tradeoffs typically present in engineering design.  

 

Table 2.1 Literature on new product design optimization under price competition 

Literature Solution approach 
Price 

equilibrium 

Demand 

model 

Design 

constraints 
Case study 

Choi et al. 

(1990) 

Iterative variational 

inequality algorithm 
Stackelberg 

Ideal point 

logit 
Yes Pain reliever 

Horsky and Nelson 

(1992) 

Discrete selection  

from FOC solutions 
Nash Logit No Automobile 

Rhim and Cooper 

(2005) 

Two-stage genetic 

algorithm 
Nash 

Ideal point 

logit 
No Liquid detergents 

Lou et al.  

(2007) 

Discrete selection and 

iterative optimization 
Nash 

HB* mixed 

logit 
No Angle grinder 

This study 
One-step NLP/MINLP 

with Lagrangian FOC 

Nash/ 

Stackelberg 

Logit and 

latent class 

models 

Yes 

Pain reliever 

Weight scale 

Power grinder 

*HB: Hierarchical Bayes 

 

Choi et al. (1990) (henceforth CDH) proposed an algorithm for solving the new product 

design problem under price competition while treating the new product entrant as Stackelberg 

leader. They tested the method on a pain reliever example with ingredient levels as decision 

variables and an ideal point logit demand model with linear price utility. The study applied the 

variational inequality relaxation algorithm (Harker, 1984) to solve the follower Nash price 
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equilibria. In Section 2.3, we use CDH’s problem as a case study and show that the method can 

have convergence difficulties, and as a result the Stackelberg solution found by their algorithm 

was not fully converged. 

In contrast to the continuous decision variables used by CDH, other prior approaches 

restrict attention to discrete decision variables that reflect product attributes observed by 

consumers, as opposed to design variables controlled by designers under technical tradeoffs. We 

refer to the focus on product attributes as product positioning, in contrast to product design. 

These prior product positioning problems assume that all combinations of discrete variables are 

feasible, thus no additional constraint functions are considered. Horsky and Nelson (1992) used 

historic automobile market data to construct a logit demand model and cost function using four 

product attribute decision variables. With five levels for each of their four variables, they applied 

exhaustive enumeration to solve for equilibrium prices of all 625 possible new product entrant 

combinations using first-order condition (FOC) equations. Rhim and Cooper (2005) used a two-

stage method incorporating genetic algorithms and FOCs to find Nash solutions for new product 

positioning problems. The model allows multiple new product entries to target different user 

market segments. The product in the study is liquid detergent with two attributes. Lou et al. 

(2007) conducted a study for optimal new product positioning of a handheld angle grinder under 

Nash price competition in a manufacturer-retailer channel structure . There are six product 

attributes with various levels in the problem, resulting in 72 possible combinations. Similar to the 

study by Horsky and Nelson (1992), they used a discrete selection method, but the design 

candidates were pre-screened to a smaller number in order to avoid full exhaustive enumeration, 

and the profits of a few final candidates at Nash price equilibrium were calculated through a 

sequential iterative optimization approach. Prior approaches to product design and positioning 
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under price competition suffer from inefficient computation and convergence issues due to 

iterative strategies to identify equilibria and combinatorial limitations of discrete attribute models.  

We propose an alternative approach to find optimal design and equilibrium competition 

solutions without iterative optimization of each firm. Our approach poses a nonlinear 

programming (NLP) or mixed-integer nonlinear programming (MINLP) formulation for new 

product profit maximization with respect to prices and design variables subject to first-order 

necessary conditions for the Nash price equilibrium of competitors. We examine three case 

studies from the literature and show that accounting for competitor price competition can result 

in different optimal design decisions than those determined under the assumption that 

competitors will remain fixed. The approach is well-suited to engineering design optimization 

problems, requiring little additional complexity and offering greater efficiency and convergence 

stability than prior methods, particularly for the highly-constrained problems in engineering 

design.  

The remainder of this chapter is organized as follows: In Section 2.2, we explain the 

detailed formulation of the proposed approach with Nash and Stackelberg competition models, 

and we introduce a modified Lagrangian formulation to accommodate cases with variable 

bounds. In Section 2.3, we demonstrate the proposed approach by solving three product design 

examples from the literature, and we conclude in Section 2.4. 

2.2 Proposed Methodology 

For a new product design problem under short-run competition, there are three sets of 

decision variables to be determined – new product design variables, new product price, and 

prices of competitor products. In the following sections, we describe the proposed product design 

optimization models under Nash and Stackelberg strategies incorporating the FOC equation for 
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unconstrained prices. We then examine the special cases where prices are constrained and 

develop a Lagrangian extension for this case (the basic concept of the Lagrangian FOC method 

is described in Appendix A). The major assumptions for the proposed approaches are: (1) Focal 

firm will design a set of differentiated products that will enter a market with existing products 

sold by competitors; (2) competitors are Nash price setters for profit maximization with fixed 

products; (3) competitor product attributes and costs are known; and (4) price is continuous, and 

each firm’s profit function is differentiable with respect to its corresponding price. 

2.2.1 Profit Maximization under the Nash Model 

The necessary condition for unconstrained Nash price equilibrium can be expressed using 

FOC ∂Πk/∂pj = 0 for product j produced by firm k (Friedman, 1986). For short-run Nash 

competition, new product design variables, new product price, and competitors’ prices follow the 

Nash framework, which forms three sets of simultaneous equations. If there are no additional 

constraints on design variables and prices, the formulation is given by:  
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(2.1) 

where Πk is the net profit of all new products Jk from firm k and Πk’ is the net profit sum of the 

products of firm k’. Each new product j has design vector xj, attribute vector zj (as a function of 

the design zj=fZ(xj)), price pj, unit cost cj (as a function of the design and product volume 
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cj=fC(xj,qj)), predicted market share sj (as a function of the attributes and prices of all products 

sj=fS(pj,zj,pĵ,zĵ ĵ≠j)) and predicted demand qj. The total size of the market is Q. Each competitor 

kK\k has price decisions pj with fixed design attributes zj for all its products jJk. In the 

simultaneous equation set, the ∂Πk/∂xj and ∂Πk/∂pj represent the FOCs of the Nash design and 

price decisions of the new product, and ∂Πk’/∂pj’ is the FOC for the price decisions of competitor 

products. 

While Eq. (2.1) presents the fundamental structure of Nash equation set, it does not 

account for design constraints and price bounds. Constraints on design variables are typical in 

engineering design problems. Bounds on price may be imposed by manufacturer, retailer, 

consumer, or government policies, and they may also be used to indicate model domain bounds. 

To account for these cases, we propose a generalized formulation incorporating Lagrange 

multipliers into Eq. (2.1) and present it in an NLP form: 
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In above formulation, λ, μ, and μ̄ are the Lagrange multiplier vectors for the design equality 

constants h, design inequality constraints g, and price bounds ḡ, respectively. Eq. (2.2) 

determines the profit-maximizing new product design xj and price pj that are in Nash equilibrium 

with competitor prices pj, jJk, kK\k. The objective function
1
 is the total profit Πk of firm 

k. The equality and inequality constraints, h(xj) and g(xj), define the feasible domain of the 

engineering design, and the inequality constraint g(pj) accounts for the price bounds. The FOCs 

of Lagrangian equations with additional inequality constraints represent the Karush-Kuhn-

Tucker (KKT) necessary condition of Nash equilibrium for regular points (Bazaraa and Shetty, 

1979). Such formulation has been known as mathematical programs with equilibrium constraints 

(MPECs)  (Lou et al., 1996). Since MPECs do not satisfy constraint qualifications, it can induce 

numerical instability in convergence (Ye et al., 1997; Scheel and Scholtes, 2000). For resolving 

the issue, various algorithms and reformulation approaches have been proposed (Lou et al., 1996; 

Anitescu, 2000; Ralph and Wright, 2004). In this study, we follow a regularization scheme 

presented by Ralph and Wright (2004) and introduce a positive relaxation parameter t into the 

KKT complementary slackness conditions. The regularized NLP formulation can avoid the 

constraint qualification failures of MPECs and result in strong stationarity and second-order 

sufficient condition near a local solution of the MPEC (Ralph and Wright, 2004). The 

competitors’ prices obtained from Eq. (2.2) are solutions based on necessary conditions. If the 

                                                 
1
 Note that the objective function of the NLP form is not needed to identify points that satisfy Nash necessary 

conditions; however, in practice including the objective of producer k can help to also enforce (local) sufficiency 

conditions for producer k. Sufficiency for competitors must be determined post hoc (Appendix A).  
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profit function is non-concave, the solutions need to be tested with Nash definition (Eq. (A.1) in 

Appendix A) verifying sufficient conditions: We take the FOC solution and optimize each 

individual firm’s profit with respect to its own pricing decisions while holding other firms’ 

decisions fixed. If no higher profit is found throughout the test, the price solutions are Nash 

prices. 

2.2.2 Profit Maximization under the Stackelberg Model 

For the proposed Stackelberg competition model, it is assumed that the new product 

enters the market as a leader, while other competitors react as followers. Followers observe 

others’ price decisions, including the new product price, as exogenous variables and compete 

with one another to reach a Nash price equilibrium. The new product leader is able to predict its 

followers’ Nash price settings within its optimization, giving it an advantage. The formulation 

using a Stackelberg model can be expressed in the following NLP from: 
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Nash sufficiency conditions for followers must be verified post hoc as before. Comparing Eq. 

(2.3) to Eq. (2.2), the Stackelberg case relaxes the constraint requiring the focal firm to be in 

Nash equilibrium. Stated as a relaxation, it is clear that the focal firm’s profit will be at least as 

large under the Stackelberg as under the Nash model.
2
 

Compared to the solution approaches in literature, the proposed methods have significant 

advantages in several aspects. First, the approach is able to solve the problem in a single step if a 

unique design solution with price equilibrium exists.
3
 Second, since the approaches employ FOC 

equations to find equilibrium prices, the convergence of the whole formulation is faster and more 

stable than prior approaches that use iteration loops. Third, the formulations can be solved using 

commercially-available NLP solvers with minimum additional programming effort. When 

discrete design variables exist, the NLP model becomes a MINLP problem. However, the price 

equilibrium constraints remain in the continuous domain, and MINLP solvers can be used to 

solve Eq. (2.3) (Viswanathan and Grossmann, 1990; Tawarmalani and Sahinidis, 2004; Bonami 

et al., 2008). MPEC problems with discrete-constraints have been studied in the literature (Labbe 

et al., 1998; de la Torre et al., 2007; Scaparra and Church, 2008), but we do not pursue them here. 

2.2.3 Evaluation 

In order to compare profitability of the new product design arrived at under different 

modeling assumptions, we define three profit terms: 

(1) Model-estimated profit: Profit of the design and price solution to a particular game 

model, i.e. fixed, Nash or Stackelberg, as estimated by that model. 

                                                 
2
 CDH (1990) used a duopoly game to prove that a Stackelberg leader strategy can always receive at least as 

high a payoff as a Nash strategy if a Stackelberg equilibrium exists. 
3
 For the cases of multiple local optima and price equilibria, multi-start can be implemented to identify 

solutions. 



20 

 

(2) Competitor-reacted profit: Profit of the design and price solution to a particular game 

model via post-hoc computation of competitor price equilibrium. The profit 

represents the market performance of a particular design and pricing solution if 

competitors adjust prices in response to the new entrant. Competitor-reacted profit is 

equal to model-estimated profit for the new product using Nash and Stackelberg 

strategies, but if the new entrant is optimized while assuming fixed competitors, the 

difference between model-estimated and competitor-reacted profit measures the 

impact of ignoring competitor’s price adjusting reactions. 

(3) Price-equilibrium profit: Profit of the design solution as estimated via post-hoc 

computation of price equilibrium of all firms (including the new entrant). The 

equilibrium profit represents the profit that a particular design solution would realize 

if all firms adjust prices in response to the new entrant and reach a market equilibrium. 

Equilibrium profit is equal to model-estimated profit for the new product design using 

Nash and Stackelberg strategies, but if the new entrant is optimized while assuming 

fixed competitors, the difference between model-estimated and price-equilibrium 

profit measures the impact of ignoring competitors’ price reactions on the design of 

the product, assuming that poor pricing choices can be corrected in the marketplace 

after product launch. 

2.3 Case Studies 

We examine three product design case studies from the literature to test the proposed 

approach and examine the improvement that Stackelberg and Nash strategies can make with 

respect to the methods that ignore competitive reactions. Each case study involves different 

product characteristics, utility functions, demand models, variable types, and design constraints. 
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For each case, we solve the problem using the traditional fixed competitor assumption and 

compare to Nash and Stackelberg competition approaches. We also compare the computational 

efficiency and convergence of the proposed methods with the relaxation methods. 

2.3.1 Case study 1: Pain Reliever 

The pain reliever problem was introduced by CDH (Choi et al., 1990): Price and product 

attributes of a new pain reliever product are to be determined for maximizing profit in the 

presence of fourteen existing competitor products in the market. This new product design case 

study is a product positioning problem, and thus the attributes of a product are identical to its 

design decision variables (z=x). Each product has four attributes of pharmaceutical ingredient 

weight (unit in mg), including aspirin z1, aspirin substitute z2, caffeine z3 and additional 

ingredients z4. The product specifications
4
 and initial prices of competitor products are listed in 

Table 2.2. There are two highlights in CDH’s model. First, the product H is assumed a generic 

brand, which has a fixed price of $1.99. The generic brand does not participate in the price 

competition. Second, there are five products, A, C, I, K and L, with identical product attributes 

and costs. 

The demand model is an ideal point model with observable utility v, given by: 

 
2

1

N

ij i nj in i j i

n

v z p b i j  


 
      

 
 ,  (2.4) 

  

                                                 
4
 The values of aspirin substitute are the weighted combination of acetaminophen and ibuprofen. The numbers 

are not provided in CDH’s paper (Choi et al., 1990). We obtained the attribute data from the mixed complementarity 

programming library (MCPLIB) (Dirkse and Ferris, 1995) and verified with original author. The data of consumer 

preference weightings (30 individuals) are also included in that library. 
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Table 2.2 Specifications of existing pain reliever products in the market 

 
Aspirin 

(mg) 

Aspirin 

sub.  (mg) 

Caffeine  

(mg) 

Additional 

ingredients (mg) 

Cost 

($) 

Initial price 

($) 

Product z1 z2 z3 z4 c p 

A 0 500 0 0 $4.00 $6.99 

B 400 0 32 0 $1.33 $3.97 

C 0 500 0 0 $4.00 $5.29 

D 325 0 0 150 $1.28 $3.29 

E 325 0 0 0 $0.98 $2.69 

F 324 0 0 100 $1.17 $3.89 

G 421 0 32 75 $1.54 $5.31 

H 500 0 0 100 $1.70 $1.99 

I 0 500 0 0 $4.00 $5.75 

J 250 250 65 0 $3.01 $4.99 

K 0 500 0 0 $4.00 $7.59 

L 0 500 0 0 $4.00 $4.99 

M 0 325 0 0 $2.60 $3.69 

N 227 194 0 75 $2.38 $4.99 

Cost  0.3 0.8 0.4 0.2 cost unit: $/100mg 

 

where znj is the value of product attribute n on product j, θin is consumer i’s desired value for 

attribute n, i is consumer i’s sensitivity of utility to deviation from the ideal point, ̄i is 

consumer i’s sensitivity of utility to price, and bi is a constant utility term estimated from 

consumer i. In this model, product attributes that deviate from ideal attributes cause reduced 

utility, which is less preferred by consumers. Under the standard assumption that utility uij is 

partly observable vij and partly unobservable ij so that uij=vij+ij, and that the unobservable term 

ij is an independent and identically-distributed (IID) random variable with a  standard Gumbel 

distribution (Train, 2003), the resulting choice probability is defined in logit form with an outside 

good of utility vi0=0: 
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The weighting coefficient  is arbitrarily given by =3, given by CDH. The profit function is: 
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In this problem, the market demand and profit are based on a simulated market size of 30 

consumers. The FOC equation for the price is (detailed derivation in Appendix B.1): 
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Two constraint functions on the new product design are given by the ingredient weight 

limitations (Choi et al., 1990): 
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By applying the above equations into the Nash and Stackelberg formulations (Eq. (2.2) 

and Eq. (2.3)), the model was solved using the sequential quadratic programming (SQP) NLP 

solver in the Matlab Optimization Toolbox. The solutions to the pain reliever problem with fixed 

competitors, Nash, and Stackelberg strategies are presented in Table 2.3, with CDH’s 

Stackelberg solution shown in the last column. Several interesting observations are found from 

the results. First, the fixed-competitor solution has overestimated profit and market share 

predictions by presuming that competitors will not act. As shown in Figure 2.1, when 

competitors are allowed to react by altering prices under Nash competition, the competitor-

reacted profit shows a significant profit reduction from estimated. Second, the competitor-

reacted profit and price-equilibrium profit are nearly identical (to significant digits). The 

equilibrium profit from the fixed competitor case is lower than the Nash and Stackelberg cases, 

implying that the attribute decisions determined by assuming fixed competitors are suboptimal, 

even if the new entrant’s price is adjusted optimally in response to market competition. Third, we 

found the solution under the Stackelberg model has a different design and price point, resulting 
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in slightly higher profit than the Nash solutions
5
, which supports the claim that Stackelberg is a 

better approach when promoting new product development (Choi et al., 1990). Fourth, we found 

that CDH’s Stackelberg solution is not fully converged since the Nash sufficient-condition test 

(Eq. (A.1)) shows that the competitors (followers) are able to find alternative price decisions that 

result in higher profits. In other words, the follower prices do not reach a Nash equilibrium in 

their solutions and fail the Nash best response definition. Moreover, the competitor-reacted profit 

has a significant gap from CDH’s model-estimated profit, which again shows the solution is not 

a stable equilibrium. The fixed-competitor strategy has the worst performance when market 

competition is present, while Stackelberg leads to a higher profit than Nash, and the competitor-

reacted profit upon CDH’s solution does not  reach the true Stackelberg equilibrium due to 

incomplete convergence. As a result, CDH’s suboptimal Stackelberg design solutions 

overestimate the profit and have a lower equilibrium profit than the true Stackelberg profit 

solved by our proposed method.
6
 Overall, the proposed methods using Nash and Stackelberg 

strategies result in an equilibrium profit 1.2% and 1.5% higher than the fixed competitor case, 

respectively, and prevent the suboptimal design decisions. 

 

                                                 
5
 CDH (Choi et al., 1990) compared their Stackelberg solution to the optimal new product solution with 

competitors fixed at Nash prices (suboptimal solution) and concluded Stackelberg resulted in higher profit. 

However, the comparison for the two strategies should base on fully converged equilibrium solutions. 
6
 We use multi-start to search for all stationary points in the feasible domain and perform post hoc Nash best 

response verification (Eq. (A.1)). We found only one unique Stackelberg solution. 
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Table 2.3 New product design and pricing equilibrium solutions for the pain reliever problem 

  Fixed competitor Nash Stackelberg CDH solution 

New 

product design 

and price 

x1= z1 124.0 102.7 101.5 102.1 

x2= z2 201.0 222.3 223.5 222.9 

x3= z3 0 0 0 0 

x4= z4 0 0 0 0 

Price $3.74 $3.85 $3.74 $3.77 

Cost $1.98 $2.09 $2.09 $2.38 

Strategy-estimated profit $8.60 (16.3%) $7.78 (14.7%) $7.80 (15.7%) $8.16 (16.1%) 

Competitor-reacted profit $7.68 (14.5%) $7.78 (14.7%) $7.80 (15.7%) $7.80 (15.5%) 

Price-equilibrium profit $7.68 (14.5%) $7.78 (14.7%) $7.80 (15.7%) $7.80 (15.7%) 

Price, market share%, 

profit of competitors at 

 price equilibrium 

A $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34 

B $2.26, 6.15%, $1.71 $2.26, 6.18%, $1.73 $2.26, 6.16%, $1.72 $2.26, 6.16%, $1.72 

C $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34 

D $2.27, 7.73%, $2.31 $2.28, 7.78%, $2.34 $2.28, 7.73%, $2.32 $2.28, 7.73%, $2.32 

E $1.97, 11.4%, $3.39 $1.97, 11.5%, $3.42 $1.97, 11.3%, $3.39 $1.97, 11.3%, $3.39 

F $2.18, 9.10%, $2.75 $2.18, 9.16%, $2.78 $2.19, 9.08%, $2.76 $2.19, 9.08%, $2.76 

G $2.47, 4.60%, $1.28 $2.47, 4.63%, $1.29 $2.47, 4.62%, $1.29 $2.47, 4.62%, $1.29 

H $1.99, 7.52%, $0.65 $1.99, 7.57%, $0.66 $1.99, 7.56%, $0.66 $1.99, 7.56%, $0.66 

I $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34 

J $4.76, 3.37%, $1.77 $4.76, 3.36%, $1.76 $4.77, 3.29%, $1.74 $4.77, 3.29%, $1.74 

K $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34 

L $6.25, 3.55%, $2.39 $6.27, 3.45%, $2.35 $6.29, 3.41%, $2.34 $6.29, 3.41%, $2.34 

M $4.29, 11.4%, $5.80 $4.26, 11.5%, $5.70 $4.26, 11.2%, $5.59 $4.27, 11.2%, $5.60 

N $3.90, 6.36%, $2.90 $3.93, 6.33%, $2.93 $3.95, 6.11%, $2.88 $3.95, 6.11%, $2.88 
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Figure 2.1 Comparison of four strategies for the pain reliever problem 

 

We further compare the computational time and solution error of the proposed method 

with two other approaches, the relaxation parallel method (the CDH method) (Harker, 1984; 

Choi et al., 1990; Nagurney, 1993) and the relaxation serial method (sequential iterative 

optimization method) (Nagurney, 1993; Michalek et al., 2004). We use infinity norm: δ=|Z
*
-Z|∞ 

to define solution error, where Z
*
 is the target solution vector, including prices and new product 

design attributes, and Z is the solution vector found by each algorithm.
7
 The benchmarking 

results are shown in Figure 2.2.
8
 For the Nash case, while the two relaxation methods have 

difficulty to reach a solution with error less than 10
-6

, the proposed approach is able to find more 

accurate solutions with relatively shorter computational time. For the Stackelberg case, the 

proposed formulation shows a surpassing performance on both computational time and solution 

error. 

 

                                                 
7
 The elements in the Z

*
 and Z vectors are dimensionless and normalized to upper and lower bounds of each 

variable. Z
*
 is obtained by using the proposed method with a convergence tolerance 10

-16
. 

8
 The computer system setup comprises of OS: Windows XP; CPU: Intel Core2 2.83Hz; RAM: 2.0 Gbyte; and 

solver: active-set SQP algorithm in Matlab R2008a.  
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Figure 2.2 Computational time versus solution error for the painkiller problem (a) Nash case; (b) 

Stackelberg case 

 

2.3.2 Case study 2: Weight Scale 

The weight scale case study was introduced by Michalek and co-workers (Michalek et al., 

2005; 2006). Compared to the first case study, this model has more complicated engineering 

design constraints and product attributes with a higher-order nonlinear equations. There are 14 

design variables x1-x14, 13 fixed design parameters y1-y13, where the detailed definitions are listed 

in Table 2.4. The five product attributes z1-z5 and engineering constraint functions g1-g8 are 

shown in Table 2.5 as functions of the design variables. Table 2.6 presents the part-worth utility 

of the latent class model presented in (Michalek, 2005). There are 7 market segments, where the 

no-choice utility in each segment is fixed at zero during estimation.  
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Table 2.4 Design variables, parameters and constraint functions in the weight scale problem 

 Description Unit 
Upper/lower 

bounds 

x1 Length from base to force on long lever in. [0.125, 36] 

x2 Length from force to spring on long lever in. [0.125, 36] 

x3 Length from base to force on short lever in. [0.125, 24] 

x4 Length from force to joint on short lever in. [0.125, 24] 

x5 Length from force to joint on long lever in. [0.125, 36] 

x6 Spring constant lb/in [1, 200] 

x7 Distance from base edge to spring in. [0.5, 12] 

x8 Length of rack in. [1, 36] 

x9 Pitch diameter of pinion in. [0.25, 24] 

x10 Length of pivot horizontal arm in. [0.5, 1.9] 

x11 Length of pivot vertical arm in. [0.5, 1.9] 

x12 Dial diameter in. [9, 13] 

x13 Cover length in. [9, 13] 

x14 Cover width in. [9, 13] 

y1 Gap between base and cover in. 0.30 

y2 Min. distance between spring and base in. 0.50 

y3 Internal thickness of scale in. 1.90 

y4 Minimum pinion pitch diameter in. 0.25 

y5 Length of window in. 3.0 

y6 Width of window in. 2.0 

y7 Distance from top of cover to window in. 1.13 

y8 Number of lbs measured per tick mark lb 1.0 

y9 Horizontal dist. spring to pivot in. 1.10 

y10 Length of tick mark plus gap to number in. 0.31 

y11 Number of lbs that number spans lb 16 

y12 Aspect ratio of number (length/width) - 1.29 

y13 Min. allow lever dist. base to centerline in. 4.0 

 

 

Table 2.5 Attribute and constraint functions in the weight scale problem 

Design attribute functions Engineering design constraint functions 

  

    
6 9 10 1 2 3 4

1

11 1 3 4 3 1 5

4 x x x x x x x
z

x x x x x x x

  


  
 

 1 12 14 1
2 0g x x y  :  

 2 12 13 1 7 9
2 0g x x y x y    :  

1

2 13 14z x x     3 4 5 13 1
2 0g x x x y   :  

3 13 14z x x
 4 5 2

0g x x :  

1

4 12 1z x z    5 7 9 11 8 13 1
2 0g x y x x x y     :  

   

  

1

11 1 12 10

5 1 1

12 11 1

2 tan 0.5

1 2 tan

y z x y
z

y y z







 





 

   6 13 1 12 7 7 9 10 8
2 0 5 0g x y x y x y x x       : .  

     
2 2 2

7 1 2 13 1 7 14 1
2 0 25 2 0g x x x y x x y      : .  

    
2 22

8 13 1 7 13 1 2
2 0g x y x y x x     :  

  



29 

 

Table 2.6 Part-worths in the latent class model of the weight scale problem 

  Market Segment 

Attribute Level 1 2 3 4 5 6 7 

Weight Capacity 

z1 (lb) 

200 -1.34 -0.60 -0.38 -0.34 -0.92 -0.70 -1.19 

250 -0.36 -0.11 0.03 0.34 0.50 0.02 0.55 

300 0.06 0.21 0.08 0.70 0.37 0.04 0.34 

350 -0.21 0.05 -0.14 0.70 0.57 -0.09 -0.20 

400 -0.13 -0.15 0.20 0.51 0.55 -0.12 -0.19 

Aspect Ratio 

z2 

0.75 -0.79 0.20 -0.04 0.44 0.10 -0.18 -1.40 

0.88 0.07 0.70 0.15 0.50 0.32 0.23 -0.62 

1 0.38 0.79 0.20 0.55 0.51 0.29 -0.02 

1.14 -0.09 -0.07 0.12 0.54 0.16 -0.10 0.57 

1.33 -1.34 -1.73 -0.56 -0.08 0.09 -0.89 0.39 

Platform Area 

z3 (in.
2
) 

100 0.01 -0.45 0.19 0.36 0.17 0.45 -0.45 

110 -0.04 -0.21 -0.02 0.28 0.09 0.10 -0.49 

120 -0.41 -0.03 0.00 0.50 0.05 -0.05 -0.01 

130 -0.68 0.10 -0.12 0.46 0.30 -0.48 0.00 

140 -0.86 0.00 -0.27 0.31 0.45 -0.87 0.25 

Gap size 

z4 (in.) 

2/32 -1.56 -0.55 -3.49 0.18 0.32 -0.39 -0.06 

3/32 -0.89 -0.21 -0.65 0.39 0.28 -0.15 -0.08 

4/32 -0.07 0.22 0.92 0.66 0.22 0.15 -0.13 

5/32 0.18 -0.02 1.48 0.49 0.00 -0.13 -0.28 

6/32 0.37 -0.03 1.56 0.20 0.23 -0.33 -0.14 

Number size 

z5 (in.) 

0.75 -0.96 -1.20 -0.73 -0.35 -0.40 -1.24 -1.13 

1 -0.44 -0.51 -0.18 0.15 0.17 -0.72 -0.26 

1.25 0.12 0.34 0.25 0.58 0.22 0.17 0.07 

1.5 -0.30 0.32 0.21 0.72 0.60 0.48 0.17 

1.75 -0.39 0.47 0.24 0.81 0.48 0.46 0.46 

Price 

p 

$10 0.47 0.13 0.43 0.70 3.19 1.64 0.24 

$15 -0.08 0.13 0.41 0.64 1.92 1.28 0.19 

$20 -0.22 0.02 0.03 0.52 0.40 0.36 0.03 

$25 -0.79 -0.02 -0.29 0.25 -1.48 -1.12 -0.34 

$30 -1.35 -0.86 -0.79 -0.20 -2.97 -3.02 -0.81 

Outside good 0 0 0 0 0 0 0 

Segment size 7.1% 19.2% 14.2% 19.8% 13.6% 15.8% 10.3% 

 

 

The discrete part-worths are interpolated by using fourth-order polynomials, and the 

utility is expressed as a continuous function ψ. Thus the observable utility of product j in market 

segment m is given by: 
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   (2.9) 
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where ψ̄mj is the price utility polynomial and ψmnj is utility polynomial for attribute n for product j 

in segment m. The logit choice probability of product j in segment m is: 
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with outside good utility vm0=0. The profit function of product j is given by:  

  F

1

M

j m mj j j

m

Q s p c c j


      (2.11) 

The segment market size Qm is calculated by multiplying the total market size, 5×10
6
 units, by 

the corresponding market size ratio listed in bottom row of Table 2.6. The unit cost cj is $3.00, 

and the fixed investment cost c
F
 is one million dollars (Michalek et al., 2005). The FOC equation 

for Nash price equilibrium under the latent class model is (detailed derivations in Appendix B.2): 
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  (2.12) 

 

Table 2.7 shows the specifications of four competing products, C1, R2, S3 and T4, in the 

market, where each product has a unique combination of product characteristics. We used 

Matlab SQP active-set solver with multistart and found multiple solutions that satisfy FOCs. 

After verifying post-hoc with the Nash definition (Eq. (A.1)), the unique market equilibrium was 

identified. The optimal price and attribute solutions under the fixed competitors, Nash, and 

Stackelberg cases are shown in Table 2.8. The fixed competitor case produces a distinct design 

solution from the other two, while Nash and Stackelberg cases have similar design attributes but 

significantly different price decisions. The design variables vary arbitrarily within the space of 

feasible designs that produce optimal attributes in this model. The design variables vary 

arbitrarily within the space of feasible designs that produce optimal attributes in this model. 



 

3
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Table 2.7 Specifications of weight scale competitors  

Product 
Weight 

capacity z1 

Aspect 

 ratio z2 

Platform 

area z3 

Gap  

size z4 

Number 

size z5 

Price 

p 

C1 350 1.02 120 0.188 1.40 $29.99 

R2 250 0.86 105 0.094 1.25 $19.99 

S3 280 0.89 136 0.156 1.70 $25.95 

T4 320 1.06 115 0.125 1.15 $22.95 

 

 

Table 2.8 New product design solutions for the weight scale problem 

  Fixed competitor Nash Stackelberg 

New product design 

and price 

z1 258 261 260 

z2 1.046 1.038 1.039 

z3 132 140 140 

z4 0.117 0.119 0.119 

z5 1.350 1.383 1.386 

Price $18.24 $17.14 $15.87 

Strategy-estimated Profit $24.0M (33.8%) $13.8M (21.0%) $13.9M (23.2%) 

Competitor-reacted Profit $13.5M (19.0%) $13.8M (21.0%) $13.9M (23.2%) 

Price-equilibrium Profit $13.7M (21.2%) $13.8M (21.0%) $13.9M (23.2%) 

Price, market share%, 

profit of competitors 

at price equilibrium 

C1 $16.96, 21.3%, $13.8M $17.26, 21.3%, $14.2M $17.13, 20.7%, $13.7M 

R2 $15.00, 14.6%, $7.75M $14.84, 14.7%, $7.70M $15.11, 14.2%, $7.60M 

S3 $17.54, 20.2%, $13.7M $16.99, 20.2%, $13.1M $17.81, 19.6%, $13.5M 

T4 $17.69, 16.7%, $11.2M $18.13, 16.8%, $11.7M $17.93, 16.3%, $11.1M 

Share of no-choice 6.1% 6.1% 6.0% 
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Similar to the observations in the first case study, the fixed competitor assumption gives 

the highest model-estimated profit, but the competitor-reacted and price-equilibrium profits 

demonstrate that the prediction is overestimated when market competition is taken into account. 

Figure 2.3 compares the competitor-reacted profits of different approaches graphically. The 

price-equilibrium profit is 1.6% higher than competitor-reacted profit, which implies that 

suboptimal pricing is a significant component of the competitor-reacted profit loss in the fixed 

competitor case, but suboptimal design is a larger component. The Stackelberg approach leads to 

a higher expected profit than Nash. The Nash and Stackelberg approaches are able to produce 

1.1% and 3.4% higher competitor-reacted profits, and 1.3% and 1.8% higher price-equilibrium 

profit than the fixed competitor case. In this case, the new product Stackelberg leader has the 

lowest price, but the approach is able to gain the highest market share and profit. This case study 

again demonstrates that incorporating price competition in product design can not only avoid 

overestimation of profitability, but also help designer make the best strategic design decisions. 

The computational benchmarking for this problem between the proposed method and the 

relaxation methods is shown in Figure 2.4. For the Nash case, the relaxation methods cannot 

reach a solution with an error less than 10
-2

. In the same amount of computational time, the 

proposed Nash formulation finds the solutions with significantly higher accuracy. For the 

Stackelberg case, the relaxation methods fail to converge, whereas the proposed Stackelberg 

formulation reaches the solutions in relatively short computational time. These results once again 

show the limitation of algorithms using iterative optimizations for handling an engineering 

design problem with higher-order nonlinearity and complexity. 
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Figure 2.3 Competitor-reacted profits under various strategies for the weight scale design 

problem 

 

 

 

Figure 2.4 Computational time versus solution error for the weight scale problem: (a) Nash case; 

(b) Stackelberg case 
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2.3.3 Case study 3: Angle Grinder 

The angle grinder case study determines the optimal attributes and price of a hand held 

power grinder (Luo et al., 2005; Besharati et al., 2006; Luo et al., 2007; Williams et al., 2008). 

The market demand model is a latent class model
9
 with four market segments and six discrete 

attributes, including price (3 levels: $79, $99 and $129), current rating (3 levels: 6, 9 and 12 

amps), product life (3 levels: 80, 110 and 150 hours), switch type (4 levels: paddle, top slider, 

side slider and trigger) and girth type (2 levels: small and large). The part-worth utilities of 

product attributes and price at each level (Besharati et al., 2006) are shown in Table 2.9. Since 

the new product design variables are identical to the product attributes, we categorize this case 

study as a product positioning problem (z = x). 

Table 2.9 Conjoint part-worths in the angle grinder latent class model 

  Market segment 

Attribute Level 1 2 3 4 

Price 

p 

$79 -0.11 -0.09 0.005 -0.02 

$99 -0.89 -1.15 1.92 -0.24 

$129 1.00 1.25 -1.92 0.26 

Brand 

z1 

New -0.55 0.45 2.21 -0.17 

A 0.18 1.06 -2.37 -0.20 

B 0.83 0.11 -1.59 1.15 

C -0.47 -1.63 1.74 -0.79 

Current rating 

z2 

6 amps 1.25 0.45 -1.48 -0.46 

9 amps 0.13 -1.42 -0.65 -2.38 

12 amps -1.39 0.97 2.13 2.84 

Product life 

z3 

80 hrs -0.86 -0.13 -4.72 0.80 

110 hrs 1.34 -0.47 -5.83 0.74 

150 hrs -0.47 0.60 10.5 -1.55 

Switch type 

z4 

Paddle 0.43 0.30 -3.29 -0.65 

Top slider -1.02 -0.65 -3.05 0.42 

Side slider 2.39 -0.07 2.46 0.56 

Trigger -1.81 0.43 3.87 -0.33 

Girth size 

z5 

Small 1.51 0.72 1.51 0.41 

Large -1.51 -0.72 -1.51 -0.41 

No-purchase -0.02 -0.02 -0.02 -0.02 

Segment size 37.8% 24.8% 12.1% 25.3% 

                                                 
9
 The original demand model was presented in latent class model with four market segments (Luo et al., 2005; 

Besharati et al., 2006; Williams et al., 2008). The same market data were then estimated using hierarchical Bayesian 

method with mixed logit model (Luo et al., 2007). 
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The major difference of this case study from the previous two cases is its discrete 

decision variables. In order to derive analytical expressions for price utility, we interpolate the 

discrete price part-worths into the underlying continuous space using polynomial ψ̄. Therefore, 

the observable utility component for product j in market segment m is given by:

 

 

1

nD

mj mj mnd ndj

d

v w z


   (2.13) 

where m is the market segment index, ψ̄mj is the interpolated price utility for market segment m 

as function of price pj, wmnd is the part-worth utility at level d of attribute n in market segment m, 

and zndj is a binary indicator variable that is equal to 1 if product j contains attribute n at level d 

and 0 otherwise. Further, M is the number of segments and Dn is the number of levels for 

attribute n. The price utility function in each segment is fit through the discrete levels with a 

quadratic function ψ̄mj = ā2mp
2
j + ā1mpj + ā0m, where ā2m, ā1m and ā0m are coefficients determined 

via ordinary least squares regression. The four resulting price utility curves are plotted in Figure 

2.5. It can be seen that the price responses in each segment are not monotonically decreasing 

when price increases within the range of $75-$130. This implies that the data will predict an 

unusual increase in demand with increasing price in segments 1, 2, and 4, providing incentive for 

firms to charge high prices. The share of choices smj and profit Πj are given by Eq. (2.10) and Eq. 

(2.11), respectively. The FOC equation for the Nash price equilibrium (detailed derivations in 

Appendix B.2) is 
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  (2.14) 
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Figure 2.5 Price part-worth fitting functions for the angle grinder demand model 

 

Based on the available price part-worth utility in the demand model, we confine the price 

decisions within a range of the survey data (ḡ1: 75−pj ≤ 0; ḡ2: pj−130 ≤ 0) since unbounded price 

in this model will encourage firms toward infinite prices and result in no equilibrium solution. 

Furthermore, the specifications of competing products in the market are shown in Table 2.10. 

The estimated costs of product X, Y and Z are $68.15, $100.94 and $49.58, respectively (Luo et 

al., 2007), and the new product cost is assumed $75, independently of the design. The total 

market size is 9×10
6
 units. 

Because of the existence of both discrete design attributes and continuous price variables, 

Eq. (2.2) is not valid for Nash solutions. On the other hand, the Stackelberg formulation of this 

problem using only price FOC equation (Eq. (2.14)) can form a MINLP model without difficulty. 

The formulation is solved by using MINLP solver GAMS/Bonmin (Bonami et al., 2008) (CPU 

time: 0.086 secs). The optimal solutions are shown in Table 2.11. For the fixed competition case, 

it can be seen that the new product price reaches the modeling upper bound. We find that the 

new product and product Y dominate the market with relatively high shares and profits, while 
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product X and Z have low market shares. For the Stackelberg case, the design attributes and 

price of the new product are identical to the fixed competitor case, but it can be seen that all 

competitors revised their price decisions in response to the new entrant to increase profitability. 

As a result, all prices reached the upper bound ($130) of the demand model, and the estimated 

market shares and profits of product X, Y and Z are higher than the fixed competitor case
10

. 

 

Table 2.10 Specifications of existing angle grinder products in the market 

Product 

brand z1 

Current 

rating z2 

Product 

life z3 

Switch 

type z4 

Girth 

size z5 

Price 

p 

X 9 amps 110 hrs Side slider Large $99 

Y 12 amps 150 hrs Paddle Small $129 

Z 6 amps 80 hrs Paddle Small $79 

 

Table 2.11 Optimal new product solutions for fixed and Stackelberg cases 

  Fixed competitor Stackelberg 

New product design 

and price 

x1=z1 12 amps 12 amps 

x2=z2 110 hours 110 hours 

x3=z3 Side slider switch Side slider switch 

x4=z4 Small girth Small girth 

price $130 $130 

Strategy-estimated profit $299M (60.3%) $244M (49.3%) 

Competitor-reacted profit $244M (49.3%) $244M (49.3%) 

Price-equilibrium profit $244M (49.3%) $244M (49.3%) 

Price, market 

share%, profit of 

competitors 

X $99, 1.9%, $5.0M $130, 10.0%, $56M 

Y $129, 34.4%, $87M $130, 34.0%, $89M 

Z $79, 2.4%, $6.0M $130, 6.0%, $43M 

Share of no-choice 0.9% 0.7% 

 

 

In the case, price bounds were added because finite price equilibrium solutions do not 

exist within the domain of the demand model’s trusted region (i.e.: the region based on 

interpolation of measured survey or past purchase data). For example, in a general sense, 

increasing price induces decreasing utility, holding all other factors constant. However, some 

                                                 
10

 We do not compare computational cost or test the CDH method in this case because active price bounds make 

price solutions trivial. 
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consumers may assume, within some range, that products with higher prices have higher quality 

or better non-visible characteristics (Plassmann et al., 2008). A model built on such data will 

predict that higher prices result in greater demand, and thus higher profit if no other tradeoff 

exists. As a result, no price equilibrium exists within the measurable price range, and 

extrapolation leads to infinite prices. 

There are several useful observations for this case study. First, we demonstrate that a 

product design and price competition problem containing discrete variables can be solved by a 

MINLP solver without exhaustive search or heuristic selection used in prior methods (Horsky 

and Nelson, 1992; Rhim and Cooper, 2005). Second, the fixed competitor model has 

significantly overestimated predicted profit by 22.5%. Third, this special case demonstrates the 

influence of concavity to the existence of equilibrium solutions. Due to the unique price utility 

responses, the individual profit function is not concave with respect to its price variable. Thus it 

is expected that a price equilibrium may not exist in the interior decision space but only 

boundary equilibrium exists (Friedman, 1986). Finally, product Y dominates market segments 2 

and 3, while the new product is designed to dominate segments 1 and 4, which are the two 

biggest segments (Table 2.12). In a heterogeneous market, design and pricing decisions are often 

coupled, and the best solution depends on the positioning of competitors; therefore, accounting 

for competitor reactions can be critical to successfully locating new products in the market. 

Furthermore, without applying an upper bound to price, we find that all price decisions diverge, 

and no finite price equilibrium solution exists. As we can see in Figure 2.5, extrapolating the 

price utility curves of segments 1, 2, and 4 results in higher utility for higher prices. Applying an 

upper bound creates finite equilibria, but the bound activity clearly suggests that the data do not 

support the solution. This model is problematic for the optimization application, and results 
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suggest that more data should be collected beyond the existing range in order to measure the 

eventually-decreasing utility associated with increased price. It is also possible in this case that 

survey respondents inferred high quality from high prices in the survey, since they tend to see 

such correlations in the marketplace; however, conjoint results should not exhibit these trends if 

respondents correctly treat all attributes not shown as equal across all profiles. 

 

Table 2.12 Market shares in each segment at boundary equilibrium 

Market segment 
1 2 3 4 Total 

37.8% 24.8% 12.1% 25.3% 100% 

A 25.6% 0.9% 0% 0.2% 10.0% 

B 5.1% 70.8% 99.8% 10.0% 34.0% 

C 13.1% 3.6% 0% 0.6% 6.0% 

New product 55.6% 23.6% 0.1% 88.5% 49.3% 

No-purchase 0.6% 1.1% 0.1% 0.8% 0.7% 

 

2.4 Conclusions 

Prior profit maximization methods in engineering design ignore competitive reactions in 

market systems. We propose an approach to solve the new product design problems for profit 

maximization while accounting for competitive reactions under Nash and Stackelberg price 

competition. Based on the theory of mathematical programs with equilibrium constraints, our 

approach accounts for competitive reactions through inclusion of equilibrium conditions as 

constraints in the optimization framework. This approach requires little additional complexity 

and offers greater efficiency and convergence stability than prior methods. Because the 

equilibrium conditions are set only with respect to competitor pricing decisions, it is not 

necessary to know competitor cost structures or internal competitor product engineering details, 
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and the equilibrium conditions can be added to any existing product design profit optimization 

problem. 

We show that failing to account for competitive reactions can result in suboptimal design 

and pricing solutions, and significant overestimation of expected market performance. 

Application of the method to three case studies from the literature exhibits its ability to handle 

problems of interest in the engineering domain. The case study results indicate that the 

Stackelberg approach is most preferred because of the capability to generate higher profits than 

Nash by anticipating competitor reactions. Both Nash and Stackelberg approaches can avoid 

overestimation of market performance and potentially poor product design positioning resulting 

from the common fixed-competitor model. 
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CHAPTER 3. PRODUCT DESIGN FOR MARKET SYSTEMS 

This chapter focuses on the design problems of long-term market competition with price 

and design changes – the Class III problem defined in Section 1.2. Specifically, we examine how 

profit-maximizing designs are influenced by two structural factors in market systems: (1) the 

structure of manufacturer-retailer interactions and (2) the structure of heterogeneity in consumer 

preference modeling. A game-theoretic model with all manufacturers and retailers as decision-

makers is proposed, and corresponding general equilibrium equations for each channel scenario 

are presented in the following sections. The investigation in this chapter aims to answer the 

following questions: 

(1) How does consumer preference heterogeneity affect optimal product design? The use 

of the standard logit model, where differences among consumer utility functions are modeled as 

random noise, is compared to the random-coefficient mixed logit model, where the structure of 

consumer preference heterogeneity is modeled directly. The resulting effects on optimal design 

decisions are examined accordingly. 

(2) How do channel structures affect optimal product design? Research in marketing and 

management science has shown that channel structures have a significant effect on optimal 

pricing decisions; the effect of channel structures on optimal design decisions is examined. 

A case study of vehicle design is presented to demonstrate the analytical observations 

found during the investigation. The content in this chapter is based on the publication by Shiau 

and Michalek (2009). 
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3.1  Literature Review 

Methods for profit maximization in design require the designer to model not only 

physical and technical attributes of the product, but also to predict cost and demand resulting 

from design decisions. To do this, researchers have drawn upon quantitative methods from 

marketing and econometrics to model consumer choice as a function of the design’s attributes 

using survey data or past purchase data. While econometricians have used these models more 

commonly for estimation, to understand the structure of preferences in the marketplace, 

engineers have used these models for prediction to simulate market demand and optimize 

products for profitability (Li and Azarm, 2000; Wassenaar and Chen, 2003; Michalek et al., 2005; 

Michalek et al., 2006). In contrast to the active research on demand modeling in design 

optimization, there has been only limited attention paid to the role of market competition in 

product design. Some studies have used game-theoretic models to simulate competition (and 

cooperation) among engineering design decision-makers (Lewis and Mistree, 1998), but models 

that address the role of market competition among firms in product design are limited. Based on 

the three classifications (Class I, II and III) in Figure 1.2, Table 3.1 further identifies the prior 

product design literature using random utility discrete choice models for consumer choice 

simulation using two additional dimensions, (1) manufacturers, and (2) retailers. On the 

manufacturer dimension, Class I models treat the focal manufacturer as the only decision maker, 

where competitors are either not present or they are treated as fixed entities that will not react to 

the presence of a new design entrant. Class II models assume that competitors will respond to a 

new design entrant by adjusting pricing strategy, but competitor designs will remain fixed. Class 

III models assume that competitors will respond by both repricing and redesigning their products. 

Most prior studies do not account for the presence of retailers, instead assuming that 
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manufacturers sell directly to consumers. When the retailer is taken into account, the model is 

said to incorporate the product’s distribution channel structure (Coughlan, 2001; Ingene and 

Parry, 2004). Studies that account for retailers either assume the retailer to impose an 

exogenously-determined fixed margin over the manufacturer’s wholesale price, or the retailer is 

treated a decision maker who will set margin in order to maximize profit. 

 

Table 3.1 Literature on product design optimization using random utility discrete choice models 

   Retailer 

 Class Competitors None Fixed Decide margin 

M
a
n

u
fa

ct
u

re
r
 

I 
None 

Wassenaar et al. (2003) 

Michalek et al. (2005) 

Michalek et al. (2006) 
 

Fixed Besharati et al. (2006) Williams et al. (2008) 

II Decide price 
Choi et al. (1990) 

Chapter 2 
 Luo et al. (2008) 

III 
Decide price  

and design 

Choi et al. (1992) 

Choi & Desarbo (1993) 

Michalek et al. (2004) 
 This Chapter 

 

Class I models are most common in the profit maximization design literature. These 

approaches take the perspective of a single firm and assume there are no other decision-makers. 

Most models have taken the firm to be a monopolist in the product class with no competition 

other than the outside good (i.e., the no-purchase or no-choice option), so that consumers are 

modeled to either buy from the firm or not buy at all (Wassenaar and Chen, 2003; Michalek et al., 

2005; Besharati et al., 2006; Michalek et al., 2006; Williams et al., 2008). Besharati et al. (2006) 

included static competitor products and proposed an approach to generate optimal robust-design 

sets considering utility variations in both the new design and competing products. Williams et al. 

(2008) also included fixed competitors and went further to incorporate retailer decisions in their 

model. Rather than model the retailer as a margin-setting profit maximizer, they assume a fixed 



44 

 

margin and predict the channel acceptance rate, i.e., the probability that a retailer will agree to 

sell the new product through its distribution, which depends on the manufacturer’s decisions of 

product attributes, wholesale price, and slotting allowance paid to the retailer. The primary 

limitation of class I methods is that they ignore competitor reactions. In differentiated oligopoly 

markets, competitors can be expected to react to a new product entry by changing prices in the 

short term and by changing designs in the long term. Thus, models that ignore competitor 

reactions will tend to overestimate profitability of a new entrant according to the findings in 

Chapter 2. 

Class II models assume that competitor designs are fixed but attempt to account for 

competitor pricing reactions using game theory (Friedman, 1986). Since the time needed to 

design and deploy a new product is substantial for many product classes, most firms are not able 

to change their product designs in the short term, but pricing decisions can be changed rapidly. 

Thus, class II formulations may be a good description of short-term firm behavior for many 

product classes. Choi et al. (1990) posed a solution approach for class II problem using iterative 

price optimization of competitors. The results in Chapter 2 show that ignoring competitor 

reactions can result in significant overestimation of profits and suboptimal design variables. Lou 

et al. (2007) applied a different approach: They first performed product selection by combining 

discrete product attributes to reduce the optimal candidates to a manageable number. Then the 

optimal price and design solution are determined by exhaustive enumeration to find the 

alternative with the highest profit at price equilibrium with fixed competitor product attributes. 

Class III models assume that firms are able to change both prices and product designs in 

reaction to a new product entry. As the lead time of new product development becomes shorter 

due to advancements in computer-aided design (CAD), computer-aided engineering (CAE), 
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concurrent engineering, rapid prototyping, flexible manufacturing, supply chain management, 

and streamlined processes, it may be overly restrictive to assume that competitor product lines 

will remain fixed. Assuming consistent consumer preferences and rapid technology 

implementation, Class III formulations search for combinations of design and pricing decisions 

that are in equilibrium, therefore product design variables and price must be solved 

simultaneously. Choi et al. (1992) extended their previous short-run price competition 

framework (Choi et al., 1990) to find Nash solutions in a long-run product repositioning problem 

using an iterative approach. Choi and Desarbo (1993) proposed a framework using nonlinear 

integer programming with a sequential iterative process to identify Nash equilibria for discrete 

product attribute selection. Michalek et al. (2004) proposed a vehicle design problem with 

multiple automobile manufacturers competing on vehicle design and price under alternative 

government policy scenarios. 

Channel structure models have been used widely in management and marketing science 

to model manufacturer-retailer, manufacturer-manufacturer, and retailer-retailer interactions in a 

competitive market. These studies focus on price competition and treat design as fixed. Jeuland 

and Shugan (1983) introduced a bilateral channel structure model with two separate 

manufacturer-retailer channels competing in the market. Later McGuire and Staelin (1983) 

proposed a model with two competing manufacturers selling products through a company store
11

 

and a franchised retailer
12

. Choi (1991) presented a channel structure model for a common 

retailer
13

, systematically defining several game rules to describe the interactions between 

                                                 
11

 A company store (also called factory store) is a retail store owned by a specific manufacturer, so that 

wholesale price and retail price are equal. Such a channel configuration is also referred to as vertical integration 

(McGuire and Staelin, 1983). 
12

 A franchised retailer (also called exclusive store) is a retail store owned by a private company that sells 

products from only one manufacturer. 
13

 A common retailer is a retailer who sells products produced by multiple manufacturers. 
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manufacturers and retailers based on the concepts of Nash and Stackelberg (leader-follower) 

games. Lee and Staelin (1997) extended Choi’s single common retailer framework to include 

multiple common retailers. While these prior approaches used simple linear or nonlinear demand 

functions, Besanko et al. (1998) incorporated the logit demand function into Choi’s common 

retailer model (Harker and Choi, 1991), and Sudhir (2001) extended Besanko’s work by deriving 

an array of analytical equilibrium equations using various profit maximization strategies under 

both vertical Nash and manufacturer Stackelberg game rules.
14

 

This study attempts to fill a gap in the prior literature by posing a class III formulation 

under alternative channel structures and examining the impact of each structure on design and 

pricing decisions. The remainder of this chapter proceeds as follows: In Section 3.2, we derive 

equations for an integrated model of design and pricing equilibrium under alternative channel 

structures and demand heterogeneity, and we examine the structure of the results, posing several 

propositions on the role of heterogeneity in competitive design. In Section 3.3, a vehicle design 

example is implemented to demonstrate our methodology and test the degree to which channel 

structure and demand heterogeneity influence optimal design in a practical example, and 

conclusions are made in Section 3.4. 

3.2  Methodology 

We develop our methodology by first posing models for consumer choice and channel 

structures, then deriving equilibrium conditions for firm competition in each case, and finally 

examining implications of the results. Following the prior literature, our modeling assumptions 

include: (1) the market is described as a non-cooperative oligopolistic game with complete 

                                                 
14

 Vertical Nash, first defined by Choi (Harker and Choi, 1991), is the Nash competition scenario between 

manufacturer and retailer players. Similarly, a manufacturer Stackelberg game treats manufacturer players as 

Stackelberg leaders and retailer players as Stackelberg followers. 
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information (Fudenberg and Tirole, 1991) and a fixed number of firms (no entry and exit) (Tirole, 

1988); (2) manufacturers and retailers (if they exist) are Nash price setters for profit 

maximization; (3) firms are generic with identical decision-spaces, no technological change, 

identical cost structures, no differences in intellectual property rights, and negligible brand 

effects; (4) market demand is described by a random-utility discrete-choice model with time 

invariant consumer preference coefficients; and (5) price and design decision variables are 

continuous, and each firm’s profit function is differentiable. 

3.2.1 Consumer Choice Model 

Market equilibrium conditions for profit maximizing firms depend upon consumer choice 

behavior. We adopt the random utility discrete choice model, which is ubiquitous in marketing 

and econometrics (Greene, 2003) and has seen recent application in engineering design 

(Wassenaar and Chen, 2003; Michalek et al., 2005; Besharati et al., 2006; Michalek et al., 2006). 

Random utility models presume that each consumer i gains some utility uij from each product 

alternative j. Consumers are taken as rational, selecting the alternative that provides the highest 

utility, but each consumer’s utility is only partly observable. Specifically, the utility is expressed 

as uij = vij + εij where vij is the observable component and εij is the unobservable component. The 

observable term vij is a function of the observable parameters of a choice scenario: in this case, 

the attributes zj and price pj of each product j, so that vij = v(pj,zj,βi), where βi is a vector of 

coefficients specific to individual i. The product attributes zj are functions of the design variables 

xj for each product, therefore zj=z(xj). By assuming the error term εij follows the standard IID 

Gumbel distribution f()=exp(-exp(-)), which is close to Gaussian but more convenient, the 

probability sij of consumer i choosing product j is given by the logit model (Train, 2003):
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where K is the set of manufacturers, Jk is the set of products sold by manufacturer k, and the 

utility of the outside good v0 represents the utility value of the individual choosing none of the 

alternatives in the choice set. To obtain the total share of choices, we can integrate over 

consumers i. If f() represents the joint probability density function of  coefficients across the 

consumer population i, and sj| is sij calculated conditional on i =  (i.e.: vij = v(pj,zj,)), then the 

share of choices for product j (the probability of a randomly selected individual choosing product 

j) is:
 
 

β
(β) β

j j
s s f d   (3.2) 

The integral form of  Eq. (3.2) is called the mixed logit or random coefficients model (Train, 

2003). The mixed logit model has been demonstrated to be capable of approximating any 

random utility discrete choice model (McFadden and Train, 2000). In practical applications, the 

mixed logit choice probability is approximated using numerical simulation by taking a finite 

number of draws from the distribution f() (Train, 2003):
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ˆ  (3.3) 

where R is the number of random draws, srj is the logit choice probability for product j in the r-th 

draw, and vrj is the corresponding simulated observable utility. The random coefficients of the 

mixed logit model are able to account for systematic taste variations, i.e.: heterogeneity, across 

individuals. 

The standard logit model, also known specifically as the multinomial logit model when 

more than two choice alternatives are present, is a special case where the coefficients β are taken 

as deterministic, aggregate parameters during estimation, and variation across consumers is 
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accounted for only in the unobservable error term . When heterogeneity of consumer 

preferences is negligible, the logit model may be sufficient for estimation while requiring less 

data and offering lower complexity and computational cost. When heterogeneity is significant, 

the mixed logit model is capable of capturing the structure of heterogeneity. For these reasons, 

both logit and mixed logit models are compared in this study. 

3.2.2 Channel Structures 

Figure 3.1 shows the vertical price interaction paths of four distribution channels with 

different retailer types, where w is the manufacturer’s wholesale price and p is the retail price. 

The four channel scenarios are:  

(1) Company store (CS): A company store sells only products from a single manufacturer, 

and the retail prices are directly controlled by the corresponding manufacturer (w=p) (McGuire 

and Staelin, 1983). There is no vertical interaction between a manufacturer and its company-

owned retailer because of integration.  

(2) Franchised retailer (FR): A franchised store is privately-owned but has a contract 

with the corresponding manufacturer. It sells only the products produced by the specific 

manufacturer. However, the manufacturer does not control retail prices directly, and the retailer 

is able to determine its own margins (McGuire and Staelin, 1983).  

(3) Single common retailer (SCR): A common retailer sells mixed products from all 

available manufacturers, and it has control of its margins (Harker and Choi, 1991). The SCR case 

represents a powerful retailer dominating a regional market with no other equal-powered 

competitors in the region. 
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Figure 3.1 Channel structure scenarios: (a) Company Store, (b) Franchised Retailer, (c) Single 

Common Retailer, and (d) Multiple Common Retailers 

 

(4) Multiple common retailers (MCR): This scenario represents more than one medium-sized 

retailer in the regional market (Lee and Staelin, 1997). These common retailers compete with one 

another for pursuing maximum profits. 

Manufacturer and retailer profit depend on demand qj, which can be predicted by 

multiplying the total size of the market Q by the share of choices sj taken by product j, so that 

qj=Qsj. We consider the product cost in two components, (1) the variable manufacturing cost cj 

per unit product, which is a function of the design xj, and (2) the total fixed investment cost c
F

j, 

so that total cost for product j is qjcj(xj) + c
F

j. We derive first the general multiple common 

retailer case with a set of retailers tT and then examine alternative channel structures as special 

cases. The profit function for manufacturer k is a sum over the retailers T and the set of products 

Jk:
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where wjt is the wholesale price of product j when sold to retailer t.
15

 The manufacturer profit 

functions for the other three channel structure scenarios can be simplified from Eq. (3.4) by 

                                                 
15

 We assume manufacturers can offer different wholesale prices to different retailers. 
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removing the retailer index t, as shown in . The profit function for retailer t in the MCR scenario 

is given by:

 

 

R
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q p w q m
   

    ( )  (3.5) 

where mjt is retailer t’s margin for product j. The SCR scenario is a special case of MCR with a 

unique t. In the FR scenario, the profit function of a franchised store can be simplified from Eq. 

(3.5) by indexing each retailer with its corresponding manufacturer k and limiting the product 

category to the corresponding manufacturer source. For the CS scenario, the company store has 

no retail profit. The manufacturer and retailer profit formulations for the four channel structure 

scenarios are listed in Table 3.2. 

 

Table 3.2 Manufacturer and retailer profit functions 

Channel Structure Manufacturer profit Retailer profit 
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3.2.3 Equilibrium Conditions 

When we consider channel structures in a game-theoretic framework, manufacturers and 

retailers are both players (decision makers) in the game. The strategy (decisions) of a 

manufacturer includes wholesale price w and product design variables x, and the strategy of a 
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retailer is retail margin m. Choi defines this game as a vertical Nash game for price competition 

(Harker and Choi, 1991). We extend the model by including design competition. As shown in 

Figure 3.2, the manufacturer makes wholesale price and design decisions to maximize its profit 

based on the retail margin observed. Accordingly manufacturer profit is calculated as a function 

of wholesale price, cost, and market demand, which is a function of retail prices. The retailer 

makes its retail margin decision independently from manufacturer decisions (except in the CS 

case). Each retailer observes manufacturer wholesale prices and product attributes, as well as any 

competitor retailer prices. At market equilibrium, no manufacturer or retailer can reach higher 

profit by changing decisions unilaterally. For a vertical Nash game, each channel member (either 

manufacturer or retailer) is assumed to act non-cooperatively. 

The FOC necessary conditions for the vertical Nash game produce a system of nonlinear 

equations (one equation for each unknown) given by: 

 

 

 

 

Figure 3.2 Interaction between manufacturer and retailer in the vertical Nash game 

 

 

Manufacturer

Max ΠM(w, p, z, c)
w.r.t. w and x

where z=z(x), c=c(x), p=w+m

Retailer

Max ΠR(w, z, m)
w.r.t. m

w and z m
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where t is replaced by k in the FR case. These FOC conditions are necessary but not sufficient. 

Hence, any candidate FOC solution must be checked to see if it a Nash equilibrium (Eq. (A.1)) 

by globally optimizing each player post hoc while holding all other players constant at the FOC 

solution.
16

 Similar to finding the optimal solution in a general optimization problem, the 

existence and uniqueness of an equilibrium solution in a market competition problem depends on 

the equations describing the model (Friedman, 1986). For the logit demand model specifically, 

Anderson et al. (1992) demonstrated that a strictly quasi-concave profit function results in a 

unique Nash price equilibrium. However, when design variables are included, the logit profit 

function may become non-concave, and multiple local optima may exist (Hanson and Martin, 

1996). Therefore, convergence properties and the existence and uniqueness of equilibria are 

problem dependent. In our case study, necessary conditions in each case revealed either a unique 

solution or a small set of solutions that were easy to check post hoc to identify the unique Nash 

equilibrium.  To obtain the FOC equation sets for all channel structure scenarios, we first derive 

the FOCs with respect to manufacturer’s wholesale price and design, and then retailer’s margin. 

                                                 
16

 The FOC approach is more efficient than the sequential iteration method used in Michalek et al. (2004). The 

sequential iteration method requires iterative solution of a series of NLP problems for each manufacturer until Nash 

equilibrium is reached, while the FOC approach is a single step NLP execution for a local solution. The differences 

between two algorithms are discussed by Shiau and Michalek (Shiau and Michalek, 2007). 
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Wholesale Price: The wholesale price FOC equation is taken for each manufacturer k 

with respect to the wholesale price that manufacturer sets for each of its products jJk to sell to 

each retailer t.  Under the mixed logit demand, the Nash necessary condition equation is:
17
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where sjt| is shorthand for the share of choices predicted by the logit model, given : in this case 

exp(v(pjt,zj,))[exp(v0) + kt’j’Jk exp(v(pjt’,zj’,))]
-1

, following Eq. (3.1). In the case of a single 

common retailer and a single product per manufacturer under standard logit, the integral in Eq. 

(3.7) collapses and the expression can be further simplified and rearranged as:   
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 (3.8) 

Eq. (3.8) illustrates that wholesale price at equilibrium is comprised of product cost plus a 

manufacturer margin, which is determined by the sensitivity of consumer observable utility to 

price and the corresponding share of choices. The same result was obtained by Besanko et al. 

(1998) in the case of price only (with no design decisions). 

Design: For the case of an unconstrained design space, the design variable FOC 

equations for MCR are obtained similarly by setting the derivative of the manufacturer profit 

function with respect to each design variable to zero. Without loss of generality, we assume all 

designs are carried by all retailers (potentially with q=0):

 

 

                                                 
17

 The detailed derivations of all FOC equations for the MCR scenario are shown in the supplemental document 

that is available by contacting the authors. 
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(3.9) 

When equality constraints h(x)=0 and inequality constraints g(x)<0 exist in the design domain, 

additional constraint handling in needed. To account for constraints, we implement the 

Lagrangian FOC method (Appendix A) and re-formulate Eq. (3.9) as: 
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where λj and μj are Lagrange multiplier vectors for product j. The formulation of Eq. (3.10) 

corresponds to the Karush-Kuhn-Tucker (KKT) necessary conditions for optimality of a 

constrained NLP (Papalambros and Wilde, 2000). 

Retailer Margin: The retailer margin FOC equation for the MCR case is taken for each 

retailer with respect to its margin. The condition for a common retailer t under mixed logit 

demand is:
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In the case of a single product per manufacturer and a single common retailer under logit demand, 

Eq. (3.11) can be simplified and rearranged as:  
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Combining Eq. (3.8) and Eq. (3.12), the retail price of product j selling through common retailer 

t satisfies: 
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   (3.13) 

Equation (3.13) illustrates that retailer price at market equilibrium is composed of manufacturing 

cost, manufacturer margin, and retailer margin. From the general FOC equations for the MCR 

case under mixed logit demand, the equations for the other three cases can be obtained through 

simplifications. The equations for 4 channel scenarios are listed in Table 3.3. The FOC equations 

under the standard logit can by obtained by collapsing the integrals in the mixed logit equations 

for a single point β. The results for logit produce closed form expressions and provide intuition, 

while the mixed logit model accommodates heterogeneity by modeling its structure directly. 

Equilibrium solutions can be obtained by solving the system equations in Table 3.3 using the 

Lagrangian FOC method presented in Appendix A. 

3.2.4 Analytics Observations 

We now examine several useful observations about equilibrium conditions under the 

standard logit case when the utility function v is linear in price. The linear price assumption is 

important because models with nonlinear utility for price may contain interaction terms that 

imply consumers’ sensitivity to price varies with the value of other attributes, thus coupling price 

to attributes. However, if interaction terms are negligible, as is most commonly assumed, then 

the standard main-effects logit model has utility linear in price, and consumers make choices via 
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typical compensatory tradeoffs between price and other attributes. The first two propositions 

show that manufacturers and retailers set identical margins for all products. 

 

Table 3.3 FOC equations for mixed logit model and different channel structures 
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Proposition 1: In the logit case with utility linear in price, the Nash equilibrium requires 

that each manufacturer has equal margins for all its products. 

Proof: From the wholesale price FOC equation for the general MCR case under the logit 

model, the equation can be rearranged to:
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  (3.14) 

For the case where vj is linear in price, vj/pj = p, and the right hand side of the equation is 

identical for all jJk. Therefore, each product produced by manufacturer k has the identical 

manufacturing margins wjt–cj. This result holds for the other channel types, which are special 

cases of Eq. (3.14).  

Proposition 2: In the logit case with utility linear in price, the Nash equilibrium requires 

that retail margins are equal for all products and all retailers. 

Proof: From the retail margin FOC equation for the general MCR case under the logit 

model, the retail margin of product j selling at retailer t is: 
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   (3.15) 

For the case where vj is linear in price, vj/pj = p, and the right hand side of the equation is 

identical for all products sold by retailer t or any other retailer. Therefore, the retail margins of 

all products are equal. This result holds for the other channel types (FR and SCR), which are 

special cases of Eq. (3.15). 

The third proposition shows that design is independent of pricing and competition under the 

linear logit model. This implies that design can successfully be undertaken independently when 

consumers are homogeneous (or, more precisely, when variation among consumers is taken as 
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IID random noise in the logit model). However, heterogeneity couples the problems, making 

necessary joint consideration of design with pricing and competition. 

Proposition 3: In the logit case with utility linear in price, the Nash equilibrium requires 

that all designs satisfy a system of equations that is independent of price and competitor designs. 

When this system of equations has a unique solution, it implies that (a) all designs are identical 

across all producers and (b) the optimal design is independent of price, competition, and 

channel structure. 

Proof: By substituting Eq. (3.14) from Proposition 1 into Eq. (3.9) for the general MCR 

case under the logit model (integral removed), we obtain a simplified equilibrium equation:
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  (3.16) 

Because s > 0 (for all finite values of the decision variables), for the case where vj is linear in 

price, vj/pj = p, the function can be presented as: 
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 (3.17) 

Satisfaction of this system of equations is a necessary condition for a Nash equilibrium. If Eq. 

(3.17) has a unique solution and if a Nash equilibrium exists, then Eq. (3.17) specifies the 

equilibrium design. Implication (a) follows from noting that Eq. (3.17) is identical for each j and 

is independent of all other jj.
18

 Implication (b) follows from noting that Eq. (3.17) is 

independent of pj, pj, xj jj. In other words, the equilibrium design can be calculated as a 

function of consumer utility functions and manufacturer cost functions without regard to price or 

                                                 
18

 Note also that for the special case of traditional profit maximization of a product line for a single producer 

with fixed competitors (outside good) and no retail structure (CS case), this implies that under logit linear in price all 

products in the line will be identical at the optimum. 
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competitor decisions, and design is decoupled from the game. While we do not derive conditions 

under which Eq. (3.17) has a unique solution, we observe that in practical applications Eq. (3.17) 

typically has a unique solution or a small finite number of candidate solutions that can be 

checked post hoc for satisfaction of the Nash definition. 

The final two propositions show the necessity of incorporating an outside good to establish 

finite equilibria in the case of a manufacturer or retailer monopoly.  

Proposition 4: In the logit case with utility linear in price and a monopolist 

manufacturer, an outside good is required for existence of a finite Nash equilibrium. 

Proof: Considering a single manufacturer with multiple common retailers (MCR case), 

the outside good market share s0 = 1−jJ tT sjt. For the case where vj is linear in price, 

vj/pj=p. Following Proposition 1 and substituting the s0 expression into the MCR wholesale 

price FOC equation in Table 3 with the integral collapsed, the manufacturing margin solution at 

equilibrium becomes a function of s0:
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 (3.18) 

When the outside good is not included in the demand model, s0=0, and Eq. (3.18) is undefined, 

implying no finite solution. This result holds true for all four channel types. 

Proposition 5: In the logit case with utility linear in price and a monopolist retailer, an 

outside good is required for existence of a finite Nash equilibrium. 

Proof: In the SCR case, the market share of the outside good s0=1−kKjJksj. With 

utility linear in price, vj/pj=p. Following Proposition 2 and substituting the s0 expression into 
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the MCR retail margin FOC equation in Table 3 with the integral collapsed, the retail margin 

solution at equilibrium becomes a function of s0:
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   (3.19) 

When the outside good is not included in the demand model (s0 = 0) and Eq. (3.19) becomes 

undefined, implying no finite solution. Since the retail price is decided by the single common 

retailer’s profit maximization behavior, the absence of an outside good implies that consumers 

have no other choice and must purchase one of the products from the retailer. For the estimation 

studies of the single common retailer pricing behavior in the marketing science literature, the 

outside good is usually included in the logit choice model to represent the consumer’s no-

purchase choice (Besanko et al., 1998; Sudhir, 2001). 

3.3  Case Study: Vehicle Design 

Theoretical results show that the design is decoupled from competition and channel 

structures for the logit model. However, it does not necessarily follow that designs will differ 

substantially at equilibrium under alternative channel structures for representative problems in 

the engineering design domain when heterogeneity is present. To demonstrate the methodology 

and test the sensitivity of design solutions to channel structure, we adopt the vehicle design 

model proposed by Michalek et al. (2004), which integrated engineering simulations of vehicle 

performance with logit models of consumer choice to study vehicle design of profit seeking 

firms in competition under the CS channel structure. 



62 

 

Following the vehicle design model in (Michalek et al., 2004), we take the firm’s 

decision variables
19

 to be the relative size of the vehicle’s engine x1, final drive ratio x2, and 

wholesale price w. We examine only the default small car equipped with a SI-102 spark-ignition 

engine (base engine power 102 kW) and use the ADVISOR-2004 vehicle simulator (AVL, 2004) 

to simulate performance data. Specifically, two attributes, gas mileage z1 and required time to 

accelerate from 0-60mph z2, are simulated as a function of x1 and x2. To calculate z1, two EPA 

regulated drive cycles, for city (Federal Test Procedure, FTP) and highway (Highway Fuel 

Economy Test, HWFET) driving, were simulated, with z1 = 1/(0.55/city+0.45/highway) (EPA, 

2004). The acceleration performance is calculated through simulated full throttle acceleration. To 

simplify calculations, simulation points were taken over a range of variable values, and curve-

fitting was used to create a meta-model for each z1(x1,x2) = 2.34x1
2
-6.72x2

2
-0.81x1x2-

16.0x1+11.2x2+38.6 and z2(x1,x2) = 2.22·exp(-1.85x1 +2.25)+4.39x2
2
-10.6x2+12.2. Over the points 

in the sample, the curves deviate from simulator predictions by no more than 0.3 mpg and 0.7 

seconds. Each design variable has associated lower and upper bounds: 1.0<x1<3.0 and 

0.8<x2<1.3. The cost function, built from a regression on engine sales data (Michalek et al., 

2004), is given by c
V
=7500+670.5·exp(0.643x1). 

The logit model utility form was adopted from a study by Boyd and Mellman (1980), 

where vj = βppj + 100β1/z1j + 60β2/z2j, and βp, β1 and β2 are the coefficients of each attribute. The 

study provided the coefficients for both logit and mixed logit models. For aggregate logit, βp= 

2.8410
-4

, β1 = 0.339 and β2 = 0.375. For mixed logit, each beta coefficient is taken as 

following an independent lognormal distribution. The random coefficients are given by 

β=exp(+), where  is the standard normal distribution and  and  are the lognormal 

                                                 
19

 We assume that automotive manufacturers are capable of adjusting engine power and final drive gear ratio on 

their existing engines and gearboxes without complete re-design from scratch. Therefore automakers compete on 

both vehicle design and price in a static timeframe. 
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parameters
20

. The parameters for the three vehicle attributes are ηp= 7.94, η1= 1.28, η2= 1.75, 

ζp= 1.18, ζ1= 0.001 and ζ2= 1.34. The means of β are thus 7.1510
-4

, 0.278 and 0.426, 

respectively. Compared to the logit coefficients, the mean mixed logit preferences are more 

sensitive to price and acceleration time, but less sensitive to fuel economy. It is noted that the 

logit and mixed logit preference coefficients do not represent unique market characteristics, but 

only different demand modeling approximations. The histograms in Figure 3.3 show the 

approximated shape of the lognormal distribution for each coefficient using 1000 random draws 

(R=1000). The standard deviations of the mixed logit coefficients in the normal space, 1.24 10
-3

, 

2.7810
-4

 and 0.956, disclose that consumer taste variation for acceleration performance is 

relatively larger than the other two attributes. The distribution of the fuel economy coefficient is 

the most concentrated among three attributes because of its small deviation value. 

 

 

 
Figure 3.3 Distributions of consumer preference coefficients in the mixed logit model 

 

 

 

 

                                                 
20

 The mean and standard deviation of a lognormal distribution are exp(+
2
/2) and 

[(exp(
2
)1)·exp(2+

2
)]

1/2
 respectively. 
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Further, we assume the outside good utility v0 is equal to zero throughout the case study 

in order to avoid the monopoly pricing issue revealed in Proposition 5, although estimation of the 

outside good was not included in the original study. In particular, if an outside good were 

included during the initial maximum likelihood data fitting procedure
21

, we would expect the 

relative utility of the outside good to differ in the logit and mixed logit model fits, so attaching an 

arbitrary outside good utility post hoc should not be expected to yield accurate share of choices 

predictions for the auto market. Still, the example serves well to illustrate the structure of the 

problem and the method and principles outlined here. We examine the case of two manufacturers 

for all four scenarios and two common retailers in the MCR scenario. The total market size Q is 

given by 1.5710
6

 (Michalek et al., 2004). We solve the FOC equations for each scenario using 

the sequential quadratic programming (SQP) implementation in the Matlab Optimization 

Toolbox and verify that solutions are Nash by globally optimizing each player separately post 

hoc using a multistart loop. The results at market equilibrium under all eight scenarios are shown 

in Table 3.4.
22

 In all cases except the mixed logit MCR case, competing firms have identical 

solutions to one another at equilibrium, so only the solution of one manufacturer and one retailer 

is reported.
23

 The mixed logit MCR case results in firms selecting distinct strategies, so all 

solutions are reported. Specifically, the first two rows in the mixed logit MCR scenario show 

manufacturer M1’s products sold through the two retailers R1 and R2. M1’s profit is the sum of 

M1-R1 and M1-R2, and similarly R1’s profit is the sum of M1-R1 and M2-R1. 

                                                 
21

 Besanko et al. (Besanko et al., 1998) and Sudhir (Sudhir, 2001) use zero utility as outside good in their 

estimations for the market data. 
22

 There is no active constraint for the solutions in all cases. 
23

 Under assumptions of constant marginal cost and identical fixed cost, Anderson et al. (Anderson et al., 1992) 

proved that under multinomial logit in an oligopolistic model there exists a unique and symmetric price equilibrium 

when the profit function is strictly quasi-concave. 
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Results verify that the equilibrium design is unchanged under alternative channel 

structures in the logit case, although wholesale price and retail price vary. This is expected since 

the conditions satisfy Proposition 3. In this case the optimal design is independent of the game, 

and the resulting wholesale prices and retail margins can be interpreted as the outcomes of pure 

price competition. In the CS scenario, manufacturers are the only decision makers and thus have 

the highest wholesale price and profit, due to the integrated retailer (profits need not be split 

among manufacturers and retailers). For the SCR scenario, the monopolistic retailer has the 

highest unit retail margin and also the highest profit because of its dominative power among 

channel members. Since consumers can only choose between the products offered by the retailer 

and the outside good, lack of price competition leads to high prices. For the FR and MCR 

scenarios, neither the manufacturer nor the retailer has dominative power in the market channel. 

However, for the same outside good, the MCR scenario is able to gain higher total market share 

(7.2% vs. 4.1%) and higher profits ($422M vs. $235M) than the FR. The MCR channel provides 

the manufacturer with higher market share than a single franchised dealer. Furthermore, we 

expect that the logit model will tend to overestimate demand for similar products in a 

competitive market because the logit’s independence from irrelevant alternatives (IIA) property 

restricts substitution patterns and underestimates the degree to which similar (or in this case, 

identical) products draw market share from one another (Train, 2003). In contrast to the identical 

designs under the logit model, the mixed logit model results in substantially different design 

solutions under different channel structure scenarios. Comparing equilibrium vehicle designs 

between the two demand models, logit results reveal a less powerful engine design than under 

mixed logit, which is not unexpected since the relative scale between fuel economy and the other 

coefficients estimated in logit is relatively greater than the mean coefficient in mixed logit. 
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6
 

 

 

Table 3.4 Vehicle price and design solutions at market equilibrium 

  Price and Cost  Design  Market Performance 

  
Wholesale 

price 
Vehicle 

cost 
Manufr.  
margin 

Retailer 
margin 

Retail 
price 

 Eng. 

scale 
FD 

ratio 
MPG 

Acc. 
time 

 Market 
share 

Manufr. 
profit 

Retailer  
profit 

  w c
V w−c

V m p  x1 x2 z1 z2  s Π
M

  Π
R
  

L
o
g
it

 

C
S

 M1 
M2 

$13,168 $9,301 $3,867 N/A $13,168  
1.54 1.12 22.2 7.11  

9.6% $583M N/A 

F
R

 M1 
M2 

$12,947 $9,301 $3,646 $3,646 $16,593 
 

1.54 1.12 22.2 7.11 
 

4.1% $235M $235M 

S
C

R
 

M1 
M2 

$12,941 $9,301 $3,640 $16,737 $29,678 
 

1.54 1.12 22.2 7.11 
 

3.9% $225M $470M 

M
C

R
 M1-R1 

M1-R2 
M2-R1 
M2-R2 

$13,066 $9,301 $3,765 $3,765 $16,831 

 

1.54 1.12 22.2 7.11 

 

3.6% 

Π
M

1= 
$422M 
Π

M
2= 

$422M 

Π
R

1= 
$422M 
Π

R
2= 

$422M 

M
ix

ed
 L

o
g
it

 

C
S

 M1 
M2 

$17,083 $10,167 $6,916 N/A $17,083 
 

2.15 1.16 16.9 6.26 
 

11.9% $1155M N/A 

F
R

 M1 
M2 

$18,713 $10,364 $8,349 $8,349 $27,062 
 

2.26 1.16 16.1 6.19 
 

7.3% $952M $952M 

S
C

R
 

M1 
M2 

$58,044 $11,441  $46,603 $246,564 $304,608 
 

2.76 1.17 13.5 6.00 
 

0.3% $255M $2,702M 

M
C

R
 

M1-R1 $42,899 $10,327 $32,572 $32,572 $75,471  
2.24 1.16 16.2 6.20 

 0.3% Π
M

1= 
$1066M 

Π
M

2= 
$1066M 

Π
R

1= 
$1066M 

Π
R

2= 
$1066M 

M1-R2 $18,490 $10,327 $8,163 $8,164 $26,654   7.2% 

M2-R1 $18,490 $10,327 $8,163 $8,164 $26,654  
2.24 1.16 16.2 6.20 

 7.2% 

M2-R2 $42,899 $10,327 $32,572 $32,572 $75,471   0.3% 
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The CS case results in the highest manufacturer profit and market share among the four 

channel types, as might be expected because there is no retailer competing with the 

manufacturer.
24

 We also found that a smaller engine is chosen and greater fuel economy is 

achieved in the CS case than the other three cases.  The FR case results in equal margins for 

manufacturers, and an intermediate design result at the market equilibrium. The SCR case shows 

an extreme solution with high retail margin, which results in high retail price and low market 

share. In this case, each manufacturer’s profit is drastically reduced due to low demand, though 

wholesale price is increased significantly at market equilibrium. The equilibrium strategy in this 

case appears to target those few consumers willing to pay high price at a premium for the 

product when no alternative is available except the outside good. As such, the solution is 

sensitive to the utility of the outside good. We conducted a sensitivity analysis and found that the 

retail price (retail margin) is more sensitive to the utility of the outside good, while the 

manufacturer wholesale price is less affected.  

The mixed logit MCR case presents an interesting result. The solution indicates that the 

best strategy for manufacturers is to offer different wholesale prices for the same product to 

different retailers.
25

 Each common retailer’s best margin decision is to set a higher margin on the 

high price product and lower margin on low price product.  Therefore each product has a high-

low price pair, causing significant market share differences. The two manufacturers and two 

common retailers have similar profits, and the vehicle design solutions in this case are close to 

the FR design solutions. This solution appears to set low prices that target the general population 

but also offer the same design at higher prices in order to target a very small segment of the 

                                                 
24

 In the Nash game, the number of players in game affects the price and profit at equilibrium. For example, a 

monopoly results in higher profit and prices than an oligopoly (Mas-Colell et al., 1995). 
25

 A saddle point is found in the MCR model, which has identical solutions across manufacturers and retailers 

(w=$19,275, m=$8,990, x1=2.22, x2=1.16). It satisfies the first-order criterion but fails in Nash equilibrium 

verification. 
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market (0.3%) that is insensitive to price. Although the lognormal distribution insures that all 

consumers prefer lower prices (p<0), the price-insensitive consumers (with p0) will choose 

the higher priced product with some nonzero probability and provide high profit per consumer to 

the manufacturer and retailer. The particular results for the SCR and MCR cases may contain 

artifacts from (1) predicting consumer choice at high prices, which requires extrapolation of the 

utility function beyond the range of existing market data, and (2) assuming a specific 

distributional shape (IID lognormal) for the mixed logit utility function parameters. The high 

price solutions for the SCR case are not unexpected: If there existed an unregulated monopolist 

retailer in the automotive market, the retailer would own dominating market power to control 

retail price, and we expect that prices would be higher than what we observe in today’s market. 

However, extrapolation of the utility function far beyond the data points used to fit it introduces 

additional uncertainty. Retail margins and prices are expected to decrease when more 

manufacturer and retailers are involved due to increased competition.
26

 

Under the mixed logit model, the smallest engine design, which is the lowest cost design, 

is found in the CS case where there is no retail buffering
 
(Gupta and Loulou, 1998) between the 

manufacturer and consumer. The SCR case, where a monopolist retailer creates strong buffering, 

results in the largest engine design. The company store is an integrated channel that takes no 

retailer profit, and the manufacturer gains the highest profit in this case. The franchised retailer 

and manufacturer have equal “power” in our case study of two manufacturers and two retailers, 

and each makes equal profit at equilibrium. The single common retailer has the highest retail 

margin due to domination of the regional market and reduced competition. The multiple common 

                                                 
26

 Anderson et al. (Anderson et al., 1992) showed that under standard logit a producer’s margin is proportional 

to the inverse of number of producers minus one (section 7.2). Therefore, including more producers would reduce 

the margin and price. 
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retailer case presents the results of two-level competition and its optimal decisions show 

different price decisions for the same product design at market equilibrium. 

Overall, these results verify that optimal design decisions depend on competition and 

channel type when heterogeneity is taken into account. Only under linear logit demand can the 

problem generally be reduced to pure pricing competition and independent design optimization. 

3.4  Summary 

We pose a game-theoretic model for determining equilibrium design and pricing 

decisions of profit seeking firms in competition, and we examine the influence of two factors: (1) 

the structure of manufacturer-retailer interactions in the market and (2) the structure of 

heterogeneity in consumer preference modeling. We find that the influence of these factors to 

firms’ equilibrium design decisions is coupled: Under linear logit the optimal design can be 

determined independently of price and competition. However, consumer preference 

heterogeneity (mixed logit) couples the two problems, bringing design into the competitive game. 

The results from a vehicle design case study show that profit-maximizing designs can change 

substantially under alternative channel structures for practical problems. Thus, as consumer 

heterogeneity becomes increasingly important to modeling market phenomena for guiding design, 

it will also become more important to effectively coordinate product planning decisions with 

engineering design decisions. 
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CHAPTER 4. EVALUATION OF PHEV ECONOMIC AND 

ENVIRONMENTAL PERFORMANCES 

Increasing concerns regarding high oil prices, fossil fuel dependency, and climate change 

have resulted in policymakers and the automobile industry evaluating alternative strategies for 

passenger transportation. Plug-in hybrid electric vehicle (PHEV) technology offers a possible 

approach to reducing lifecycle GHG emissions and dependency on oil by displacing propelling 

energy on fuel by electricity from the electrical grid (Romm, 2006; EPRI, 2007; Samaras and 

Meisterling, 2008; Bradley and Frank, 2009). While the U.S. transportation sector is 

overwhelmingly powered by petroleum, oil-fired power plants provide only about 1.6% of U.S. 

electricity generation (EIA, 2009). The price differential between retail electricity and gasoline 

could make electric-powered travel more cost competitive than gasoline, depending on the 

additional vehicle capital costs (Scott et al., 2007; Lemoine et al., 2008). However, the benefits 

of PHEVs depend on the vehicle and battery characteristics - PHEVs require large batteries for 

energy storage, which affect vehicle cost, weight, and performance; more batteries enable 

PHEVs to have longer electric travel capacity but the additional weight may deter the expected 

advantages of PHEVs. 

This chapter presents an assessment about the economic and environmental performances 

of plug-in hybrid technology. PHEV simulation models are constructed to explore the impact of 

battery size on fuel consumption, cost, and GHG emission benefits over a range of distances 

between charges. The tradeoffs identified in this analysis can provide a space for vehicle 
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manufacturers, policymakers, and the public to examine optimal decisions for PHEV design, 

policy and use. The content in this chapter is based on the publication by Shiau et al. (2009). 

4.1 Plug-in Hybrid Systems 

All PHEVs have a drivetrain that incorporates an electric motor and an internal 

combustion engine (ICE), and like conventional hybrid electric vehicles (HEVs) these 

components can be arranged in (1) series, (2) parallel, or (3) split configurations (Frank, 2007). 

In a series configuration, the engine provides electrical power through a generator to charge the 

battery and power the motor, and the motor provides torque to the wheels. The primary 

advantage of the series configuration is the ability to size the engine for average, rather than peak, 

energy needs and run it at its most efficient operating point. However, relatively large batteries 

and motors are required to satisfy peak power requirements, and efficiency losses are inherent in 

converting mechanical energy to electrical energy and back to mechanical energy again. In a 

parallel configuration, such as the Honda Civic and Accord hybrids, the engine and motor both 

provide torque to the wheels, and the engine charges the battery only by applying torque to the 

motor in reverse – there is no separate generator. Because the engine provides torque to the 

wheels, the battery and motor can be sized smaller, but the engine is not free to operate at its 

most efficient point. A split powertrain, such as the one used in the popular Toyota Prius, uses a 

planetary gear system power split device and a separate motor and generator to allow the engine 

to provide torque to the wheels and/or charge the battery through the generator, depending on use 

conditions. The split drivetrain has the benefits of the series and parallel systems, but it requires 

more components. 

The hybrid drivetrain has several advantages in terms of improving vehicle efficiency. 

First, the additional electric motor enables the engine to operate at its most efficient load more of 
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the time, utilizing the batteries to smooth out spikes in power demand. Second, having an 

additional source of power in the form of an electric motor enables designers to select smaller 

engine designs with higher fuel efficiency and lower torque capabilities. Third, HEV and PHEV 

powertrains enable energy that is otherwise lost in braking to be captured to charge the battery 

and enable the engine to be shut off rather than idling when the vehicle is at rest – both of which 

reduce energy waste during vehicle operations, especially in urban driving conditions. 

We focus on the split configuration in our PHEV study because of its flexibility to 

perform similarly to a parallel or series drivetrain. The block diagrams in Figure 4.1 show the 

structure of the powertrain system in a split PHEV and its energy flow during operation. The 

structure of a PHEV is similar to that of an ordinary HEV, except the PHEV carries a larger 

battery pack and offers plug-charging capability (Frank, 2007). PHEVs store energy from the 

electrical grid (produced from a variety of energy sources at power plants) to partially offset 

gasoline use for propulsion. The system has two energy storage devices – a fuel tank for gasoline 

and a battery pack for electricity – and three power generation devices – an internal combustion 

engine, a traction motor and a control motor. The traction motor has higher power output than 

the control motor and delivers major electrical energy to propel the vehicle. The smaller control 

motor assists the engine to operate near its optimal efficiency range and balances torque and 

speed requirements. The power from the engine and motors is coupled by a planetary gear set 

and then delivered to the wheels. There are two different energy flow paths: electricity energy 

flow and gasoline energy flow. All electricity flow is bidirectional because the two motors can 

function as generators. 



 

7
3
 

 

 

 

 

 

 

 
Figure 4.1 Energy flow in a PHEV with a split powertrain system 
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The battery of a PHEV, which can be recharged using conventional electrical outlets, 

would allow the vehicle to drive for a limited range using energy from the electricity grid. A 

fully charged PHEV operates in charge-depleting mode (CD mode) until the battery is depleted 

to a target state of charge (SOC), at which point the vehicle switches to charge-sustaining mode 

(CS mode), using the engine to maintain the target SOC. A PHEV can be further categorized as 

(1) all-electric or (2) blended, depending on its energy management strategy in the charge-

depleting state (Bradley and Frank, 2009).  An all-electric PHEV functions as a pure electric 

vehicle (EV) in CD mode, using only electrical energy from the battery for propulsion and 

disabling any engine operation. Blended PHEVs invoke a strategy where the motor provides 

primary power in charge-depleting mode, but the engine is used as needed to provide additional 

power. In the charge-sustaining state, all PHEVs operate similarly to a standard HEV, using the 

engine to maintain the target battery SOC. 

Since the performance of blended PHEV can vary widely based on a broad range of 

control strategy parameters, for simplicity and fair comparisons we restrict attention to all-

electric PHEVs, which disables engine operation in CD mode and draws propulsion energy 

entirely from the battery until it reaches a target SOC, as shown in Figure 4.1. The distance that a 

PHEV can travel on electricity alone with a fully charged battery is called its all-electric range 

(AER)
27

. Once the driving distance reaches the AER and the battery is depleted to the target 

SOC, the PHEV switches to operate in CS mode, and the gasoline engine provides energy to 

propel the vehicle and maintain battery charge near the target SOC. In CS mode, the PHEV 

operates similar to an ordinary HEV. 

                                                 
27

 AER is defined as energy-equivalent electric propulsion distance for blended mode PHEVs, but we consider 

only all-electric PHEVs here (Markel et al., 2006). 
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The battery diagram in Figure 4.1 presents several definitions relevant to battery capacity. 

Total battery capacity is determined by the physical charge limits of the battery. Since 

manufacturing variability implies that every battery cell has a different physical charge limit, 

battery manufacturers often define 100% SOC at a more controllable level under the upper limit. 

The capacity window between 0% and 100% defines the usable capacity of the battery. 

Maximum, target, and minimum SOC are further determined by hybrid vehicle designers based 

on their design application. We define the capacity window between maximum and target SOC 

as design swing, and the ratio of discharged capacity to the usable capacity as depth of discharge 

(DOD), where DOD is a function of driving distance s. We further define state of energy (SOE) 

as the percent of energy remaining in the battery: SOE = energy remaining / energy capacity. If 

the battery voltage is constant with SOC, then SOC and SOE are equivalent; however, we use 

SOE in our model to account for voltage variation and focus on the quantity of interest. 

4.2 Effects of Battery Weight on PHEVs 

Since PHEVs rely on large storage batteries for any economic or environmental benefits 

relative to traditional hybrids and ICE vehicles, the characteristics and design issues associated 

with PHEV batteries play an important role in the potential adoption of PHEVs. Consumer 

acceptance and adoption will mainly depend on battery cost, operating cost, power and 

performance, battery cycle and calendar life, and safety, among other characteristics. Overviews 

of the current state of battery technology for PHEV applications as well as future goals are 

provided in (Burke, 2007; Kalhammer et al., 2007; Karden et al., 2007; Axsen et al., 2008). The 

two current dominant battery technologies considered likely candidates for PHEV applications 

are nickel-metal hydride (NiMH) and lithium-ion (Li-ion) batteries. NiMH batteries have 

performed well and have proven reliable in existing hybrids vehicles (Kalhammer et al., 2007). 
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However, their relatively low energy density (Wh/liter) and specific energy (Wh/kg) implies 

large, heavy batteries for extended electric travel. Li-ion batteries have higher energy density and 

specific energy and are benefiting from increased technological advancement, but concerns 

regarding calendar life, and safety (internal corrosion and high environment temperatures could 

cause Li-ion batteries to combust) (Karden et al., 2007). Another issue is that both batteries self-

discharge more rapidly at high temperature, which reduces charge capacity and battery life 

(Axsen et al., 2008). In spite of the technical difficulties to be overcome, Li-ion batteries have 

been widely evaluated for their great potential as PHEV energy storage devices (Burke, 2007; 

Kalhammer et al., 2007; Karden et al., 2007; Axsen et al., 2008), thus we focus on Li-ion 

batteries in this study. 

The energy required to produce the raw materials and manufacture the Li-ion battery 

have been estimated to account for approximately 2-5% of the life cycle GHG emissions from a 

PHEV, which is relatively small if the original battery can last the life of the vehicle (Samaras 

and Meisterling, 2008).  During vehicle operation, the battery mass in PHEVs is large enough to 

affect fuel economy and acceleration. Due to data constraints, previous studies evaluating the 

GHG benefits of PHEVs assumed that the additional weight of potentially large storage batteries 

did not affect the gasoline fuel economy or the electrical requirements for propulsion. Zervas and 

Lazarou (2008) presented relationships between ICE vehicle weight and CO2 emissions and 

argued that exploring weight thresholds for passengers cars in the European Union could help 

reduce GHGs from passenger transportation. Furthermore, a preliminary regression estimation of 

the impact of weight and power on traditional hybrids found that weight decreases hybrid fuel 

economy (Reynolds and Kandlikar, 2007). Hence, technical sensitivity analysis is warranted to 
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explore the impact of additional battery and potential structural weight on fuel consumption, 

greenhouse gas emissions, and operating costs of PHEVs. 

Conventional vehicles (CVs) that hold more fuel can travel farther without refueling. 

Similarly, PHEVs with larger battery capacity can travel farther on electricity before drawing on 

liquid fuel. However, batteries have a considerably lower specific energy than liquid fuel: When 

a vehicle is filled with 10 gallons (38 liters) of gasoline, it contains approximately 360 kWh of 

energy embodied in the fuel. The vehicle weighs an additional 28 kg, and it gradually loses those 

that weight as the fuel is combusted in the engine. In contrast, a PHEV battery pack may contain 

3-30 kWh and weigh 30-300 kg plus the additional vehicle structural weight required to carry 

these batteries, and the vehicle must carry this weight even after the battery is depleted. 

Additional battery weight decreases the attainable efficiency in miles per kWh in CD-mode as 

well as miles per gallon in CS mode (once the battery is depleted to its lower target SOC). Thus, 

while increased battery capacity extends AER, it decreases efficiency in both CD and CS modes. 

Because extra battery weight may require additional structural support in the vehicle 

body and chassis, we investigate the effects of additional weight needed to support each 

additional kg of battery and impose a parameter called the structural weight multiplier. Via 

informal discussions with several automakers, we estimate that this multiplier is typically around 

+1x (one kg of additional structural weight required per kg of battery) with a range of +0x (no 

additional weight required) to +2x (two kg of additional structural weight required per kg of 

battery). The requirement for the additional structural weight is dependent on the vehicle type 

and its design. For example, if a vehicle base structure is optimized for light weight, then adding 

batteries may require additional structural elements to support the weight of batteries and the 

additional weight of the structure itself will call for more structural support. On the other hand, if 
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a vehicle is weight-constrained by other considerations, such as crash-test performance or 

hauling capacity, the vehicle may require only limited structural weight to support the added 

batteries. We assume that one kg of additional structural weight is required for each kg added to 

the vehicle (+1x case) as our base case, and we investigate the +0x and +2x cases for the purpose 

of sensitivity analysis. We also account for the weight of larger electric motors required to 

maintain target performance characteristics in heavier vehicles. Particularly we size the motor of 

each vehicle such that it can perform 0-60 miles per hour (mph) acceleration in a time 

comparable to the general vehicle specification (10-10.5 seconds) when the vehicle is in CS 

mode. 

4.3 Method 

4.3.1 PHEV Simulation 

We use the U.S. Department of Energy Powertrain System Analysis Toolkit (PSAT) 

vehicle physics simulator (Argonne National Laboratory, 2008) to model and examine design 

tradeoffs between battery capacity and PHEV benefits. PSAT is a forward-looking vehicle 

simulator, meaning it models the driver as a control system that attempts to follow a target 

driving cycle of defined vehicle speed at every time step by actuating the accelerator and brake 

pedals. For the PHEV simulations in our study, we used the model year 2004 Toyota Prius as a 

baseline for engine, body and powertrain configurations.
28

 Additional battery capacity was added 

to the base configuration in order to attain a set of AER requirements, and the electric motor was 

scaled to maintain acceleration characteristics at low SOC. The PSAT split hybrid control 

                                                 
28

 We use the default MY04 Prius configurations in the PSAT software package. The vehicle body weight is 824 

kg, drag coefficient is 0.26, frontal area is 2.25 m
2
, tire specification is P175/65 R14, and front/rear weight ratio is 

0.6/0.4. 
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strategy for maximum engine efficiency was modified so that the vehicle operates in electric 

only CD-mode without engaging the engine until the battery reaches 35% SOC, after which time 

the vehicle switches to CS mode and operates like a Toyota Prius, using the split control strategy 

with a target SOC of 35% and SOC operating range of 30-40%. 

The design variables controlled in this study are the number of battery modules and the 

size (power scaling factor) of the electric motor. The engine model is a 1.4 liter four-cylinder 

engine with a 57 kW maximum power. The base motor is a permanent magnet type with a 

maximum peak power of 52 kW and a weight of 40 kg including a 5kg controller. Performance 

map and weight characteristics of larger motors needed for the PHEV cases are predicted using a 

motor scaling parameter.
29

 The battery model is based on a Saft Li-ion battery package, where 

each module is comprised of three cells in series with a specific energy adjusted to 100 Wh/kg 

(Kalhammer et al., 2007). The weight of each cell is 0.173 kg, and its capacity is 6 Ah with a 

nominal output voltage of 3.6 volts. Accounting for the weight of packaging using a factor of 

1.25, the weight of one 3-cell module is 0.65 kg. The total battery size and capacity was scaled 

by specifying an integer number of battery modules.
30

 Additional structural weight in the body 

and chassis required to support the weight of the battery and motor are controlled by the 

structural weight multiplier. In order to compare the performance of HEV to PHEVs using 

comparable technology and prices, we use the current Prius model as our HEV base case but 

replace its original NiMH battery and control strategy with the Saft Li-ion battery module and a 

simplified split control strategy.
31

 The CV in our study is simulated by using a Honda Civic 

configuration in the PSAT package with an altered car body and tires to match Prius 

                                                 
29

 The performance map and motor and controller weight are scaled linearly with peak power. 
30

 Results of PHEV simulation may vary depending on battery configuration. In this study we assume that 

battery modules are arranged in series for simplicity. 
31

 We assume a target SOC at 55% (Kelly et al., 2002) for the base HEV, and the number of Li-ion battery 

modules is adjusted to match the original NiMH battery capacity of 1.3 kWh. 



80 

 

specifications. The engine, motor and battery configurations of the base HEV and CV are shown 

in the last two columns of Table 4.1. 

Simulations were performed to test PHEVs with 7-, 20-, 40-, and 60-mile AERs (PHEV7, 

PHEV20, PHEV40 and PHEV60, respectively)
32

 under three cases of structural weight 

multipliers +0x, +1x, and +2x. We used the EPA Urban Dynamometer Driving Schedule (UDDS) 

driving cycle (EPA, 1996) to measure fuel efficiency in CS mode and electricity efficiency in 

CD-mode in the vehicle simulations. In each test, the number of battery modules needed to reach 

the target AER was first determined. To compare equivalent-performance vehicles, motor size 

(power) was then adjusted to achieve a 0-60 mph acceleration time specification of 10 +0.5/-0.0 

seconds, which is approximately the acceleration performance of a Toyota Prius. This procedure 

was repeated iteratively until convergence to a vehicle profile that satisfies both required AER 

and acceleration specifications for each case. 

4.3.2 Economic and GHG Parameters 

The PHEV operation costs in this study are evaluated based on an electricity charging 

cost of $0.11 per kWh and retail gasoline price $3.00 per gallon ($0.80 per liter), which were 

similar to U.S. prices in 2007 (EIA, 2008). Sensitivity to changes in energy prices is evaluated in 

Section 4.3.2. The total operating cost to travel a particular distance is the sum of the cost of the 

electricity needed to charge the battery
33

 and the cost of the gasoline used. For distances less than 

the AER, the battery was only charged as much as needed for the trip. For distances greater than 

the AER, the battery was charged to the maximum SOC. Moreover, in order to calculate the 

vehicle cost, we estimated the vehicle base cost, excluding the Li-ion battery, using the Prius 

                                                 
32

 We use the notation PHEVx to denote a PHEV with an AER of x miles. 
33

 We assume an 88% charging efficiency between outlet and PHEV battery (EPRI, 2007). 
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MSRP less its NiMH battery cost of $3,900 (Naughton, 2008), resulting in a vehicle base cost of 

$17,600. The base total battery capacity cost is assumed to be $1,000 per kWh (Lemoine et al., 

2008), and a future low cost cases are examined in a sensitivity analysis.
34

 The same base vehicle 

cost is used in our cost estimation for the CV, HEV and PHEV. 

Life cycle GHGs are expressed in kg CO2-equivalent (kg-CO2-eq) with a 100-year 

timescale (IPCC, 2001). The GHG emissions calculations in this study assume a U.S. average 

grid mix of 0.730 kg of CO2-eq emitted per kWh of electricity charged to the PHEV battery
35

, 

and 11.34 kg of CO2-eq per gallon of gasoline (3.0 kg CO2-eq per liter).
36

 We further assume 

8,500 kg CO2-eq per vehicle for vehicle manufacturing (excluding emissions from battery 

production) plus 120 kg CO2-eq for each kWh of Li-ion battery capacity produced (Samaras and 

Meisterling, 2008). These values represent the U.S. average life cycle emissions, including 

combustion and the upstream fuel cycle impacts. 

4.4 Results and Discussion 

The final PHEV configurations and simulation results are shown in Table 4.1, which 

reveal that additional weight affects required battery capacity, CD-mode electrical efficiency, CS 

mode gasoline fuel efficiency, operation cost per mile, and GHG emissions per mile. Greater 

motor power is needed to achieve baseline acceleration performance as the vehicle weight 

increases, although the weight of the larger motor itself is small compared to the additional 

battery weight. Increased weight also requires more batteries to achieve a target AER, creating a 

compounding effect. Further, the additional battery volume of large capacity PHEVs may cause 

                                                 
34

 We intend total battery capacity cost to account for the full cost implications of adding battery capacity to the 

vehicle, including cell, packaging, wiring, controls, assembly, and increased structural and motor requirements.. 
35

 We use life cycle electricity emissions at the power plant of 0.67 kg CO2-eq per kWh (Samaras and 

Meisterling, 2008), and we assume a 9% power transmission and distribution loss (EIA, 2008). 
36

 For gasoline, 8.81 kg CO2-eq per gallon (2.33 kg CO2-eq per liter) is generated in combustion and 2.54 kg 

CO2-eq per gallon (0.67 kg CO2-eq per liter) is emitted in the supply chain (EPA, 2006; Wang et al., 2007). 
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design feasibility issues and require significantly reduced cargo area and/or elimination of the 

spare tire.  

Based on the simulation results of CD-mode and CS-mode efficiency under fixed 0-

60mph acceleration specifications, Figure 4.2 shows the net effects of increasing AER on vehicle 

weight, efficiency, operation cost and operation-associated GHG emissions. We found that 

relationships are fairly linear in this range; increasing the target AER of a given PHEV by 10 

miles results in an additional ~95 kg of vehicle weight. This additional weight reduces CD-mode 

and CS-mode efficiencies by 0.10 mile/kWh and 0.68 mile/gal, respectively. These efficiency 

reductions cause an increase in vehicle operating costs of $0.40-$0.80 per 1000 miles in CD-

mode and CS-mode, respectively, and an increase in operation-associated GHG emissions of 3.0-

3.2 kg CO2-eq per 1000 miles in CD-mode and CS-mode, respectively. The linear regression 

functions for the +1x structural weight case are 
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0.010 5.67
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(4.1) 

where sAER is AER in miles, ηE and ηG are the CD-mode and CS-mode efficiencies in 

units of miles per kWh and miles per gallon respectively, cOP-CD and cOP-CS are the operation 

costs per 100 mile under CD and CS mode respectively, and νOP-CD and νOP-CS are operation 

GHG emissions in kg CO2-eq per 100 miles in CD- and CS-mode respectively. It should be 

noted that while costs and GHG emissions both increase with AER in CD and CS modes, this 

does not imply that total cost and emissions will increase, since PHEVs with larger AERs can 
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travel more miles on low cost, potentially low GHG electricity. These costs and emissions 

associated with efficiency losses are small relative to overall PHEV operation costs and 

emissions. In the following sections, we examine the effect of AER and charging frequency on 

fuel economy, operating cost, and GHG emissions. 

 

 

  

Figure 4.2 Effect of increasing target AER on PHEV operation performances 
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4.4.1 Operational Performance 

To compare the operational performances of different vehicle configurations, we examine 

three PHEV characteristics: fuel consumption (i.e. fuel economy), operational costs and 

operational GHG emissions. Because these three performance criteria depend on the distance 

traveled between charges, two key quantities are needed. For a distance s traveled between 

charges in a vehicle with an all-electric range of sAER, the distance traveled on electric in CD-

mode sE and the distance traveled on gasoline in CS-mode sG are calculated as 

AER

E

AER AER

AER

G

AER AER

if  

if  

0 if  

if  

s s s
s

s s s

s s
s

s s s s


 




 

 

 (4.2)  

The results of fuel economy (CS-mode efficiency) in Table 4.1 indicate that as the target AER 

increases from 7 miles to 60 miles, the modeled urban driving fuel economy decreases 7.4% 

from 51.5 miles per gallon (mpg) to 47.7 mpg in the +1x base case due to increased weight. This 

effect is reduced under lower structural weight assumptions and amplified for larger structural 

weight. The average fuel consumption per mile g is calculated by 

G

G

1 s
g

s 

 
  

 
 (4.3)  

where ηG is the fuel efficiency (mile per gallon of gasoline) in CS mode. Figure 4.3 shows the 

average fuel consumption for PHEVs compared to the HEV and CV. PHEVs consume no 

gasoline within the AER. Beyond the AER, fuel is consumed at a greater rate for heavier 

vehicles. The graph shows that PHEVs consume less gasoline than HEVs and CVs over the 

entire range of charging frequencies examined.  
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Table 4.1 PHEV configurations and performance results 
  

PHEV 
Structural weight factor +0x   +1x   +2x   HEV CV 

  Target AER (mile) 7 20 40 60   7 20 40 60   7 20 40 60   
  

Vehicle 

Design 

Engine 
Engine power (kW) 57 57 57 57   57 57 57 57   57 57 57 57   57 113 

Weight (kg) 114 114 114 114   114 114 114 114   114 114 114 114   114 251 

Motor 

Motor power (kW) 55 57 60 65   56 61 68 77   57 65 77 93   55   

Motor weight (kg) 37 38 40 43   37 41 45 51   38 43 51 62   37   

Controller weight (kg) 5 5 6 6   5 6 6 7   5 6 7 9   5   

Structural weight (kg) 0 0 0 0   3 7 12 19   7 19 38 62   0   

Total weight (kg) 42 44 46 50   46 53 64 78   51 69 97 133   42   

Battery 

Number of modules 46 123 248 376   46 127 260 408   46 130 276 444   20   

Number of cells 138 369 744 1128   138 381 780 1224   138 390 828 1332   60   

Battery volume (m
3
) 0.13  0.35  0.70  1.06    0.13  0.36  0.74  1.15    0.13  0.37  0.78  1.26    0.06    

Battery capacity (kWh) 3.0 8.0 16.1 24.4   3.0 8.2 16.8 26.4   3.0 8.4 17.9 28.8   1.3   

Battery weight (kg) 30 80 161 244   30 82 168 264   30 84 179 288   13   

Structural weight (kg) 0 0 0 0   17 69 156 251   34 143 332 550   0   

Total weight (kg) 30 80 161 244   47 152 324 516   64 227 511 837   13   

Vehicle Vehicle weight  (kg) 1516 1567 1651 1737   1536 1649 1832 2037   1558 1740 2051 2414   1499 1475 

Simulation 

Results 

CD 

mode 

Efficiency* (Wh/mile) 178 178 179 182   179 183 188 197   181 188 200 215   - - 

Simulation AER (mile) 7.5 20.2 40.4 60.2   7.5 20.2 40.3 60.2   7.4 20.2 40.3 60.3   - - 

CS 

mode 

Efficiency (gal/100 mile) 1.96 1.98 1.99 2.01   1.94 2.00 2.04 2.09   1.95 2.03 2.09 2.20   1.93 3.53 

0-60 mph time (sec) 10.2 10.2 10.3 10.1   10.2 10.1 10.2 10.2   10.1 10.1 10.3 10.2   10.1 10.3 

Operation 

Cost and 

GHG 

Emissions 

Oper.  

cost 

CD mode ($/mile) 0.022 0.022 0.022 0.023   0.022 0.023 0.024 0.025   0.023 0.023 0.025 0.027   - - 

CS mode ($/mile) 0.059 0.059 0.060 0.060   0.058 0.060 0.061 0.063   0.058 0.061 0.063 0.066   0.058 0.106 

Oper.  

GHGs 

CD mode (kg/mile) 0.148 0.148 0.149 0.151   0.148 0.152 0.156 0.164   0.150 0.156 0.166 0.178   - - 

CS mode (kg/mile) 0.222 0.225 0.226 0.228   0.220 0.227 0.232 0.237   0.221 0.230 0.237 0.249   0.219 0.400 

* Battery to wheels electrical efficiency is reported here. An 88% charging efficiency is used to estimate plug to wheels efficiency. 
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Figure 4.3 Operation-associated fuel consumption, GHG emission, and cost 

 

The second consideration is GHG emissions, which were calculated by including 

combustion and supply chain emissions associated with electricity νE = 0.730 kg CO2-eq per 

kWh, battery charging efficiency C = 88%, and gasoline νG = 11.34 kg CO2-eq per gal. The 

average operation-associated GHG emissions per mile νOP is calculated using the following 

equation: 
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 (4.4) 

Table 4.1 lists the GHG emissions per mile for each case in both CD and CS mode. The 

data show that the average life cycle GHG emissions associated with driving in CS mode are 

roughly 1.5 times those associated with CD mode. Figure 4.3 shows the average use phase GHG 

emissions per mile as a function of distance traveled between charges. For frequent charging, a 

smaller capacity PHEV minimizes operation-associated emissions. Larger capacity PHEVs are 

able to reduce more operational emissions for longer driving distance up to 100 miles. Generally 
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the results show that PHEVs have significantly lower operational GHG emissions than the HEV 

and CV for urban driving. 

The third performance characteristic is average operation cost, which represents the 

average consumer expense per mile associated with recharging cost and fuel expense. The 

average operation cost cOP is calculated by:
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1 ss c
c c

s   

 
  

 
 (4.5) 

where ηE is the electrical efficiency in CD mode, C is the battery charging efficiency, cE is the 

cost of electricity, and cG is gasoline cost. Figure 4.3 shows the average operation cost per mile 

for CD and CS mode under the three structural weight multiplier cases assuming cE = $0.11 per 

kWh, C = 88% and cG = $3.00 per gallon. Larger capacity PHEVs are heavier, thus increasing 

the operation cost in both CD and CS mode; however, they also extend the distance that the 

vehicle operates in the less-expensive CD mode. Figure 4.3 shows the average operation cost per 

mile as a function of distance between charges. For frequent charges, a PHEV with an AER 

approximately equal to the distance between charges minimizes the operation cost. Each PHEV 

has clear operation cost advantages when the driving distance between charges is less than or 

equal to its AER. Once the driving distance extends beyond the AER, the operational costs of 

PHEVs increase rapidly. For urban driving distances less than 100 miles, all PHEVs have lower 

operation costs than the HEV and CV.  
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4.3.2 Results and Sensitivity Analyses 

In this section, we analyze the net GHG emissions and net costs by combining the values 

in the use (operating) phase and production (manufacturing) phase. We also conduct several 

sensitivity analyses on the parameters listed in Table 4.2. To account for net lifecycle GHG 

emissions over the vehicle life, we add the operation GHG emissions vOP (Eq. (4.4)) to the 

emissions associated with vehicle and battery manufacturing: 

 TOT OP VEH BAT

LIFE

1

s
        (4.6) 

where νVEH = 8,500 kg CO2-eq is the assumed life cycle GHG emissions of vehicle 

manufacturing excluding its battery and νBAT = 120 kg CO2-eq per kWh is the life cycle GHG 

emissions of batteries (Lemoine, 2008; Samaras and Meisterling, 2008). The resulting total GHG 

emissions for the base case and the other five scenarios are shown in Figure 4.4. It can be seen 

that all of the PHEVs reduce GHG emissions compared to the HEV and CV, and the PHEV7 has 

the lowest average GHG emissions for small trips under the average U.S. grid mix. New battery 

technology with a high specific energy of 140 Wh/kg  (USABC, 2008) or a high SOC operating 

range (swing of 80%) implies reduced battery requirements, which lowers emissions associated 

with all PHEVs; however, general trends remain unchanged. Low-carbon electricity with 

average battery charging emissions of 0.218 kg CO2-eq per kWh (0.2 kg CO2-eq per kWh at the 

power plant with 9% transmission loss) would significantly lower GHG emissions from PHEVs. 
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Figure 4.4 Lifetime GHGs per lifetime miles driven as a function of the distance driven between 

charges 

 

Table 4.2 Parameter levels for sensitivity analyses 

Sensitivity analysis parameter Unit Low level Base level High level 

Structural weight – +0x +1x +2x 

Discount rate % 0 5 10 

Gas price $/gal 1.5 3 6 

Battery SOC swing % – 50 80 

Battery specific energy Wh/kg – 100 140 

Battery replacement frequency over life – – 0 1 

Electricity price $/kWh 0.06 0.11 0.30 

Total battery capacity cost $/kWh {250,500} 1000 – 

CO2 lifecycle emissions in electricity kg-CO2-eq/kWh 0.218 0.730 – 

Carbon tax $/ton – 0 100 
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The net cost implications over the vehicle lifetime is calculated by considering the 

vehicle base cost, battery purchase price, and net present value of operation costs, battery 

replacement cost, and costs imposed by a potential tax on CO2. The equation for the net present 

value of lifetime cost per mile is given by 
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 (4.7) 

We assume that the annual vehicle miles traveled sANUL = 12,500 miles (20,000 km) (EPA, 2005), 

the vehicle lifetime N = 12 years, and thus vehicle lifetime mileage sLIFE = 150,000 miles 

(240,000 km). Vehicle purchase cost includes the vehicle base cost (excluding the battery) cVEH 

= $17,600 plus battery cost calculated by total battery capacity cost cBAT = $1,000 per kWh 

multiplied by battery capacity κ, in kWh. The second term in Eq. (4.7) is net present value of 

operation costs cOP (Eq. (4.5)) plus the carbon tax paid for operation over vehicle’s lifetime. The 

carbon tax is estimated by tax rate ρ per kg-CO2-eq and operational GHG emission per mile υOP 

(Eq. (4.4)), conservatively assuming a consumer would bear the full cost of a carbon tax imposed 

on producers. The net present value of annual operational costs and carbon taxes are calculated 

using a discount rate r. The third term is carbon tax cost for the GHG emissions of vehicle and 

battery manufacturing, νVEH and νBAT, respectively. The last term is the present value of battery 

replacement cost with carbon tax on the battery if a replacement occurs, where γ = 0 for no 

battery replacement and γ = 1 for one time replacement at half vehicle life (the 6th year). The 

parameters for the base case study are listed in the center column of Table 4.2, including +1x 

structural weight, 5% discount rate, $3.00/gal gasoline price, 50% battery SOC swing (80-30%), 

battery specific energy 100 Wh/kg, no battery replacement over vehicle life, total battery 
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capacity cost $1000/kWh, average U.S. electricity mix, and no carbon tax (ρ = 0). The cost 

analysis results of the base case are shown in Figure 4.5. It can be seen that the small PHEV7 has 

the best economic performance for frequent charges within ~20 miles. When the driving distance 

between charges becomes longer, the HEV is less expensive. We also found that the PHEV20 

and the CV are have similar costs, which are slightly higher than the HEV, while large capacity 

PHEVs have significantly higher average costs over their lifetime. The relative benefit of the 

HEV over the CV is based on a $1000/kWh assumption, which is less expensive than past NiMH 

battery costs reported for the Prius (Naughton, 2008). 

For the sensitivity analyses shown in Figure 4.5, we found that increase or decrease of 

structural weight does not alter the rank of vehicle cost competitiveness; however, the cost of 

large PHEVs is more sensitive to structural weight increases. If the battery must be replaced at 

half of the vehicle’s life, the cost of PHEV7 and HEV are somewhat affected, but the average 

costs of medium and large PHEVs surge due to their high battery costs. Low gasoline prices of 

$1.50/gal make PHEVs less competitive, although the small capacity PHEV7 is comparable with 

the HEV and CV. High prices of $6.00/gal increase the cost-competitiveness of PHEVs and 

make the small capacity PHEV7 competitive for all driving distances. However, larger PHEVs 

are still more costly than the HEV. Low off-peak electricity prices of $0.06/kWh make PHEVs 

only slightly more cost competitive, and high peak electricity prices of $0.30/kWh make the 

HEV the low-cost option, although the small capacity PHEV7 remains close in cost (Cherry, 

2009). Low consumer discount rates (0%) improve PHEV competitiveness and high discount 

rates (10%) make PHEVs less competitive, but in all cases the PHEV7 is competitive for drivers 

who charge frequently, and it is similar to HEV costs when charged infrequently. Total battery 

capacity costs of $500/kWh further improve cost competitiveness of the PHEV7, and cheap costs 
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of $250 per kWh would significantly increase competitiveness of PHEVs, making them similar 

to or less expensive than HEVs and CVs across all distances driven between charges. A battery 

technology with an increased SOC swing, which would allow more of the battery’s physical 

capacity to be used in operation, would also improve PHEV competitiveness, making moderate 

ranged PHEVs cost competitive with the HEV and CV. A $100 tax per metric ton of GHG 

emissions ($0.1 per kg-CO2-eq) associated with production and use would not improve PHEV 

competitiveness significantly under the current electricity grid mix. This result is consistent with 

the high carbon abatement costs for PHEVs estimated by Kammen (2008) and Lemoine (2008). 

However, a carbon tax combined with low-carbon electricity at current prices would improve 

competitiveness of PHEVs and make the PHEV7 less costly for all drivers. 

4.3.3 Vehicle selection decisions  

Figure 4.6 summarizes the best vehicle choice for minimizing fuel consumption, lifetime 

cost, or lifetime greenhouse gas emissions as a function of the distance the vehicle will be driven 

between charges. For short distances of less than 10 miles between charges, the PHEV7 is the 

robust choice for minimizing gasoline consumption, cost, and emissions. For moderate to long 

distances of 20-100 miles between charges, PHEVs release fewer GHG, but HEVs are generally 

less costly, even under a $100 carbon tax. High gas prices, improved battery technology with low 

cost or a high SOC swing, or low-carbon electricity combined with carbon tax policy can make 

PHEVs economically competitive over a wider range. However, large-capacity PHEVs are not 

the low cost choices under any scenario. 
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Figure 4.5 NPV of vehicle lifetime costs per lifetime miles driven as a function of the distance driven between charges 
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Figure 4.6 Best vehicle choice as a function of distance driven between charges 
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4.3.4 Vehicle Efficiency Simulation  

The PSAT simulation predicts a PHEV electrical efficiency ηE of about 4.6-5.6 miles/kWh 

(equal to 178-215 Wh/mile) from battery to wheel, or about 4-5 miles/kWh (equal to 202-244 

Wh/mile) from plug to wheel for the UDDS urban driving cycle, which are on the upper end of 

values previously reported in the literature. Since PHEVs have not been deployed on a large 

scale, uncertainty remains regarding the actual value of ηE achieved. Several factors might have 

influenced the ηE reported by PSAT. These include the possibility of omitted losses or loads (e.g. 

battery HVAC systems or other electrical loads) and our focus on an urban driving cycle. In 

addition to vehicle weight, driving systems and environment (temperature, terrain, vehicle hotel 

loads, driving characteristics) could also affect values of ηE. Given the importance of efficiency 

predictions in determining economic and environmental implications, more data from PHEVs 

operating on the road is needed to reduce uncertainty. 

4.4 Summary 

Our study results indicate that the impacts of battery weight on CD-mode electrical 

efficiency and CS-mode fuel economy are measurable, about a 10% increase in Wh/mile and an 

8% increase in gallons per mile when moving from a PHEV7 to a PHEV60. This implies that the 

additional weight of a PHEV60 results in a 10% increase in operation-related costs and 

greenhouse gas emissions per mile relative to a PHEV7 for drivers who charge frequently (every 

7 miles or less). 

The best choice of PHEV battery capacity depends critically on the distance that the 

vehicle will be driven between charges. But daytime vs. nighttime charging, geographic location, 

and effects of marginal changes in electricity demand on the mix of energy sources could all 



96 

 

affect implications associated with electrified transportation. Policy and planning should be 

employed to minimize negative impacts of PHEV adoption on the electricity grid. Our results 

suggest that for urban driving conditions and frequent charges every 10 miles or less, a low-

capacity PHEV sized with an AER of about 7 miles would be a robust choice for minimizing 

gasoline consumption, cost, and greenhouse gas emissions. For distances of ~10-20 miles, the 

PHEV7 has the lowest lifetime cost, and the PHEV20 has lower fuel consumption and GHG 

emissions. For less frequent charging, every 20-100 miles, PHEVs release fewer GHGs, but 

HEVs have lower lifetime costs. An increase in gas price, a decrease in the cost of usable battery 

capacity, or a carbon tax combined with low carbon electricity generation would make PHEV 

less costly for a wide range of drivers. In contrast, a battery technology that increases specific 

energy would not affect net cost and GHG emissions significantly, and a $100 per ton carbon tax 

without a corresponding drop in carbon intensity of electricity generation would not make 

PHEVs significantly more competitive. These results suggest that research on PHEV battery 

technology improvements would be better targeted toward cost reduction than improvement of 

specific energy, and the effect of carbon taxes on the PHEV market will depend on their effect 

on the electricity generation mix, such as encouraging renewables, carbon capture and 

sequestration, and nuclear. 

PHEVs perform best when the batteries are sized according to the charging patterns of 

the driver. Three potential complications arise when sizing PHEVs based on the number of miles 

that drivers travel: (1) if the variance in miles traveled per day is large, then a capacity designed 

for the average distance may be suboptimal; (2) it is unclear whether it is safe to assume that 

drivers will consistently charge their vehicles once per day – irregular charging behavior could 

lead to significantly longer distances between charges than the average daily distances would 
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suggest; and conversely; (3) widespread installation of charging infrastructure in public parking 

places would enable charging more than once per day, enabling shorter distances between 

charges.  

Across the scenarios examined, the small capacity PHEV outperforms larger capacity 

PHEVs on cost regardless of the consumer’s discount rate, and the larger PHEV40 and PHEV60 

do not offer the lowest lifetime cost in any scenario, although they provide GHG reductions for 

some drivers and the potential to shift air pollutant emissions away from population centers. The 

dominance of the small-capacity PHEV over larger-capacity PHEVs across the wide range of 

scenarios examined in this study suggests that government incentives designed to increase 

adoption of PHEVs may be best targeted toward adoption of small-capacity PHEVs by urban 

drivers who are able to charge frequently. Because nearly 50% of U.S. passenger vehicle miles 

are traveled by vehicles driving less than 20 miles per day (BTS, 2003; Samaras and Meisterling, 

2008), there remains significant potential in targeting this subset of drivers. Since the goals of 

reducing cost, GHG emissions and fuel consumption are well-aligned for drivers who will charge 

frequently, economic interest may lead to environmental solutions for these drivers if policies 

promote appropriate infrastructure and initial sales. In addition to targeted financial incentives, 

appropriate policies could include government fleet purchases, support for public charging 

infrastructure, as well as consumer education and clear labeling of gasoline and electricity 

consumption of PHEVs. 
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CHAPTER 5. OPTIMAL PHEV DESIGN FOR SOCIAL OBJECTIVES 

The analysis in Chapter 4 shows that PHEVs with frequent charges can drive most of 

their miles on electric power, even with a relatively small battery pack, while vehicles that are 

charged infrequently require larger battery packs to cover longer distances with electric power. 

This chapter extends the prior study and poses a mixed-integer nonlinear programming (MINLP) 

model to determine optimal vehicle design and optimal allocation of vehicles to drivers for the 

minimum petroleum consumption, life cycle cost and GHG emissions. With considering the 

factors of U.S. drivers’ daily driving patterns, battery degradation and replacement, battery swing 

design, and battery lease-purchase scenarios, design and policy implications of the optimal 

vehicle allocations are examined in various sensitivity analyses. The content in this chapter is 

based on a paper submission in review (Shiau et al., 2010). 

5.1 Model 

A benevolent dictator optimization model is proposed to determine optimal vehicle type, 

design, and allocation for achieving social objectives of minimum life cycle cost, GHG 

emissions, and petroleum consumption from personal transportation.
37

 Figure 5.1 shows an 

overview of the modeling framework. To optimize a single vehicle for minimum life cycle cost, 

petroleum consumption or GHG emissions over the population of drivers, we minimize the 

                                                 
37

 We model allocation of vehicles to drivers as a dictated assignment based on driver daily travel distance and 

do not model market mechanisms. As such, we find the best possible outcome for GHG emissions, which is a lower 

bound for market-based outcomes. 
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integral of the corresponding quantity per day at each driving distance fO(x,s) times the 

probability distribution of daily driving distances fS(s) in the population of drivers: 
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(5.1) 

where x is a vector of design variables that define the vehicle, s is the distance the vehicle is 

driven between charges, fO(x,s) is the value of the objective (equivalent cost, petroleum 

consumption, or GHG emissions) per day for vehicle design x with s miles driven per day, fS(s) 

is the probability density function for the number of miles driven per day, g(x) is a vector of 

inequality constraints and h(x)=0 is a vector of equality constraints ensuring a feasible vehicle 

design. 

 

  

Figure 5.1 Framework of optimal PHEV design and allocation 
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To extend this model to the case where different drivers are assigned different vehicles 

based on the number of miles driven per day, we incorporate a variable si that defines the cutoff 

point such that drivers who travel less than si per day are assigned the vehicle defined by xi and 

drivers who travel more than si per day are assigned the vehicle defined by xi+1. Extending this 

idea to multiple segments, the formulation for design and ordered allocation is given by 
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(5.2) 

In the following subsections, we first instantiate this formulation with specific models for the 

objective and constraint functions by specifying the distribution of miles driven per day, vehicle 

performance models, and the objective and constraint formulations. We then reformulate the 

model as a factorable, algebraic nonconvex MINLP that can be solved globally. 

5.1.1 Distribution of Vehicle Miles Travelled per Day 

We use daily trip data from the 2009 National Household Transportation Survey (NHTS) 

(BTS, 2010) to estimate the distribution of distances driven per day over the population of 

drivers. The survey collected data by interviewing 136,140 households across the U.S. on the 

mode of transportation, duration, distance and purpose of the trips taken on the survey day. We 

fit the weighted driving data using the exponential distribution.
38

 The distribution below 

represents the probability density function for weighted vehicle miles traveled on the day 

surveyed:  

                                                 
38

 We excluded data entries of public transportation and also excluded drivers who traveled zero miles or more 

than 200 miles. We fit the distribution to the reported distance traveled on the survey day with the assumptions of (1) 

the survey data are representative of the population, and (2) the distance driven on the survey day is the same 

distance driven every day for that vehicle. 
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Figure 5.2. Probability density function for vehicle miles traveled per day using NHTS 2009 

weighted daily trip mile data (BTS, 2010) 

 

 S ;   0sf s e s    (5.3) 

The coefficient λ at maximum likelihood fit is 0.0296. Figure 5.2 shows the exponential 

distribution and the histogram of the surveyed daily vehicle driving miles.
 39

 Because we lack 

multiple days of data for each vehicle, we assume that a vehicle that travels s miles per day on 

the NHTS survey day will travel s miles every day. This assumption will produce optimistic 

results on the benefits of optimal allocation, since distance traveled varies over time for 

individual vehicles in practice. 

5.1.2 Vehicle Performance Models 

We carry out vehicle performance simulations using the Powertrain System Analysis 

Toolkit (PSAT) vehicle physical simulator developed by Argonne National Laboratory (Argonne 

National Laboratory, 2008). PSAT is a Matlab/Simulink forward-looking simulation package 

that predicts vehicle performance characteristics at both the system level (e.g. fuel consumption) 

                                                 
39

 The deviation between data and the exponential fit in the 0-4 mile region has little effect on results because 0-

4 mile trips contribute little to the social objectives in this study (the curves in Figure 5.5(d), (e) and (f)) 
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and the component level (e.g. engine torque and speed at each time step) over a given driving 

cycle using a combination of first principles and empirical component data. In our study, the 

body, powertrain and vehicle parameters for all PHEV and HEV simulations are based on the 

2004 Toyota Prius model that uses the split powertrain system with an Atkinson engine, a 

permanent magnet motor, and a NiMH battery pack.
40

 To account for structural weight needed to 

carry heavy battery packs, we include an additional 1 kg of structural weight per 1 kg of battery 

and motor weight. We created a comparable conventional vehicle (CV) model using a 

conventional powertrain and 4-cylinder engine based on the Honda Accord to account for larger 

engine torque and power requirements, and the parameters that define the frontal area, drag 

coefficient and base weight are adjusted to match the Prius for fair comparison. The detailed 

vehicle configuration parameters are included in Table 5.1. 

 

Table 5.1 Vehicle configurations in simulation 

Module Property CV HEV PHEV 

Vehicle 

body & 

chassis 

F/R weight ratio 0.6/0.4 

Drag coefficient 0.26 

Frontal area (m
2
) 2.25 

Tire specification P175/65 R14 

Body mass (kg) 824 

Engine 
Power (kW) 126 57 30-60 

Mass (kg) 296 114 50-110 

Motor 
Power (kW) - 52 50-110 

Mass (kg) - 65 40-143 

Battery 
Number of cells - 168 200-1000 

Mass (kg) - 36 60-419 

Electrical 

accessory 
Average power 

consumption (kW) 
0.8 0.8 0.8 

 Net weight (kg) 1709 1520 1497-1995 

 

                                                 
40

 We use NiMH battery for HEV simulation since studies indicated that NiMH is specifically suitable for HEV 

technology and will be continuously used on HEVs in the future (Inderwildi et al., 2010). 
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For the PHEV design, the Prius engine size is scaled by the peak power output from the 

base engine (57 kW) using a linear scaling algorithm. Similarly, the motor is scaled from the 

base motor (52 kW) linearly. Both the engine and motor weights are also scaled proportionally to 

the peak power. We use the Saft Li-ion battery module in the PSAT package for the PHEV 

energy storage device. Each cell in the module weighs 0.378 kg, with a modified specific energy 

of 100 Wh/kg and has a battery cell energy capacity of 21.6 Wh with a nominal output voltage of 

3.6 volts. The weight of each 3-cell module is 1.42 kg after accounting for a packaging factor of 

1.25. The battery size and capacity are scaled by specifying the number of cells in the battery 

pack. We assume an 800W base electrical hotel load on the PHEV, the HEV and the CV. To 

estimate the performance of a PHEV, we use the standard Urban Dynamometer Driving 

Schedule (UDDS) driving cycle (EPA, 2007) to calculate simulated electrical efficiency 

(miles/kWh) in CD-mode for PHEVs, and fuel efficiency (mpg) in CS-mode for PHEVs as well 

as for HEVs and CVs. We also perform a simulated performance test to calculate the time 

required to accelerate the vehicle from 0 to 60 miles per hour (mph) in the CD-mode and in the 

CS mode.
41

 

Because the petroleum consumption, cost, and GHG emissions per mile associated with 

HEVs and CVs are independent of the number of miles driven per day, we focus on PHEV 

design and take the HEV and CV to have fixed designs. The HEV is identical to the Prius model, 

which has a configuration of peak engine power 57 kW, motor power 52 kW, NiMH battery size 

168 cells (1.3 kWh), fuel efficiency 60.1 miles per gallon, and 0-60 mph acceleration time 11.0 

seconds. Similarly, our CV has an engine size 126 kW and fuel efficiency 29.5 miles per gallon, 

and 0-60 mph acceleration time 11.0 seconds. For the PHEVs, the design variables x consist of 

                                                 
41

 Our simulation results are generally optimistic for all vehicles in that they do not account for factors such as 

cold start, vehicle wear, improper maintenance and tire pressure, aggressive driving cycles, use of significant 

accessories, or terrain and weather variation.  
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the engine scaling factor x1, motor scaling factor x2, battery pack scaling factor x3, and SOE 

swing x4. In order to avoid the computationally expensive process of executing a PSAT 

simulation for each function evaluation in the optimization algorithm, we created a set of 

polynomial meta-model fits as functions of x for the PHEV using discrete simulation data points: 

(1) CD-mode electricity efficiency E (mile per kWh); (2) CS-mode fuel efficiency G (mile per 

gallon); (3) CD-mode 0-60 mph acceleration time tCD (second); (4) CS-mode 0-60 mph 

acceleration time tCS (second); (5) CD-mode battery energy processed per mile μCD (kWh/mile); 

(6) CS-mode battery energy processed per mile μCS (kWh/mile); and (7) final SOC after multiple 

US06 aggressive driving cycles in CS mode uCS (starting at the target SOC). We evaluated the 

four output values using PSAT over a grid of values for the inputs x1={30, 45, 60}/57, x2={50, 

70, 90, 110}/52, x3={200, 400, 600, 800, 1000}/1000 and multivariate polynomial functions 

were fit to the data using least squares.
42

 The general form of the cubic fitting function fm3 is 

defined as (the subscript 3 indicates the PHEV case, which will be discussed later). 

  3 3 3 2 2 2 2

3 1 1 2 2 3 3 4 1 5 1 2 6 1 3 7 1 3

2 2 2 2 2

8 2 3 9 2 3 10 1 2 3 11 1 12 2 13 3

14 1 2 15 1 3 16 2 3 17 1 18 2 19 3 20

             

             

m m m m m m m m

m m m m m m

m m m i m m m

f a x a x a x a x a x x a x x a x x

a x x a x x a x x x a x a x a x

a x x a x x a x x a x a x a x a

      

     

      

x

 (5.4) 

where the am terms are the coefficients for function m. The polynomial fitting coefficients for E, 

G, tCD, tCS, μCD, μCS and uCS are listed in Table 5.2.
43

 The maximum metamodel error among the 

test points is 0.1 miles/kWh, 0.1 miles/gallon, 0.5 seconds, 0.02 kWh, and 0.5% for electrical 

efficiency, gasoline efficiency, acceleration time, energy processed, and final SOC, respectively. 

  

                                                 
42

 SOE design swing specification (x4) is not relevant for these performance tests. 
43

 We truncated the acceleration data points greater than 13.0 seconds to improve the metamodel fit, and fit μCD, 

μCS and uCS using quadratic terms to avoid over-fitting. 
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Table 5.2 Polynomial coefficients of the PHEV performance meta-model 
fm3 ηE ηG tCD tCS μCD

*
 μCS

*
 uCS

*
 

m 1 2 3 4 5 6 7 

am1 0.008 2.214 1.457 3.334    

am2 0.154 1.087 -5.496 -2.266    

am3 0.353 5.578 -28.46 -20.26    

am4 -0.005 -0.815 0.913 0.414    

am5 -0.005 0.510 -0.881 -3.524    

am6 -0.025 1.562 -1.050 -0.286    

am7 0.000 2.212 -0.308 -10.11    

am8 -0.057 -0.613 2.044 1.951    

am9 -0.043 0.254 15.61 10.31    

am10 -0.016 -0.159 0.336 5.808    

am11 -0.001 -8.906 -4.634 -6.932 0.010 0.466 -0.194 

am12 -0.805 -6.095 31.48 15.80 0.011 -0.008 -0.005 

am13 -0.656 -15.21 34.02 39.20 0.053 -0.018 0.047 

am14 0.057 0.089 1.153 7.901 0.000 -0.014 0.000 

am15 0.080 -3.274 1.169 6.582 0.008 -0.038 0.011 

am16 0.342 2.498 -32.06 -30.12 -0.003 0.010 -0.001 

am17 -0.191 2.622 3.405 -6.734 0.097 -0.890 0.382 

am18 1.189 9.285 -54.47 -26.39 0.038 0.077 0.019 

am19 -0.347 5.837 9.570 -4.098 0.370 0.400 -0.077 

am20 4.960 57.68 44.23 32.10 2.196 1.441 0.140 
*
 The terms are fit with quadratic form. 

 

5.1.3 Electric Travel and Battery Degradation 

To calculate each objective function, we first define the distance driven on electric power 

sE and the distance driven on gasoline sG as a function of the vehicle’s AER sAER and the total 

distance driven per day s. Based on the same structure of Eq. (4.2), sE and sG are given by 
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(5.5) 

We assume that PHEVs travelled in a distance less than the AER the battery are charged as much 

as needed for the trip, and the battery is fully charged for distances greater than the AER. For 

HEVs and CVs, there is no electrical travel; thus HEV and CV can be seen as special cases with 
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sAER = 0, so that sE = 0 and sG = s. Assuming constant efficiencyE (mile per kWh) in CD-mode, 

the AER of a PHEV can be calculated from the energy capacity per battery cell κ = 0.0216 

kWh/cell, the (scaled) number of cells x3, and the design swing x4: 

   AER 3 4 E1000s x x x  
(5.6) 

We consider two distinct battery degradation models from the literature and examine 

their implications for PHEV design. The Rosenkranz model, which has been used in prior PHEV 

studies (Markel and Simpson, 2006; Simpson, 2006; Kromer and Heywood, 2009; Amjad et al., 

2010; Brooker et al., 2010), views battery degradation as a function of DOD per charge cycle, as 

shown in Figure 5.3(a), which cannot predict additional degradation due to energy use in CS 

mode. In contrast, the Peterson model (2010) was constructed by cycling modern A123 LiFePO4 

cells under representative driving cycles (non-constant C-rate) and measuring capacity fade as a 

function of energy processed, including intermediate charging and discharging over the driving 

cycle. Results show relative energy capacity fade as a linear function of normalized energy 

processed, as shown in Figure 5.3(b).  

 

Figure 5.3 (a) Rosenkranz DOD-based degradation model; (b) Peterson energy-based 

degradation model 
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Peterson model: The daily energy processed while driving wDRV and charging wCHG a 

PHEV can be expressed as: 

 

 

DRV CD E CS G

E
CHG

E B

,

,

w s s s

s
w s

 

 

 



x

x
 

(5.7) 

where μCD and μCS are energy processed per mile (kWh/mile) in CD and CS mode, respectively,  

and battery charging efficiency ηB = 95% (Peterson, 2009). We assume that energy processed for 

daily charging is equal to net energy consumed in electrical travel per day. The relative energy 

capacity decrease can be calculated by the energy processed in driving and charging per cycle 

per cell per original cell energy capacity: 

  DRV DRV CHG CHG
P

3

,
1000

w w
r s

x

 




x  

(5.8) 

where αDRV = 3.46×10
-5

 (kWh/kWh) and αCHG = 1.72×10
-5

 (Wh/Wh) are the normalized 

coefficients for relative energy capacity fade (Peterson, 2009). If the battery end-of-life is 

defined as the point when the drop in relative energy capacity is rEOL, the battery life θBAT, 

measured in days (or, equivalently, cycles), can be calculated as 

 
   

EOL 3 EOL
BAT 1

P DRV CD E CS G CHG E E B

1000
,

r x r
s

r s s s




     


 
 

x  
(5.9) 

The rEOL criterion is defined at 20% (Peterson et al., 2010). 

Rosenkranz model: To estimate battery life using the Rosenkranz model, DOD needs to 

be calculated first. Because we assume energy consumption is constant in CD mode, energy 

consumption is proportional to electric travel distance. If we define maximum SOC at 100%, the 

energy-based DOD δ is equal to the ratio of electric travel distance sE to the maximum distance 

that could be traveled on total battery energy capacity: 
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The battery life charge cycle θBAT is estimated using the degradation curve in Figure 5.3(a): 
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5.1.4 Objective Functions 

The three objectives, petroleum consumption, life cycle GHG emissions, and cost, are 

functions of vehicle design variables x and the distance traveled per day s. We define the 

functions as follows: 

Petroleum consumption: The average petroleum consumed per day fG(x,s) is given by 
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(5.12) 

For the HEV and CV cases, Eq. (5.12) reduces to s/G.
44

 

Lifecycle greenhouse gas emissions: The operating (use phase) GHG emissions νOP 

represents the average GHG emissions in kg-CO2-eq per day associated with the lifecycle of 

gasoline and electricity used to propel the vehicle: 
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(5.13) 

where ηC=88% for battery charging efficiency (EPRI, 2007), vE = 0.75 kg-CO2-eq per kWh for 

electricity emissions
45

, and vG = 11.34 kg-CO2-eq per gallon for gasoline life cycle emissions. 

                                                 
44

 Petroleum makes up less than 1.6% of the U.S. electricity grid mix (EIA, 2009), and we ignore it here. 
45

 The life cycle GHG emissions of electricity is estimated based on the 2005 US average grid mixture 0.69 kg-

CO2-eq/kWh (Weber et al., 2010) with 9% transmission loss (EIA, 2008).  
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Total life cycle GHG emissions further includes the GHGs associated with production of the 

vehicle and battery. The average total lifecycle GHG emissions per day fV(x,s) is 

   
   

VEH 3 B
V OP

VEH BRPL

1000
, ,

,

x v
f s s

s s

 


 

   
        

   
x x

x
 

(5.14) 

where θVEH = sLIFE/s is the vehicle life in days, sLIFE = 150,000 miles is the vehicle life in miles
46

, 

θBRPL is the battery replacement effective life (defined below), vB = 120 kg-CO2-eq per kWh for 

Li-ion battery and 230 kg-CO2-eq per kWh for NiMH battery is the life cycle GHG emissions 

associated with battery production, vVEH = 8,500 kg-CO2-eq per vehicle is the life cycle GHG 

emissions associated with vehicle production (excluding emissions from battery production) 

(Samaras and Meisterling, 2008). 

 Battery replacement scenarios: We consider two battery replacement scenarios. The 

first is battery leasing: batteries are assumed to be replaced at the rate that they reach end of life, 

regardless of vehicle life. This simple and optimistic case essentially assumes that batteries can 

be swapped from vehicle to vehicle until they reach end of life, and θBRPL = θBAT. 

The second scenario is buy-lease: If the battery outlasts the life of the vehicle, a single 

battery pack must be purchased – partial payment for batteries is not allowed, and old batteries 

are not placed into new vehicles. But if the vehicle outlasts the battery, battery replacement is 

managed by lease. In this scenario, θBRPL = min(θBAT , θVEH). 

Equivalent annualized cost (EAC): To calculate EAC, we define a nominal discount 

rate rN, an inflation rate rI, and the real discount rate rR = (1+rN)/(1+rI) – 1. The net present value 

                                                 
46

 We assume that all vehicles must be replaced every 150,000 miles, which represents the U.S. average vehicle 

life (EPA, 2006). This assumption may be unrealistic for vehicles driven very short or very long daily distances 

because other time-based factors also play a role in vehicle deterioration. However, these factors are only significant 

for regions of the objective function's integrand that are relatively insignificant to the integrated objective function, 

and they do not provide a significant source of error. 
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P of vehicle ownership is the sum of the cost of vehicle operation, vehicle production, and 

battery costs over the vehicle life: 
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(5.15) 

where D is driving days per year (D = 300 days in this study), T is vehicle life in years  (T(s) = 

θVEH/D = sLIFE/(sD)), B is battery life in years (B(x,s) = θBAT(x,s)/D). The operating cost per day 

cOP is the sum of the cost of electricity needed to charge the battery and the cost of gasoline 

consumed: 
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(5.16) 

R is capital recovery factor. The generic expression of R as a function of discount rate r and time 

period N in year is 
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The net present value of battery leasing cost is calculated by calculating the EAC of the battery 

over its life B using R(rN, B) and then summing the present value of annual battery cost over the 

vehicle life T. The EAC of vehicle ownership is P·R(rN,T(s)). We divide by D to obtain EAC per 

driving day: 
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The vehicle cost (excluding battery pack) cVEH is the sum of vehicle base cost cBASE = $11,183, 

where engine cost cENG(x1) = 17.8×(57x1) + 650, motor cost cMTR(x2) = 26.6×(52x2) + 520 (EPRI, 

2001).
 47

 The battery pack cost cBAT = 1000x3κcB, where Li-ion battery unit cost cB = $400/kWh 

(for PHEV only), and NiMH battery unit cost = $600/kWh (for HEV only) in our base case 

(Whitacre, 2009).
 48

 We use the 2008 annual average residential electricity price cE = $0.11 per 

kWh (EIA, 2009), and the 2008 annual average gasoline price cG = $3.30 per gallon (EIA, 2009) 

in our base case. For HEV and CV, sE = 0, and operating cost consists only of gasoline cost. We 

ignore the possibility of vehicle to grid energy arbitrage for PHEVs, since net earning potential is 

estimated to be low (Peterson et al., 2010), especially under a mass adoption scenario. In the base 

case of this study, we assume zero discounting. By applying l'Hôpital's rule, the capital recovery 

factor reduces to 1/N: 
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(5.19) 

Thus Eq. (5.18) can be simplified to 
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47

 To obtain a comparable vehicle base cost cBASE (excluding engine, motor and battery) among PHEV, HEV and 

CV, we use the 2008 Prius manufacturer suggested retail price (MSRP) $21,600 and subtract a 20% dealer mark-up 

(Lipman and Delucchi, 2006), a NiMH battery pack of $3,250, base engine cost $1,665 and base motor cost $1,902 

in our cost estimation. We assume 20% dealer mark-up for the Prius NiMH battery replacement cost $3,900 

(Naughton, 2008).The engine and motor costs are estimated based on size using the linear cost model from the 

literature (Simpson, 2006) and converted into 2008 dollars using the producer price index (BLS, 2009). The 

resulting vehicle base cost is cBASE = $11,183. We ignore vehicle and battery salvage value. 
48

 Future battery costs are uncertain. The Li-ion battery cost $400/kWh (Whitacre, 2009) and NiMH battery cost 

$600/kWh (Duvall, 2004) are chosen to represent an optimistic but realistic estimate of near term battery costs in 

mass production, and we examine a range of costs in our sensitivity analysis. 
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The above equation has the same structure as the average lifecycle GHG function fV(x,s) in Eq. 

(5.14). 

5.1.5 Constraint Functions 

In order to compare apples to apples, we require that all vehicles meet a minimum 

acceleration constraint of 0-60 mph in less than 11 seconds. Because we have limited our scope 

to all-electric PHEVs, we require the acceleration constraint to be satisfied both in CD mode, 

using electric power alone, and in CS mode, where the gasoline engine is also used. The 

resulting constraints are tCD(x) < 11s and tCS(x) < 11s. Additionally, we require the gasoline 

engine to be large enough to provide average power for the vehicle in CS mode under an 

aggressive US06 driving cycle while maintaining the target SOC level in the battery. The 

resulting constraint is uCS(x) > 32%. Finally, we impose simple bounds on the decision variables: 

30/57 ≤ x1 ≤ 60/57, 50/52 ≤ x2 ≤ 110/52, 200/1000 ≤ x3 ≤ 1000/1000, 0 ≤ x4 ≤ 0.8 to avoid 

metamodel extrapolation. Any active simple bounds would imply a modeling limitation rather 

than a physical optimum. As we will later show, across all cases, of the simple bounds only the 

upper bounds on battery size and swing are ever active. The upper bound on battery size is 

reached only when minimizing petroleum consumption, since more battery is always preferred 

for this objective. The upper bound on swing is taken as a practical constraint since (1) SOC 

cannot be measured precisely, so the battery must be held safely away from the maximum 

physical capacity, where explosion can occur, (2) battery resistance, which is relatively flat over 

most of the SOC window, rises considerably near 0% SOC, causing a drop in efficiency and 

power output and an increase in heat generation, and (3) batteries are typically considered “dead” 

when their usable capacity fades to 80% of the original capacity. 
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5.1.6 MINLP Reformulation 

The resulting model formulation (Eq. (5.2)) is comprised of integration, discrete 

decisions (vehicle type), and piecewise-smooth functions (with derivative discontinuities due to 

AER and battery life). To solve the problem globally, we pose a factorable, algebraic nonconvex 

MINLP reformulation that can be solved using the BARON convexification-based branch-and-

reduce algorithm (Tawarmalani and Sahinidis, 2004). First, the exponential distribution form for 

the NHTS data fit allows the integral in Eq. (5.2) to be simplified in terms of two algebraic 

formulae: cumulative density function FS:
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and expected value function FE:  
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Thus the problem reduces to an algebraic formulation with discrete vehicle-type decisions and 

piecewise-smooth functions. 

We next introduce four sets of binary variables to convert the problem to a twice-

differentiable MINLP. The first binary variable set til identifies the vehicle type l{1,2,..,L} for 

each segment i, where til {0,1} i,l and ltil = 1 i. Here we consider three vehicle types 

l{1,2,3} for CV, HEV and PHEV, respectively, and write the objective function as a binary-

weighted function ∑l(tl)(f(xl, s)) where j{1,2,3} and l{1,2,..,L}. Finally, we represent these 

conditions in the objective function as ∑j (zij)(Fijko), where zij{0,1}, ∑j zij = 1, and 
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(zi1)(sAER(xi) – si-1) ≤ 0; (zi2)(si-1 – sAER(xi)) ≤ 0; (zi2)(sAER(xi) – si) ≤ 0; (zi3)(si – sAER(xi)) ≤ 0, 

i,k,o. 

The second binary variable set zij{0,1} i,j handles one of the derivative discontinuities 

by identifying in which of three regions j{1,2,3} on the s-axis each segment i is located, 

relative to sAER (jzij = 1 i).  

(1) In region 1, sAER ≤ si  (zi1)(sAER(xi) – si-1) ≤ 0;  

(2) in region 2, si-1 ≤ sAER ≤ si  (zi2)(si-1 – sAER(xi)) ≤ 0 and (zi2)(sAER(xi) – si) ≤ 0; and 

(3) in region 3, sAER ≥ si  (zi3)(si – sAER(xi)) ≤ 0. 

The integral of driver population weighted operating costs is 
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With utilizing the equations of FS (Eq. (5.21)) and FE (Eq. (5.22)), the above integral can be 

expressed in sum of three analytical functions:
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(5.24) 

The third binary variable set qio o{1,2,3} and oqio = 1 i identifies the relative 

conditions between battery life θBAT and vehicle life θVEH. Here we define the battery life in 

vehicle mileage travelled (VMT) as sBAT, which can be calculated by multiplying daily driving 

distance by battery life charge cycles (sBAT=sθBAT) with assuming one charge per day. The 

estimated battery life sBAT using the Peterson degradation model is a non-decreasing function of s: 
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Figure 5.4 Four conditions for the battery and vehicle VMT curves 

 

The expression for s∞ is simplified from the conditional expression for s > sAER by 

imposing s
−1
0. The function sBAT has two unique characteristics. First, the function value is a 

constant when s ≤ sAER. Second, when s ≥ sAER, sBAT is a monotonically increasing function and 

asymptotically approaches the life of the battery on energy processed in CS mode, which is the 

constant value under s∞ condition. Because of the unique features in sBAT, we are able to 

identify four possible relations between sBAT and vehicle life sLIFE: 

(a) battery life sBAT(x, s) is less than vehicle life sLIFE for all s; 

(b) sBAT curve and sLIFE curve has one intersection point sT, where sLIFE > sBAT for 0 ≤ s ≤ 

sT and sBAT > sLIFE for s ≥ sT; 

(c) the flat region of sBAT overlaps with sLIFE (sBAT = sLIFE) for 0 ≤ s ≤ sAER, and sBAT > 

sLIFE for s ≥ sT; and 

(d) sBAT is greater than vehicle life sLIFE for all s. 

The four conditions are illustrated in Figure 5.4. For the condition (b) specifically, an analytical 

expression for sT is available by solving sLIFE = sBAT(x,sT):
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Condition (a) occurs when the following inequality is valid:
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BAT LIFEs s   (5.27) 

Condition (c) and (d) occur when the following inequality is valid:
 
 

0

BAT LIFEs s  (5.28) 

The battery replacement effective life θBRPL under buy-lease scenario is determined by 

min(θVEH, θBAT). Therefore, three discrete cases are identified:  

(1) In case 1 (o=1), s
∞

BAT ≤ sLIFE (θBAT < θVEH) s  (qi1)(θBAT(s) – θVEH) < 0 and 

θBRPL=θBAT; 

(2) for case 2 (o=2),  θBAT intersects θVEH at a point sT  (qi2)(θVEH – θBAT(s)) < 0 and 

(qi2)(θBAT(s=0) – θVEH) < 0, so θBRPL = θBAT for s ≤ sT, θBRPL = θVEH for s ≥ sT; and  

(3) for case 3 (o=3), s
0

BAT ≥ sLIFE (θBAT
 
≥ θVEH) s  (qi3)(θVEH – θBAT(s=0)) < 0 and 

θBRPL = θVEH. 

The fourth binary variable set yik identifies in which region sT lies when qi2 = 1 (o=2). 

The three conditions k{1,2,3} on the binary variable set yik are: 

(1) In region 1 (k=1), sT(xi) ≤ si-1  (qi2)(yi1)(sT(xi) – si-1) < 0;  

(2) in region 2 (k=2), si-1 ≤ sT ≤ si  (qi2)(yi2)(si-1 – sT(xi)) ≤ 0 and (qi2)(yi2)(sT(xi) – si) ≤ 0; 

and 

(3) in region 3 (k=3), sT(xi) ≥ si  (qi2)(yi3)(si – sT(xi)) < 0. 

The combinations of j, k and o result in 27 cases. For each segment i, for each of the 

cases j{1,2,3} k{1,2,3} o{1,2,3}, the integral in Eq. reduces to a twice-differentiable closed 

form factorable algebraic expression Fijko(xil, si-1, si). Table 5.3 presents the summary of the 

discrete conditions with corresponding θBRPL and the components in the total cost function. 

Among the o=2 cases, there are three infeasible ones because the value of sT should be greater 

than sAER when an sT point exists. 



118 

 

Table 5.3  Discrete conditions for estimating total cost on the AER and battery life 

o  j  k  θBRPL Total cost function Fijko 

  1 sAER≤si-1    Fi1k1=cVEH+FOC1+FBC1a
 

1 BAT LIFEs s   2 si-1≤sAER≤si   θBAT Fi2k1= cVEH+FOC2+FBC1b
 

  3 si≤sAER    Fi3k1= cVEH+FOC3+FBC1c
 

2 
0

BAT LIFE BATs s s 

 

1 sAER≤si-1 

1 sT≤si-1 θVEH Fi112= cVEH+FOC1+FBC3
 

2 si-1≤sT≤si {θBAT, θVEH} Fi122= cVEH+FOC1+FBC2a
 

3 si≤sT θBAT Fi132= cVEH+FOC1+FBC1a
 

2 si-1≤sAER≤si 

1 sT≤si-1 Infeasible  

2 si-1≤sT≤si {θBAT, θVEH} Fi222= cVEH+FOC2+FBC2b
 

3 si≤sT θBAT Fi232= cVEH+FOC2+FBC1b
 

3 si≤sAER 

1 sT≤si-1 Infeasible  

2 si-1≤sT≤si Infeasible  

3 si≤sT θBAT Fi332= cVEH+FOC3+FBC1c
 

  1 sAER≤si-1    Fi1k3= cVEH+FOC1+FBC3
 

3 
0

BAT LIFEs s  2 si-1≤sAER≤si   θVEH Fi2k3= cVEH+FOC2+FBC3
 

  3 si≤sAER    Fi3k3= cVEH+FOC3+FBC3
 

 

The analytical expressions of battery cost function FBC for all discrete cases are 

(1a) θBRPL = θBAT and sAER ≤ si-1 
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(1b) θBRPL = θBAT and si-1 ≤ sAER ≤ si 
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(1c) θBRPL = θBAT and si ≤ sAER 
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(2a) θBRPL = {θBAT, θVEH} and sAER ≤ si-1 
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 (2b) θBRPL = {θBAT, θVEH} and si-1 ≤ sAER ≤ si 
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(3) θBRPL = θVEH 
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   (5.34) 

Combining the vehicle base cost function FVC, operating cost FOC, and battery cost 

function FBC, the closed-form expression of the total cost function Fijko for each discrete 

condition is available by summing three functions (Fijko = cVEH + FOC + FBC), as shown in the last 

column in Table 5.3. 
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Total life cycle GHG emissions:  The same condition equations for the total life cycle 

GHG emissions can be applied by replacing the cost parameters cBAT, cVEH, cE, and cG with 

lifecycle emission parameters vBAT, vVEH, vE, and vG, respectively. 

MINLP formulation: The complete MINLP formulation takes the form 
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(5.35) 

 

The binary variables zij, yik and qio indicate the corresponding smooth regions of the objective 

function with respect to the AER, the battery replacement break point, and the relation between 

battery and vehicle life curve, respectively, and the corresponding constraints enforce matching 

between the binary variable region indicators and the region variables. The binary variable til 

represents discrete technology selection (CV, HEV, or PHEV). The functions Fijko are each twice 
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differentiable and algebraic, factorable functions, allowing use of convexification and branch-

and-reduce techniques to identify global optima. 

5.2 Results and Discussions 

We use the Peterson battery degradation model (Eq. (5.8)), the buy-lease battery 

replacement scenario (θBRPL= min(θBAT , θVEH)) and  two driver segments (n=2) as our base case 

and solve the MINLP model (Eq. (5.35)) using GAMS/BARON convexification-based branch-

and-reduce algorithm (Tawarmalani and Sahinidis, 2004).. 

5.2.1 Optimal Solutions 

The optimal vehicle type, design and allocation ranges for each case are summarized in 

Table 5.4. The performance values of CV and HEV are included in the first two columns for 

comparison. To further examine the optimal solutions, we plot the following function values at 

the optimal solution x
*
 as a function of driving distance per day in Figure 5.5: (1) life cycle cost, 

GHG emissions and petroleum consumption per-mile fO(x
*
,s)/s; and (2) the population-weighted 

cost, GHG emissions and petroleum consumption per day fO(x
*
,s)·fS(s). The area under the 

population-weighted curve is the net objective function. In each case, we compare the CV and 

HEV performance with the optimal PHEV design. 

The optimal solution for minimum petroleum consumption reduces to a single PHEV87 

design with the maximum allowed battery size allocated to all drivers. Such a solution is 

expected since a large-capacity PHEV can travel long distances without using gasoline. Figure 

5.5(a) shows the petroleum consumption per mile with respect to daily driving distance. No 

gasoline is consumed for driving distances under the AER of 87 miles. The fF(x
*
,s)·fS(s) plot in 
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Figure 5.5(d) illustrates that moving all drivers from the CV to a the PHEV87 reduces net 

petroleum consumption per person per day (the area under the curve) by 96%. 

The optimal solution for minimum life cycle GHG emissions is to allocate a medium-

range PHEV40 to drivers who can charge every 87 miles or less (92% of drivers and 72% of 

VMT per day) and allocate a longer-range PHEV25 to drivers who charge less frequently. There 

are two intersection points between the two PHEV GHG curves in (Figure 5.5 (b)), and the 

optimal single cutoff point is located at the first intersection.
49

 Although the PHEV40 GHG 

curve surpasses the PHEV25 after 87 miles, the difference between two is almost 

indistinguishable, and the portion of the population driving greater than 87 miles/day is small. 

Assigning all drivers high-AER PHEVs can significantly reduce petroleum consumption, but 

there is an additional marginal benefit to assigning medium-AER PHEVs to drivers who charge 

frequently because reducing the number of unnecessary batteries in these vehicles reduces the 

emissions associated with battery production as well as the emissions associated with reduced 

vehicle efficiency caused by carrying heavy batteries. While the most vehicles travel short 

distances each day (Figure 5.2), the majority of the GHG emissions are produced by those 

vehicles that travel close to 25 or 45 miles/day (Figure 5.5(e)). A significant reduction in GHG 

emissions is achieved by allocating PHEVs to drivers rather than HEVs or CVs, and a modest 

additional gain is possible by segmenting the population and allocating the right PHEV to the 

right driver. 

 The minimum life cycle cost solution in the base case is to assign PHEV34s to drivers 

who can charge 51 miles or less (78% of drivers and 44% of VMT/day) and assign ordinary 

HEVs to drivers who charge less frequently. Figure 5.5(c) shows notable differences in cost 

trends among the two vehicles. However, when population weighting is included, the fC(x
*
,s)·fS(s) 

                                                 
49

 More intersection points are needed (n>2) to identify more than two vehicle regions. 
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curves in Figure 5.5(f) reveals that the gap in life cycle cost between the HEV and optimized 

PHEVs is small. Hence we conduct a series of sensitivity analyses to examine the minimum cost 

solutions under various scenarios.  

An important observation on the optimal PHEV designs is that the optimal battery design 

swing for all three objective functions is the upper bound: 80%. The degradation mechanism 

based on energy-processed implies that for minimum life cycle cost, GHG emissions and 

petroleum consumption, designers should allow the maximum possible range of the battery to be 

used, even though this will require battery replacement for some drivers. 

 

 

Table 5.4 Optimization results for minimum fuel, petroleum, and GHG emissions objectives 

Optimization Objective   
Minimum 

Petroleum 

Minimum 

GHGs 

Minimum 

Cost 

Optimal Vehicle Set CV HEV PHEV PHEV PHEV PHEV HEV 

Allocation to drivers (miles/day) 0-200 0-200 0-200 0-87 87-200 0-51 51-200 

AER (miles) − − 87 40 25 34 − 

Engine power (kW) 126 57 47 47 43 46 57 

Motor power (kW) − 52 81 71 73 70 52 

Number of battery cells − 168 1000
†
 435 269 376 168 

Battery design swing − − 0.8
†
 0.8

†
 0.8

†
 0.8

†
 − 

Battery capacity (kWh) − 1.3 21.6 9.4 5.8 8.1 1.3 

CD-mode efficiency (miles/kWh) − − 5.05 5.29 5.35 5.31 − 

CS-mode efficiency (mpg) 29.5 60.1 58.1 60.0 60.7 60.3 60.1 

CD-mode 0-60mph time (sec) − − 11.0 11.0 11.0 11.0 − 

CS-mode 0-60mph time (sec) 11.0 11.0 9.0 9.1 10.3 9.4 11.0 

Final SOC after multi-US06 cycles − − 0.32 0.32 0.32 0.32 − 

Petroleum (gallon per person-day) 1.12 0.55 0.04 0.18 0.32 

GHGs (kg CO2-eq per person-day) 14.6 8.20 8.12 7.77 7.91 

Cost ($ per person-day) 6.82 5.26 6.22 5.60 5.21 

Reduction with respect to CV only − − −96% −47% −24% 
†
Variable limited by model boundary       
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Figure 5.5 Optimal PHEV design and allocations for the base case 

 

5.2.2 Sensitivity analyses 

We conduct sensitivity analyses to examine the minimum cost solutions for various 

scenarios, which include (1) single-vehicle allocation model, (2) three-vehicle allocation model, 

(3) battery leasing scenario, (4) Rosenkranz battery degradation model, (5) low Li-ion battery 

cost $250/kWh, (6) high Li-ion battery cost $1000/kWh, (7) low NiMH battery cost at $440/ 

kWh, (8) high NiMH battery cost $700/kWh, (9) low electricity price $0.06/kWh, (10) high 

electricity price $0.30/kWh, (11) low gasoline price at $1.50 per gallon, (12) high gasoline price 
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at $6.0 per gallon, (13) carbon allowance price $10 per metric ton of CO2 equivalent (ton-CO2-

eq), (14) carbon allowance price $100/ton-CO2-eq, (15) nominal discount rate 5%, and (16) 

nominal discount rate 10%.
50

 The optimal PHEV types and allocations for the sensitivity 

analyses are shown in Figure 5.6. The horizontal axis of the chart is percentage of population 

covered by the allocated vehicles. The values of percentage of VMT over the population and 

total cost per person per day are included for each optimal vehicle choice, and the cutoff daily 

mileage point is labeled where appropriate. 

First, we tested sensitivity to the number of vehicle segments, examining the optimal 

solutions of single-vehicle and 3-vehcile allocation cases. For the single-vehicle case, ordinary 

HEV is the optimum choice for the entire range. The 3-vehice case shows that the range covered 

by PHEV34 in the base case is replaced by PHEV29 for the range of 0-33 miles and PHEV41 for 

the range of 33-54 miles. The allocation of HEV for longer driving distance is essentially not 

affected. Moreover, the minimum cost per person-day in the 3-vehicle case is only 0.2% lower 

than the base case, while the cost of the single-vehicle case is 1% higher. The results indicate 

that the two vehicle model in the base case is robust, and cases with more than three vehicles 

result in only minor improvements. 

The battery leasing scenario does not change the optimal vehicle decisions in the base 

case because the optimized PHEV34 has a battery life shorter than vehicle life within 53 miles 

driving range, where buy-lease is equivalent to the leasing scenario ( min(θBAT, θVEH) = θBAT ). 

The Rosenkranz DOD-based degradation model, which encourages shallow swing to preserve 

battery life, results in a PHEV13 with 7.3 kWh battery at 32% SOE swing (a battery size 

equivalent to a PHEV32 with a 80% swing) for drivers below 24 miles/day and an HEV for the 

                                                 
50

 Among the 16 sensitivity analysis cases, the Rosenkranz and nominal discount rate cases are solved using 

local NLP solver with multi-start. The cost functions of these cases do not have closed-form expressions and require 

numerical integration. 
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remainder. Thus, the best use strategy for PHEV batteries depends critically on the degradation 

mechanism. Planned PHEVs such as the Chevrolet Volt report a battery swing of around 50% in 

order to maintain battery life (gm-volt.com, 2009). The Rosenkranz model is based on older 

battery technology, constant rate charge and discharge, and it cannot account for degradation in 

CS-mode. The latest data tested on modern cells with realistic driving cycles suggests that 

designers should consider using smaller battery packs with larger swing, even if the cost to 

replace the battery is accounted for. 

The cases of high Li-ion battery cost, low gas price and high electricity price are not 

beneficial to PHEVs, and therefore the HEV is the low cost choice for all drivers in the range. 

The result of the low electricity price case shows that a PHEV40 has lower cost for most drivers, 

and the ordinary HEV remains preferable for long distance driving. Low electricity prices can be 

associated with off-peak charging; however, with high PHEV penetration and consequent 

demand for off-peak charging, off-peak rates will not remain as low. Similarly, lower battery 

costs or higher gasoline prices improve the economic performance PHEVs and make them cost 

competitive for a wide range of drivers. We also examine two additional cases with low and high 

HEV NiMH battery cost at $440/kWh and $700/kWh respectively (Duvall, 2004). The result 

indicates the HEV allocation range varies between 42-200 and 58-200 miles, but PHEV is still 

the low-cost choice for the drivers with short to medium daily distances. 

It is worth noting that we apply 3-vehcile models for the low Li-ion battery cost and high 

gas price cases. The dual vehicle models result in the choice of a shorter-range PHEV for longer 

driving distances is counterintuitive, since we may expect high-AER PHEVs to have a cost 

advantage at longer driving distances. In these cases, the dual-PHEV cost curves have two 

intersection points, and the optimal cutoff is located at the second intersection point. The optimal 
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solutions of 3-vehicle model allocate medium-AER PHEVs to drivers with low daily driving 

distances, larger-AER PHEVs to driver have medium travel distance, and lighter PHEVs for 

drivers who take long trips.  

We examine the solution variations with two GHG allowance price levels, $10 and $100 

per ton-CO2-eq, by internalizing GHG emissions externalities to the cost objective function.
51

 

The carbon costs do not alter the vehicle design decisions significantly but extend the allocation 

range of PHEVs slightly. However, at lower gasoline prices (e.g.: $3/gal), where HEVs are lower 

cost than PHEVs for all drivers, the GHG allowance price can be sufficient to bring PHEVs into 

a minimum cost solution. The take-away is that if Li-ion battery costs can be brought down to 

the $400/kWh range, net life cycle costs are competitive, and while a GHG price can help 

encourage PHEV adoption, it is not the main driver. 

The last two sensitivity analysis cases consider nominal discount rates rN = 5% and 10% 

with an inflation rate rI = 3%, the average from 2003-2008 (US Bureau of Labor Statistics, 2010). 

A higher discount rate makes PHEVs less attractive relative to HEVs and CVs because the 

vehicle purchase cost paid upfront is higher, and fuel cost savings occur in the future. At a 5% 

discount rate, CV is the optimal choice for drivers who travel less than 2.4 miles per day. The 

optimal PHEV is a smaller 23-mile AER and covers 58% rather than 78% of the population on 

PHEV34s in the base case. At a 10% discount rate, PHEVs are not part of the least-cost solution, 

and HEV is the least cost alternative for 94% of population and 99% of VMT. It should be noted 

that the ranges covered by CV in these cases have lower population and VMT coverage than that 

in practice because the weighted frequencies in 0-4 miles are less than the ones in exponential 

                                                 
51

 An externality cost study by the National Research Council estimated the range of environmental damage 

costs of carbon emissions as $10 to $100 per ton-CO2-eq, with a middle estimate of $30 (NRC, 2009). We examine 

the $10/ton and $100/ton cases, which also covers the 2020 carbon allowance prices of $20-$93/ton projected from 

the Waxman-Markey bill by the Department of Energy (EIA, 2009). 
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fitting (Figure 3). At $400/kWh li-ion pack costs, PHEVs are part of the least cost solution for 

discount rates below 7%. At a 10% nominal discount rate, PHEVs are part of the least cost 

solution for battery pack prices below $300/kWh. 

5.3 Conclusions 

We construct an optimization model to determine optimal vehicle design and allocation 

of conventional, hybrid, and plug-in hybrid vehicles to drivers in order to minimize net daily cost, 

petroleum consumption, and GHG emissions. We reformulate the model as a twice-differentiable 

factorable algebraic nonconvex MINLP that can be solved globally using convexification with a 

branch-and-reduce algorithm implemented in GAMS/BARON. 

We find that (1) minimum petroleum consumption is achieved by assigning large 

capacity PHEVs to all drivers; (2) minimum life cycle GHG emissions are achieved by assigning 

medium-range PHEV40s to drivers who travel less than 87 miles/day (92% of drivers and 74% 

of VMT/day) and PHEV25s to drivers who travel further; and (3) minimum life cycle cost is 

achieved in our base case by assigning medium-range PHEV34s to drivers who travel less than 

51 miles/day (78% of drivers and 45% of VMT/day) and HEVs to drivers who travel further. 

Optimal allocation of vehicles to drivers appears to be of second-order importance for net social 

cost and GHG emissions compared to an overall shift from CVs to HEVs or PHEVs. 

Additionally, life cycle costs of HEVs and PHEVs are comparable, particularly for drivers who 

charge frequently, and the least-cost solution is sensitive to the discount rate and the price of 

gasoline, electricity, and batteries. 
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Figure 5.6 Optimal vehicle allocations for various scenarios. The base case assumes the buy-

lease battery replacement scenario, the Peterson battery degradation model, $400/kWh Li-ion 

battery cost, $600/kWh NiMH battery cost, $3.30/gal gasoline, $0.11/kWh electricity, $0/ton 

CO2-eq allowance price, and zero discounting 
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Relative to our base case of $3.30/gal gasoline, $0.11/kWh electricity, $400/kWh Li-ion 

batteries, $600/kWh NiMH batteries, and 0% discount rate PHEVs are part of the least-cost 

solution for gas prices above $3.03/gal, electricity prices below $0.14/kWh, battery prices below 

$460/kWh or nominal discount rates below 7%. Carbon allowance prices have marginal impact 

on optimal PHEV design or penetration, even at $100/ton. For example, when driven 34 miles 

per day, an HEV has life cycle emissions about 0.2 kg CO2-eq/day greater than the PHEV34. A 

$100/ton allowance price translates to a $0.02/day penalty for the HEV relative to the PHEV35, 

which is about 0.4% of the equivalent daily cost of each vehicle. With the current average U.S. 

grid mix the relative incentive is small, even at high allowance prices. Decarbonization of the 

electricity grid is needed for allowance prices to be significant in PHEV competitiveness. 

Using modern battery degradation models based on energy-processed in place of older 

DOD-based degradation models, we find that life cycle cost, GHG emissions and petroleum 

consumption are minimized by utilizing the maximum battery swing (80% in our model) and 

offering drivers a corresponding longer AER. This contrasts with current practice of restricting 

swing to values below 50% to improve battery life. Our results suggest that PHEV designers 

should optimally utilize full battery capacity and replace batteries as needed, rather than design 

unused battery capacity into the vehicle with the corresponding weight and cost implications. 

Allowing up to 80% swing rather than restricting swing to 50% reduces life cycle cost of PHEVs 

by 1%, GHGs by 2% and petroleum consumption by 65% in our model. Because cost 

implications are relatively small, other factors, such as logistics, customer satisfaction, and 

incentives, may play a significant role in determining battery swing in PHEV design. Current 

incentives for PHEVs, such as those outlined in the American Recovery and Reinvestment Act 

(US Congress, 2008), provide subsidies based on battery size, rather than usable battery capacity 
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or all-electric range. This creates a disincentive to increase swing because achieving a particular 

AER with a larger battery pack at lower swing will earn more incentives than achieving the same 

AER with a smaller battery pack at higher swing. This implies that PHEV subsidies would likely 

be better tied to PHEV AER, rather than total battery capacity. 
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CHAPTER 6. STRUCTURAL ANALYSIS OF VEHICLE DESIGN 

UNDER CAFE POLICY 

This chapter presents a structural analysis of automaker responses to generic CAFE 

policies in long-run oligopolistic equilibrium with considering vehicles as differentiated 

products – a Class III problem with CAFE penalty imposed into firm’s profit function. The 

analysis shows that under general cost, demand, and performance functions, single-product profit 

maximizing firm responses to CAFE standards follow a distinct pattern: Firms ignore CAFE 

when the standard is low, treat CAFE as a vehicle design constraint for moderate standards, and 

violate CAFE when the standard is high. Further, the point and extent of first violation depends 

upon the penalty for violation, and the corresponding vehicle design is independent of further 

standard increases. Thus, increasing CAFE standards will eventually have no further impact on 

vehicle design if the penalty for violation is not also increased. 

A case study is implemented by incorporating vehicle physics simulation, vehicle 

manufacturing and technology-cost models, and a mixed logit demand model to examine 

equilibrium powertrain design and price decisions for a fixed vehicle body. Results indicate that 

equilibrium vehicle design is not bound by current CAFE standards, and vehicle design decisions 

are directly determined by market competition and consumer preferences. Sensitivity analysis 

shows that firms’ design responses are more sensitive to variation in fuel prices than to CAFE 

standards, within the examined ranges. The content in this chapter is based on the publication by 

Shiau et al. (Shiau et al., 2009). 
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6.1 Introduction 

When people drive vehicles, they generate negative externalities that impact society, 

including among them are congestion, national security implications and environmental impact, 

such as GHG emissions that contribute to global warming (Porter, 1999; NRC, 2009). While 

economists generally advocate Pigovian taxes to efficiently correct for these negative 

externalities (Lesser et al., 1997; Kolstad, 2000), the vast majority of the U.S. public and 

lawmakers object to increased gasoline taxes (Uri and Boyd, 1989; Chernick and Reschovsky, 

1997; Hammar et al., 2004; Decker and Wohar, 2007), and the government has instead relied on 

mandated restrictions for the average characteristics of vehicles sold by automakers. Among 

such policies are (1) the CAFE standards in the U.S., which penalize automakers whose sales-

weighted average of fleet fuel economy drops below a government-determined standard, and (2) 

similar policies in California and in Europe that set standards on average fleet CO2 emissions per 

mile. Rather than addressing driving patterns or fuel consumption directly, these policies create 

incentives for automakers to produce more efficient fleets. However, vehicle design responses to 

government policies are complicated by tradeoffs in available technology, consumer preferences, 

and competition in the marketplace. Integrated analysis is required to understand and predict 

vehicle design responses to transportation policies. 

6.1.1 Background of CAFE 

The CAFE standard regulates the average fuel economy of new vehicles sold in the 

United States. It requires the fleet-wide sales-weighted average fuel economy of automobiles 

sold by each manufacturer to achieve a prescribed standard. Manufacturers that do not achieve 

the CAFE standard are penalized based on their annual vehicle sales and fuel economy shortfalls. 

The origin of CAFE regulation can be traced to the 1973 oil crisis, when soaring crude oil prices 
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drew the government and public’s attention to the inefficiency of automobiles. The Energy 

Policy and Conservation Act (EPCA) of 1975 established separate CAFE standards for passenger 

cars and light trucks (US Congress, 1975). The executive responsibilities for implementing 

CAFE policy are distributed between the Environmental Protection Agency (EPA, 2007) and the 

National Highway Traffic Safety Administration under the Department of Transportation (DOT) 

(NHTSA, 2006). EPA is responsible for determining the test procedures for measuring vehicle 

fuel economy (and emissions) and calculating the CAFE for automobile manufacturers (EPA, 

2007). NHTSA is in charge of establishing, amending and enforcing fuel economy standards and 

regulations. In addition to the fuel economy criterion, NHTSA is also authorized to determine the 

financial penalty for violating the CAFE standard. The initial penalty value set in 1978 was 

$5.00 per vehicle per 0.1 mpg ($50 per mpg). In 1997, NHTSA raised the penalty to $5.50 per 

vehicle per 0.1 mpg ($55 per mpg) (GAO, 1990).
52

 The penalty has not been changed since then 

and has not been adjusted for inflation. Figure 6.1 shows the historical change of CAFE 

standards and average vehicle fuel efficiency. Note that during the 1990s combined fuel 

economy decreased even as the fuel economy in the separate car and truck categories increased 

due to consumers switching from cars to light trucks. As of December 2007, the total collected 

fines on CAFE violations reached $772 million, not adjusting for inflation (NHTSA, 2009). 

Historically, only European automobile manufacturers have paid CAFE fines, while Japanese 

automakers have consistently exceeded the regulatory standard and U.S. automakers have made 

it a policy to treat the CAFE standard as a constraint, using the CAFE credit system when 

necessary to avoid paying penalties.
53

  

                                                 
52

 NHTSA has the authority to raise CAFE penalties to $10 per 0.1 mpg ($100 per mpg) (GAO, 2007). 
53

 CAFE regulation allows automakers to earn credits for exceeding fuel economy standards in one year and 

apply them to the prior or subsequent three model years to neutralize the violation penalty (NHTSA, 2006). 
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In 2007, Congress passed the Energy Independence and Security Act of 2007 (EISA), 

which increased the target fleet-wide average fuel economy standard to 35 mpg in 2020 with 

combining cars and light trucks into a single category (US Congress, 2007). The act is the first 

legislation since the 1974 EPCA that directly regulates U.S. fleet fuel economy. The legislation 

also requires NHTSA to annually reform the separate fuel economy standards for cars and light 

trucks in order to achieve the joint 2020 goal of 35 mpg. In April 2008, NHTSA initiated an 

attribute-based CAFE proposal by using vehicle footprint to determine the 2011-2015 standards  

(NHTSA, 2008). In April 2009, NHTSA announced the formal 2011 CAFE standards 30.2 mpg 

and 24.1 mpg for cars and light trucks respectively (combined 27.3 mpg) (NHTSA, 2009), which 

are slightly lower than the values in the 2008 proposal. 

The announcement delivered two important messages. First, NHTSA will reform and 

adjust their regulation decisions every year based on the status of national fleet average and 

technology feasibility. The dash lines in show that unreformed and predicted standards for 2011-

2020. Second, the significant jump in car fuel economy standard means that CAFE standards will 

catch up to the national fleet average, which has exceeded the standard substantially in recent 

years while the regulation has merely served as a lower-bound requirement in past 10 years. In 

May 2009, President Obama announced a higher fuel economy regulatory target, combined 35.5 

mpg by 2016 to be implemented as a CO2 regulation by the EPA (The While House, 2009), 

which aggressively exceeds the 2020 35 mpg target set by EISA. 
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Figure 6.1 Historical and prospective changes of CAFE standards and average fuel economy 

records of U.S. passenger cars and light trucks 

 

6.1.2 Carbon Dioxide Emission Regulations 

Carbon dioxide (CO2) emission standards that are measured on a fleet average per-mile 

basis can be seen as structurally equivalent policies to CAFE for regulating automobile fuel 

efficiency, since technology is not available on the market to separate and store CO2 emissions 

from vehicles. The estimated CO2 emissions per gallon of gasoline burned are roughly 8,788 

grams (EPA, 2005), without including CO2 emissions arising from the petroleum supply chain. 

We review the two most well-known standards, the European Union CO2 emission standard and 

the California CO2 emission standards. 

The European carbon dioxide standards were issued by the European Commission 

(1995) to establish a voluntary CO2 emission standard for automobile manufacturers selling 
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vehicles in Europe as a response to the Kyoto Protocol (1997), which requires 8% reduction of 

greenhouse gas emissions in all economic sectors relative to 1990 levels by 2008-2012. 

Expecting automobile manufacturers to improve vehicle emissions voluntarily, the 1995 

regulation defined an intermediate target of 140 g/km by 2008-2009 and an ultimate target of 

120 g/km for 2012. However, it was found that automakers had not been reducing vehicle CO2 

emissions effectively, making the 2012 target less likely to be reached (European Parliament, 

2005). Hence in 2007, the European Commission issued a proposal for a new regulation to 

replace the originally voluntary target with a mandatory standard of 130 g/km (European 

Commission, 2007). In December 2008, after automakers cited infeasibility of regulatory targets 

in the 2007 proposal, a resolution was made by European Commission for changing the firm 130 

g/km target into gradually adaptive standards; 65% of automaker’s fleet reaches the 130 g/km 

requirement in 2012, 75% in 2013, 85% in 2014 and 100% in 2015 (European Parliament, 2008). 

Moreover, a new long-term target is set to 95 g/km in 2020. The resolution also revealed the 

step-size penalty structure of the regulation.
54

 

The California greenhouse gas emission proposal set CO2 emission requirements for 

new vehicles sold in California (CARB, 2004). The program required a CO2 emission standard 

of 323 g/mile (201 g/km) for the model year 2009 with annual reductions to 205 g/mile (127 

g/km) for the model year 2016. The program did not define a direct penalty parameter for the 

automotive manufacturers who violate the standards. Instead, the law implements a credit and 

debit system to monitor each manufacturer’s annual average fleet CO2 emission. If emission 

debits are not neutralized within five years, the manufacturer is issued a civil penalty according 

to the Health and Safety Code (CA Code, 2008). The California CO2 standards were rejected by 

                                                 
54

 The resolution proposed €5 for the first gram/km over the target, €15 for the second g/km over the target, €25 

for the third g/km over the target and €95 for the fourth g/km and subsequent. After 2019, any violation will be €95 

per g/km (European Parliament, 2008). 
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Bush administration in 2007 since the standards are stricter than federal regulations. In June 

2009, the Obama administration granted a waiver for California’s request beginning from model 

year 2009 (EPA, 2009).  

Figure 6.2 shows the future CAFE standards, including the Obama administration’s 2009 

new proposal (Broder, 2009), and the two CO2 emission regulatory standards for passenger cars.  

European emission standards are close to California emission levels, whereas the U.S. CAFE 

regulation is the weakest criterion.
55

 However, the three regulations have similar slopes for 

equivalent annual carbon emission reductions. The common mechanism of the three regulations 

is to set increasing standards for vehicle characteristics (fuel consumption or emissions) and 

expect automobile manufacturers to respond with revised vehicle lines and pricing strategies that 

achieve the standards. We propose an integrated structural analysis to understand and predict 

vehicle design responses to transportation policies. 

The remaining sections in this chapter proceed as follows: Section 6.2 reviews the 

relevant literature on analysis of CAFE policy; Section 6.3 introduces the proposed model and 

analysis of vehicle design responses to CAFE policy; Section 6.4 presents a case study using 

vehicle simulation models and a mixed logit demand model from the literature; and finally, 

Section 6.5 discusses conclusions and policy implications. 

 

                                                 
55

 Note that European standards are based on a different fleet composition from the car and light fleets in the 

U.S. Moreover, European standards use a different test cycle to measure vehicle fuel efficiency. 
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Figure 6.2 Comparison of three fuel efficiency regulations for passenger cars 

 

6.2 Review of Literature on CAFE Impacts 

Studies of CAFE effects follow two primary branches: econometric estimation and 

economic modeling. Econometric estimation studies use automobile sales data to examine the 

past impacts of CAFE policy on fuel economy (Crandall et al., 1986; Godek, 1997; Goldberg, 

1998; Espey and Nair, 2005; Small and Van Dender, 2007) or on vehicle safety (Crandall et al., 

1986; Crandall and Graham, 1989; Yun, 2002; Ahmad and Greene, 2005). In contrast, economic 

modeling studies draw on economic theory to simulate hypothetical manufacturer decision-

making in response to CAFE or other policies with the aim to predict automaker responses to 

alternative regulation scenarios and understand structural policy implications. 

The literature on economic modeling of CAFE policy can be categorized along two major 

dimensions where vehicles are viewed either as commodities or as differentiated products. If 
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firms view vehicles as commodities, they control only price or production volume, while firms 

with differentiated products also control vehicle design attributes, such as fuel economy or 

performance. If consumers view vehicles as commodities, they react only to price; however, 

consumers of differentiated products also react to vehicle attributes, such as fuel economy or 

performance. Table 6.1 summarizes the prior literature with respect to this categorization. 

Several studies treat vehicles entirely as commodities: Kaowa (1983) and Biller and 

Swann (2006) examine a single firm, using linear models of demand and treating the CAFE 

standard as a constraint. Kleit (1990) posed a model with two vehicle commodities (small car 

and large car) and examined perfect competition and oligopoly models by taking firms as price 

takers or price setters, respectively. Kleit argues that CAFE policy is not only inefficient, but also 

counterproductive by encouraging drivers to drive more in response to the reduced operation 

costs of higher fuel efficiency vehicles (the rebound effect). He argues for elimination of CAFE 

in favor of Pigovian gasoline taxes; however, Gerard and Lave argue that CAFE is potentially an 

effective complement to gasoline taxes (Gerard and Lave, 2003; Gerard and Lave, 2004). 

 

Table 6.1 Literature categorization on firm decision and CAFE regulation modeling 
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The remaining studies view vehicles as differentiated from the manufacturer’s 

perspective and account for long run vehicle design changes made by firms in response to CAFE 

policy. Using technology-cost and technology-demand models
56

 from a prior study (Greene and 

DeCicco, 2000), Greene and Hopson (2003) constructed a nonlinear programming framework 

using an industry-wide net value of fuel economy improvement as the objective function and 

treating the CAFE standard as a constraint. Kleit (2004) adopted Greene and Hopson’s 

technology-cost model to extend his previous study (Kleit, 1990) to include manufacturer fuel 

economy responses to CAFE standard increases under perfect competition using a price-

elasticity demand matrix based on General Motors conjoint analysis data with multiple market 

segments. Kleit assumes that firms must pay for increased fuel efficiency, but changes in fuel 

economy do not affect demand. The study concluded that a 3.0 mpg increase in the CAFE 

standard can be replaced by an 11 cent gasoline tax to save the same amount of gasoline annually 

at only one-fourteenth of the social welfare cost. Adopting Kleit’s (2004) demand elasticity 

model, Austin and Dinan (2005) modeled manufacturer pricing and fuel economy improvement 

decisions treating CAFE as a constraint. Jacobsen (2008) identifies and models the 

heterogeneous responses of different manufacturer groups to the CAFE regulation; domestic 

automakers bind with CAFE standards, but foreign manufacturers treat the regulations as 

inactive lower bounds or associated taxes. His market equilibrium simulation also shows that 

gasoline taxes would be much cheaper than CAFE in welfare cost even if technologies for fuel 

efficiency improvement in response to CAFE regulation are taken into account. Fischer et al. 

(2007) found that the efficiency and benefits of tightening CAFE standards are difficult to 

quantify, but they recommend that fuel economy standards should be raised gradually over time. 

                                                 
56

 Greene and DeCicco (2000) created the cost-technology model via regression of retail price increases for 

technologies that offer fuel efficiency improvements. Similarly, they estimated the market penetration of fuel 

economy technology using regression on market data.  
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Finally, Michalek et al. (2004) conducted a numerical study of firm responses to CAFE standards 

accounting for logit consumer responses to vehicle fuel economy, performance, and price. They 

modeled firms as players in a Nash equilibrium who decide engine size and price in response to 

CAFE policy, and they used physics simulators to model performance, fuel economy and cost 

complications of engine size. They argue that CAFE standards can result in greater fuel economy 

improvements at lower cost to the manufacturer; however, they did not account for government 

revenue generated.  

The bulk of prior studies treat vehicles as commodities to consumers; however, there 

exists a rich literature on econometric measurement of consumer responses to (differentiated) 

vehicle attributes (Boyd and Mellman, 1980; Train, 1980; Bunch et al., 1993; Berry et al., 1995; 

Goldberg, 1995; Brownstone and Train, 1999; Brownstone et al., 2000; McFadden and Train, 

2000; Sudhir, 2001; Berry et al., 2004; Choo and Mokhtarian, 2004; Train and Winston, 2007). 

We argue that vehicles are not commodities, and accounting for consumer preferences and 

technical capabilities is important to understanding firm responses to CAFE. As such, we follow 

Greene and Hopson (2003) and Michalek et al. (2004) in viewing the vehicle as a differentiated 

product from the perspective of the firm and the consumer, where firms control vehicle design 

variables and consumers react to vehicle attributes as well as price. While Greene and Hopson 

(2003) and Michalek et al. (2004) provide specific numerical analyses, we instead develop a 

general structural analysis of long run oligopoly Nash responses (Tirole, 1988) to CAFE policy 

under general assumptions for cost functions, technical tradeoffs, and consumer demand, and we 

identify a distinct pattern in Nash responses to CAFE. We then instantiate the model with 

specific data and examine policy implications. 
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6.3 Model 

We define firm k’s profit function as 

   AVG

I F

k k

k j j j k j

j J j J

q p c c z q
 

   
          

   
   (6.1) 

where pj, qj and cj are the price, demand and variable cost, respectively, of vehicle j; Jk is the set 

of vehicle models produced by firm k; cI is a fixed investment cost per vehicle model; ρ is the 

penalty for CAFE violation in dollars per vehicle per mpg
57

; δ() is the CAFE violation function; 

and zFk
AVG

 is the CAFE achieved by firm k. According to NHTSA’s CAFE formulation 

definition, the fleet-wide average fuel economy for manufacturer k (cars and light trucks are 

currently calculated separately) is
58
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The function δ is defined as 
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,  (6.3) 

where κ is the CAFE standard. We take the fuel economy zFj and variable cost cj of each vehicle j 

to each be a function of a vector of vehicle design variables xj, so that zFj = fF(xj) and cj = fC(xj). 

We further take the demand qj for each vehicle j to be a function of the design xj and price pj of 

all vehicles j in the market, so that qj = fQ(pj, xj; jJ). Finally, we assume that each firm sets 

                                                 
57

 We ignore violation cost other than the government fee, such as public relations and litigation costs. 
58

 We examine only the basic CAFE penalty structure here and leave study of attribute-based standards and year 

to year credits for future study. 
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the price pj and design xj of its vehicle, and the investment cost cI and policy parameters κ and ρ 

are taken as exogenous. 

The three cases in Eq. (6.3) are classified by the relationship between fleet fuel economy 

design decisions and the CAFE fuel economy standard: In case 1 the fleet fuel economy 

surpasses the standard (zF>κ); in case 2 the fleet fuel economy matches the standard (zF=κ); and 

in case 3 the fleet fuel economy violates the standard (zF<κ). The derivative of δ with respect to 

firm’s average fuel economy is 
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 (6.4) 

The function δ has continuity, but its derivative is discontinuous at zFk
AVG

 =κ. Figure 6.3 

illustrates the conditions in Eq. (6.3) and Eq. (6.4). 

In the long-run scenario, manufacturers alter price and vehicle design under competition 

and CAFE policy. We consider price and vehicle design as endogenous, while the CAFE 

standard and penalty are applied to the competitive market as exogenous variables. We assume 

the market is described by Nash equilibrium, where all manufacturers compete non-

cooperatively in an oligopoly market (Fudenberg and Tirole, 1991). Also, for simplicity and to 

facilitate closed-form solutions each manufacturer is assumed to produce a single vehicle model 

only. We examine FOCs for Nash equilibrium in each of the three cases below. 
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Figure 6.3 Fuel economy deviation function and its derivative 

 

Case 1: Vehicle gas mileage surpasses the CAFE standard: In this case the first order 

condition with respect to price pj from Eq. (6.1) is 

  0
jk

j j j

j j

q
p c q

p p


   

 
 (6.5) 

Therefore, the price at market equilibrium can be expressed as: 
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Here the equilibrium price is comprised of vehicle cost plus manufacturer markup, where the 

markup depends on total demand (itself a function of price) and the price elasticity. Assuming 

that the design variable space is unconstrained
59

, the first order condition with respect to the 

design variables xj is 
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Inserting Eq.(6.6) and assuming positive demand, the equation is simplified as 

                                                 
59

 If design constraints are present, Lagrangian formulation should applied to the system equations, such as  (Eq. 

(3.10)). 

0

–1

∂
δ

/∂
z

FA
V

G

AVGz F

κ
κ

0

δ
(z

F
  
  
 )

A
V

G

κ –z F
AVG

AVGz F



146 

 

1

j j j

j j j

q q c

p



   
  

    

0
x x

 (6.8) 

Here the equilibrium design is a balance between the marginal cost of a design change and the 

marginal price that can be charged for the design change without changing demand. 

Case 2: Vehicle design gas mileage is equal to the CAFE standard: In this case the 

FOC condition for price is the same as Eq. (6.6). Since vehicle fuel economy equals the CAFE 

standard in this case, the design solution satisfies the design function: 

 F j
f x  (6.9) 

If the function has an inverse, then xj = fF
−1

(κ). 

Case 3: Vehicle design gas mileage violates the CAFE standard: In this case the first 

order condition with respect to price pj is 

   F
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The price solution becomes 
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Here the equilibrium price is comprised of vehicle cost, manufacturer markup and the CAFE 

penalty per vehicle. The manufacturer markup depends on demand and the price elasticity, and 

the CAFE penalty is passed to the consumer. The first order condition with respect to the design 

variable vector (again assuming no constraints) xj is 

  Fj j jk
j j j j

j j j j

q z c
p c q 

   
      

     

0
x x x x

 (6.12) 

Plugging in Eq. (11), the equation is simplified to 
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 (6.13) 

Here the equilibrium design is a balance between the marginal cost of a design change due to 

direct cost and regulation cost and the marginal price that can be charged for the design change 

without changing demand. 

The FOC equations for Nash pricing and design solutions for representing each firm’s 

decisions are summarized in Table 6.2. For each case, the fuel economy of vehicle design shows 

different characteristics and variable dependencies. For case 1 the vehicle design is independent 

of CAFE parameters; for case 2 vehicle design has a fuel economy equal to the CAFE standard κ; 

and for case 3 vehicle price and design are functions of the CAFE penalty ρ, but not the CAFE 

standard κ. So zFj is independent of κ in case 1 and case 3. For any given fF, fC, fQ, and ρ such that 

zFj
***

 > zFj
*
, which is the case for practical markets, at most two adjacent cases will have 

equilibrium conditions that are consistent with case assumptions for a given κ. 

 

Table 6.2 First-order conditions for Nash equilibrium under CAFE regulations 

 Case 1 Case 2 Case 3 

Condition zF(xj) > κ zF(xj) = κ zF(xj) < κ 

δj 0 0 κ−zFj 
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When a unique oligopolistic symmetric market equilibrium exists, Figure 6.4 shows Nash 

vehicle fuel economy responses zFj as a function of the CAFE standard κ under a fixed penalty ρ, 

which forms three regions. Case 1 and case 3 are independent of κ, so they appear as horizontal 

lines. Case 2 follows the 45 line passing through (0,0). Case 1 is valid for zFj
*
 < κ, and case 3 is 

valid for zFj
***

 > κ. Case 2 is valid for all κ such that xj : fF(xj)= κ. However, because case 2 is a 

border case for case 1 and case 3, it is not an equilibrium solution to the relaxed problem where 

zFj is not restricted to κ, and we consider case 2 only when the other two cases are invalid. 

Therefore, case 1 is valid for κ < zFj
*
, case 3 is valid for κ > zFj

***
, and case 2 is valid for zFj

*
 < κ 

< zFj
***

. For the three regions, the policy implications are: 

Region 1: Low CAFE standards do not affect firms’ design decision, and fuel economy 

and pricing decisions are determined by oligopolistic competition directly. 

Region 2: Moderate CAFE standards result in fuel economy responses that follow the 

standard exactly.  

Region 3: High CAFE standards result in fuel economy responses that violate the 

standard, and firms ignore further increases in the standard, instead transferring the regulation 

penalty cost to consumers in the retail price. The point of first violation and the resulting fuel 

economy response depends on the penalty for violation.  

These results imply that the performance of CAFE standards is affected by both the fuel 

economy criteria and the penalty: Setting too high a standard without a corresponding increase in 

violation penalties will result in firms ignoring further increases and passing costs on to 

consumers. Moreover, the difference between the solution equation set of case 1 and case 3 

suggests that the width of region 2 (zFj
***

−zFj
*
) is a function of the CAFE penalty ρ and the 

marginal change in fuel economy with respect to the design variables (∂zF/∂x). 
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Figure 6.4 Three regions of fuel economy design responses 

6.4 Case Study 

We next examine a case study by using automotive market data, vehicle performance 

simulation, costs and fuel economy technology from the literature. In the following subsections, 

we detail our manufacturer design decision model and market demand model, results and 

sensitivity analyses. 

6.4.1 Supply Side Modeling 

We consider a midsize car equipped with a gasoline engine in our supply side modeling. 

The vehicle design decision is represented by two design variables, an engine scaling variable xE 

and a technology implementation xT. The former determines the size and power of engine, and 
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simulator ADVISOR-2004 (AVL, 2004) 
60

 to evaluate fuel economy with the standard EPA city 

driving cycle (FTP) and highway driving cycle (HWFET). The combined fuel economy is then 

calculated by the harmonic mean of 55% city and 45% highway (EPA, 2007). A meta-model is 

established over the fuel economy simulation data as a function of the engine scaling variable xE, 

as shown in Figure 6.5. Thus vehicle j’s fuel consumption zCj (gallon per mile), fuel economy zFj 

(mile per gallon) and power-to-weight ratio zHj (horsepower per 100 lbs) can be defined as 

functions of xEj and xTj:
61
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 (6.14) 

The meta-model coefficients are aF2=4.90, aF1=−24.7, aF0=48.8, aH2=−0.44, aH1=3.87, and 

aH0=0.12. The vehicle cost model comprises the vehicle base cost cB, engine cost cE and fuel-

saving technology cost cT so that cj = cB + cEj + cTj. The engine cost is modeled as an exponential 

function cE=b1exp(b2bMxEj) (Michalek et al., 2004). According to the technology options and cost 

data in NHTSA’s report (NHTSA, 2008), we construct a technology-cost model by combining 

various fuel economy improvement technologies
62

, as shown in Figure 6.6. The thick and dashed 

curves represents the upper and lower estimates respectively, where the technology cost function 

is given by cTj = b3x
2

Tj+b4xTj. With all costs converted into year 2007 dollars using consumer 

price index (BLS, 2008), the coefficients of the vehicle manufacturing cost function are bM= 95 

(base engine power 95 kW), cB = 7836, b1= 701, b2 = 0.0063. The coefficients for the technology 

                                                 
60

 The configurations of the vehicle in ADVISOR are mid-size car body, 95kW spark-ignition engine (SI95) 

with engine power scale ranging from 0.8 to 2.0, and an empirical automatic 4-speed transmission module (TX-

AUTO4-4L60E) with default control strategies. 
61

 We assume that implementation of fuel-saving technology does not affect engine horsepower. 
62

 NHTSA’s analysis report points out that synergy or dissynergy (overlapping effectiveness) can exist when 

implementing multiple fuel-saving technologies into a vehicle (NHTSA, 2008). For instance, when 5-speed auto-

transmission is used with variable valve timing with coupled cam phasing (VVTC), there is 1% overlapping in fuel 

consumption reduction. Our technology-cost model has taken this factor into account. 



151 

 

cost curves are upper estimate: b3 = 85936 and b4 = –2177, mean: b3 = 34121 and b4 = –847, and 

lower estimate: b3 = 16699 and b4 = –639. For the simulation study in Section 4.3, we use the 

upper estimate cost curve as a base case since the mean and lower estimates may both optimistic 

and underestimate the costs of fuel-saving technology
63

. 

 

Figure 6.5 Meta-model of vehicle fuel economy simulations 

 

 
Figure 6.6 Cumulative technology cost versus fuel consumption improvement 

                                                 
63

 We also examined the medium cost curve and found that firms fully implement the maximum technology 

(20% reduction) in the case. 
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6.4.2 Demand Side Modeling 

For automotive market demand modeling, we estimate market demand based on Ward’s 

Auto 2005-2007 sales data using a mixed logit specification in order to account for consumer 

preference heterogeneity (Train, 2003). We consider four random coefficients: manufacturer 

suggested retail price (MSRP)
64

 (unit: $10,000), operation cost (unit: cent per mile), power-to-

weight ratio (horsepower per 100 lbs), and footprint (100 square-feet). The base vehicle type is a 

domestic mid-size vehicle. There are eight dummy variables included for distinguishing different 

vehicle types. The utility uij for vehicle j and consumer i under the mixed logit framework is 

     

 

P P P C C C C H H H H
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 (6.15) 

where vij is observable utility, εij is the unobservable random utility component, μ is the mean 

coefficient, ζ is the standard deviation and Φ is an IID normal distribution. The subscripts P, C, 

H and S represent price, operation cost, horsepower-to-weight ratio and vehicle size (footprint), 

respectively. The remaining terms z2S, zSC, zCP, zLG, zLX, zSP, zIM and zHY are binary variables for 

two-seater, subcompact, compact, large, luxury, sports, imported and hybrid vehicles, 

respectively, and the betas are corresponding coefficients. Assuming εij as Gumbel distribution, 

the mixed logit choice probability for vehicle j becomes (Train, 2003): 
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64

 Use of MSRP as a proxy for transaction price is a potential source of error; however, transaction price varies 

by consumer, and the data is unavailable. 
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where fΦ(Φ) is the probability density function of the set of distribution Φ. Eq. (6.16) shows that 

numerical simulation is required to estimate mixed logit probability since no closed-form 

expression is available for integration. We use 1000 random normal draws (R=1000) and the 

maximum likelihood method for our mixed logit estimation. 

The mixed logit estimation results for the 2007 automotive demand are shown in the first 

column of Table 6.3. While the mean coefficients of price and operation cost imply that 

consumers generally prefer lower purchase price and operation cost, there is significant 

heterogeneity in the degree of importance placed on the attributes. The positive coefficients of 

power-to-weight ratio (a proxy for acceleration performance) and footprint with small deviations 

represent consistent preferences for cars with faster acceleration and larger size. The negative 

coefficients for two-seater and subcompact and the positive coefficient for large cars match our 

expectation of people’s preferences for car class. One exception is that compact vehicle has a 

slightly higher utility than mid-size. Since vehicle classes are taken into account in the estimation, 

the footprint preference implies spacious cars are preferred in every vehicle class. The last four 

coefficients show that luxury, sports and hybrid vehicles are appreciated by consumers, whereas 

imported vehicles are less preferred, all else being equal. 

We further carried out two mixed logit estimations for 2005-2006 automotive sales data 

in order to observe potential consumer preference changes.
65

 Estimation results for 2006 and 

2005 are shown in the second and third column, respectively, in Table 6.3. Figure 6.7 shows the 

coefficient differences in graphic bars. Noticeable preference changes in 2005-2007 are found in 

car size and hybrid vehicle. The coefficients for compact car and hybrid variables are negative in 

the 2005 model and are positive in the 2006 and 2007 models. The coefficient changes match the 

                                                 
65

 All prices are converted into 2007 dollars using Consumer Price Index  (BLS, 2008). 
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observed increasing popularity and market penetration of hybrid electric vehicles in the U.S. auto 

market  (Maynard, 2007).  

We tested the predicted market shares of midsize vehicle segment for each year using 

three sets of demand coefficients separately. The results are compared in Figure 6.8. It can be 

seen that using the same year coefficients produces better predicted results to the observed 

market shares. However, all prediction errors are within 5%. Specifically, the errors for the 

predicted 2006-2007 market shares using 2007 and 2006 coefficients are within 2 %. These 

results test the robustness of the demand predictions using the 2007 demand coefficients.
 66

 

Although price endogeneity is not considered in this estimation
67

, the mixed logit coefficients are 

able to provide reliable demand predictions for the vehicle design responses simulations in this 

case study. 

 

 

                                                 
66

 We assume static consumer preferences here. While dynamic discrete choice modeling can capture consumer 

taste variations across time, the potential implications would not be in the scope of this study. Furthermore, the 

market share predictions using static estimation for the midsize car segment show only small deviations from 

observed market data. The static estimation is able to serve a purpose to this CAFE study. 
67

 The BLP method (Berry et al., 1995)  is an estimation approach to analyze aggregate market data and also 

account for price endogeneity. The approach is a combination of random-coefficient logit model, instrumental 

variables, generalized method of moment (GMM) and a fixed-point iteration algorithm, which has been popular in 

econometrics and marketing science community (Nevo, 2000; Sudhir, 2001; Petrin, 2002; Besanko et al., 2003; 

Berry et al., 2004). The BLP method is not used in our estimation because of our concerns about instrumental 

variable selection and validation. While excluding instruments may lead to potential bias, weak instruments may 

lead to inconsistent estimation results and weak identification leads to non-normal distributions in GMM statistics 

(Bound et al., 1993; Bound et al., 1995; Stock et al., 2002). 
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Figure 6.7 The coefficients of mixed logit demand model on the US 2005-2007 automotive sales data 
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  Table 6.3 Mixed logit estimation coefficients for the 2005-2007 US auto sales data 

Coefficient 2007 2006 2005 

Price
*
 

–0.911 (0.002) 

[0.468] (0.001) 

–0.677 (0.001) 

[0.397] (0.0007) 

–0.467 (0.001) 

[0.300] (0.0007) 

Operation cost
*
 

–0.181 (0.0004) 

[0.145] (0.001) 

–0.185 (0.0004) 

[0.072] (0.002) 

–0.213 (0.0005) 

[0.155] (0.001) 

Power/Weight
*
 

 0.242 (0.001) 

[0.004] (0.001) 

0.060 (0.0005) 

[0.004] (0.002) 

0.086 (0.0005) 

[0.010] (0.001) 

Footprint
*
 

 3.803 (0.010) 

[0.002] (0.012) 

3.403 (0.009) 

[0.003] (0.011) 

1.341 (0.009) 

[0.017] (0.012) 

Two-seater –0.765 (0.004) –1.062 (0.004) –1.319 (0.003) 

Subcompact –0.124 (0.002) –0.264 (0.002) –0.587 (0.002) 

Compact  0.025 (0.001) 0.022 (0.001) –0.183 (0.001) 

Large  0.097 (0.001) 0.325 (0.001) 0.139 (0.001) 

Luxury  0.557 (0.002) 0.408 (0.002) 0.178 (0.002) 

Sports  0.111 (0.003) 0.745 (0.003) 0.419 (0.002) 

Import –0.830 (0.001) –0.717 (0.001) –0.878 (0.001) 

Hybrid  0.990 (0.006) 0.507 (0.006) –0.129 (0.006) 

Log-likelihood –3.53×10
7
 –3.72×10

7
 –3.83×10

7
 

* 
Random coefficient in the mixed logit model: the value in square brackets is the standard 

deviation of random coefficient and the value in round brackets is standard error. 
 

 

Figure 6.8 Comparison of estimated market shares using different demand coefficients 
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We further estimate the vehicle class own- and cross-elasticities of price by increasing all 

vehicle prices by 1% in the corresponding segment and observing the change in predicted 

demand for the 2007 data. The price elasticity matrix is shown in Table 6.4. The mid-size and 

compact vehicle segments have lower own-elasticities than other vehicle segments. Furthermore, 

the price variation of mid-size vehicle has stronger cross-demand influence than other vehicle 

segments. The demand for sports cars and two-seaters are strongly correlated. The only hybrid 

vehicle in our 2007 sales data is the Toyota Prius. It can be seen that the price of the hybrid 

vehicle, as a unique vehicle segment, has less influence on the demand for other vehicles in the 

market. Since mid-size vehicle is our main focus in the study, we further verify the attribute 

elasticities of regular domestic mid-size vehicle. The elasticity values with respect to price, 

operation cost and power-to-weight ratio are –1.194, –1.349 and 0.870, respectively. The result 

indicates that operation cost has a higher elasticity than price and power-to-weight ratio. 

 

Table 6.4 Elasticities of demand for row segment evaluated by price variations in column 

segments 

Segment 1 2 3 4 5 6 7 8 

1 Two-seater –1.986 0.034 0.036 0.037 0.034 –0.065 –0.774 0.032 

2 Subcompact 0.113 –1.543 0.187 0.175 0.154 –0.073 –0.790 0.164 

3 Compact 0.316 0.494 –1.119 0.491 0.424 –0.179 0.135 0.490 

4 Mid-size 0.536 0.745 0.794 –1.125 0.679 –0.363 0.634 –1.227 

5 Large 0.264 0.362 0.382 0.374 –1.607 –0.090 0.330 0.298 

6 Luxury –0.588 0.015 0.060 –0.027 0.010 –1.768 –0.114 0.277 

7 Sports –1.948 –0.322 0.052 0.090 0.085 –0.047 –1.904 0.069 

8 Hybrid 0.026 0.042 0.048 –0.062 0.032 0.025 0.027 –1.844 

 



 

158 

 

6.5 Results and Discussions 

By integrating the demand estimation results in Section 4.2 with the vehicle design model 

in Section 4.1, the manufacturer’s vehicle design decisions are solved using the framework 

proposed in Section 3 with the FOC equations provided in Appendix B.4. For the base case study, 

we use a gasoline price γ = $2.50 per gallon and a CAFE penalty of $55 per mpg per car. We 

simulate 10 generic domestic manufacturers competing in the market. The fuel economy design 

responses to various CAFE standards are shown in Figure 6.9. The solid line represents the result 

of the base case under different levels of CAFE fuel economy standards. For the 2007 passenger 

car standard 27.5 mpg, the manufacturer’s fuel economy responses are not binding with CAFE 

regulation. The 34.6 mpg in region 1 matches the general trend of the passenger car fuel 

economy at 2007-2008 levels in Figure 6.1, where manufacturers are designing cars with higher 

fuel efficiency than the regulatory level. The situation implies that automakers’ vehicle design 

decisions are direct responses to market demand and consumer preferences. Thus CAFE 

regulation is inactive. The CAFE-binding range (region 2) is between 34.6 and 36.5 mpg. When 

the regulatory standard rises beyond 36.5 mpg, the optimal equilibrium response is to ignore 

further increases and pass the CAFE penalty cost along to consumers (region 3). 
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Figure 6.9 Design responses to various fuel economy regulatory levels 

 

 

 

 
Figure 6.10 CAFE penalty level and inflation-adjusted value of $50 in 1978 
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shows the history of the CAFE penalty compared to the inflation-adjusted value of the original 

$50 penalty set in 1978 using Gross Domestic Product (GDP) price index adjustment (BEA, 

30

32

34

36

38

40

32 34 36 38 40

36.5 mpg

at ρ=$55

Region

1

Region

2

Region

3

34.6 mpg

37.2 mpg

at ρ=$124

E
q

u
il
ib

ri
u

m
 v

e
h

ic
le

 f
u

e
l 

e
c

o
n

o
m

y
 r

e
s

p
o

n
s

e
 (

m
p

g
)

CAFE  standard (mpg)

40

60

80

100

120

140

1978 1983 1988 1993 1998 2003 2008

$50
$55

Real value at 2007

= $124

CAFE penalty increased 

once in 1997

Real value of 

1978 $50 

Year

C
A

F
E

 p
e

n
a

lt
y

 (
$

/m
p

g
-v

e
h

c
il
e

)



 

160 

 

2008). Clearly the CAFE penalty has lagged below inflation. We verify the vehicle design 

response at the higher penalty $124 level, and the result is shown as a dashed line in Figure 6.9. 

The higher CAFE penalty extends the window of region 2. 

Figure 6.11 shows a contour plot of Nash responses for a range of CAFE regulatory fuel 

economy standards and penalty values. The structural effect of two CAFE regulatory parameters 

to firm’s vehicle design responses is visible: In region 1, when the CAFE standard is less than 

34.6 mpg, manufacturer design responses are not affected by the CAFE standard or penalty. In 

region 2, fuel economy design responses are only affected by the CAFE standard but not the 

CAFE penalty parameter. In region 3, fuel economy design response is function of the CAFE 

penalty but not the CAFE standard, and the border between region 2 and region 3 depends on 

both the CAFE standard and the CAFE penalty. There are several useful implications of our 

observations. When firms are binding with the CAFE regulation (region 2), changing mpg 

standard as a policy tool to urge automakers to improve their fuel economy is effective. However, 

changes in regulatory standards may not be useful when firms have no incentive to follow the 

standard (region 1 and region 3). Moreover, when firms violate the CAFE regulation (region 3), 

increasing the penalty can increase firms’ fuel economy responses, but the improvement may be 

modest: we find that a $100 increase in penalty would cause a fuel economy increase less than 1 

mpg.
68

  

                                                 
68

 Additional costs observed by the firm, such as public relations or litigation cost for violation, would extend 

the effective region of CAFE policy. In practice, domestic automakers hold a policy to treat CAFE as a constraint, 

due in part to fear of shareholder reaction. 
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Figure 6.11 Vehicle fuel economy responses under various fuel economy standards and penalty 

levels 

 

We further analyze vehicle fuel economy responses under different gasoline prices and a 

fixed CAFE penalty of $55 per vehicle per mpg. We tested the fuel economy response by using 

two gasoline price levels, $4.20 per gallon and $1.60 per gallon. The former is the highest 

weekly retail gas price during 2007-2008 and the later is the lowest (EIA, 2009).
69

 The analysis 

results in Figure 6.12 show that gasoline price variations offset the entire fuel economy response 

curve significantly: high fuel prices shift the Nash design responses upward, while low fuel 

prices shift the response curves to a lower fuel economy region. At high fuel price level, we find 

that automakers reduce their engine sizes to the lower bound and implement more fuel-saving 

technology. On the other hand, lower fuel prices create incentives for automakers to design 

vehicles with more powerful engines and fewer technology options implemented.
70

 

 

                                                 
69

 Our demand model assumes that consumer preference is for operating cost, rather than fuel economy, and that 

preference for operating cost does not vary with fuel price.  
70

 The equilibrium framework predicts static long run responses and does not account for responses to short run 

fuel price volatility or uncertainty. 
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Figure 6.12 Vehicle fuel economy responses under various gasoline prices 

 

The response curves are relatively sensitive to fuel price (because of consumer demand 

for low operating cost) compared to CAFE standards, despite the fact that CAFE standards more 

directly address fuel economy (Vlasic, 2008). Thus policies that influence gasoline prices, such 

as fuel taxes or carbon taxes
71

, may encourage greater vehicle fuel economy improvement than 

adjusting the CAFE standard if prices are sufficiently high. Indeed, historical data on CAFE 

(Figure 6.1) shows that manufacturers have moved ahead of the CAFE standard in recent years 

with higher fuel prices. 

We also examine the penalty amount required for the Obama administration’s new fuel 

efficiency target 39 mpg on passenger cars. Our simulation model shows that a high penalty up 

to $255 would be needed for reaching the target if gasoline price remains at the base level of 

$2.50 per gallon. In contrast, without CAFE regulations, the target can be reached with a 
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gasoline price $4.40 per gallon. The required increase in CAFE penalty is significantly higher 

than the 72% increment in gasoline price. Furthermore, at such a high fuel economy level, the 

equilibrium vehicle design solutions have the smallest engine size at lower bound, and more 

fuel-saving technology options are implemented (18% fuel-saving), which are close to our model 

limits of midsize conventional vehicle. The result implies that automakers should have more 

sales shift towards small vehicles, such as compact or subcompact cars and have more advanced 

technology implementations, such as alternative fuel vehicle, hybrids and plug-in hybrids, when 

facing the arriving high fuel economy requirements. 

6.6 Conclusions 

We pose an oligopoly model of automaker responses to CAFE standards where vehicles 

are viewed as differentiated products. We find that Nash vehicle design responses to CAFE 

standards follow a distinctive pattern under general demand, cost, and performance functions and 

single-vehicle firms: Firms ignore low CAFE standards, treat moderate CAFE standards as 

binding, and violate high CAFE standards, where the point and amount of violation depends on 

the penalty for violation, and increases of the CAFE standard beyond the violation point are 

ineffective. While the original penalty for CAFE violation set in 1978 has not been adjusted for 

inflation, other factors, such as public and government relations costs for violation of CAFE 

standards, may contribute to extending the range of effective CAFE standards. 

Our case study results show that for current models of automotive demand, cost, and 

performance, vehicle fuel economy responses are more sensitive to fuel prices than to CAFE 

standards with the ranges examined, and fuel prices address driving patterns in addition to 

vehicle design. This result may partly support prior conclusions in the literature that Pigovian 
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gasoline taxes are a lower cost option than CAFE policy for reducing gasoline consumption. The 

effects on vehicle design caused by the increases in CAFE standards set by the Obama 

administration to a combined 35.5 mpg by 2016 will depend on the path of gasoline prices and 

the penalties set for violation of CAFE standards. Responding to stricter fuel efficiency standards, 

such as the European and California corporate average standards on CO2 emissions per mile, will 

likely require both a shift to smaller, lighter vehicles and inclusion of alternative technologies, 

such as cellulosic-based ethanol vehicles, hybrid electric vehicles, and plug-in hybrid electric 

vehicles (Lave et al., 2000). 
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CHAPTER 7. CONCLUSIONS 

7.1 Summary 

The series of studies in this dissertation proposed integrated models of product design, 

consumer choice, market competition and environmental regulation to examine the implications 

in design decisions and public policy. The answers to the three questions proposed in the 

beginning of this thesis are summarized in follows with primary assumptions stated explicitly: 

 

1. How does market competition affect product design decisions? 

The investigation for answering this question was conducted in Chapter 2 and 3. The 

following assumptions were made for developing the models in the chapters: (1) the market is 

described as a non-cooperative oligopolistic game with complete information and a fixed number 

of firms (no entry and exit); (2) firms are generic with identical decision-spaces, no technological 

change, identical cost structures, no differences in intellectual property rights, and negligible 

brand effects; (3) firms make price and design decisions for seeking profit maximization, and the 

market outcome is described by Nash equilibrium; (4) focal firm designs a set of differentiated 

products that will enter a market with existing products sold by competitors; (5) in the short-run 

case, competitors are Nash price setters with fixed product design; (6) in the long-run case, 

competitors change both price and design in response to focal firm’s new product entry; (7) 

market demand is described by a random-utility discrete-choice model with time invariant 
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consumer preference coefficients; and (8) price and design decision variables are continuous, and 

each firm’s profit function is differentiable. 

In Chapter 2, optimization models were presented using the theory of mathematical 

programs of equilibrium constraints (MPEC) to account for competitor reactions under Nash and 

Stackelberg price competition. The case studies showed that the proposed formulations are able 

to find equilibrium solution with shorter computational time and better convergence accuracy 

than the prior methods. The results indicated that the Stackelberg approach outperforms Nash by 

anticipating competitors’ pricing reactions, and exclusion of competitor reaction results in 

overestimation in market performance and suboptimal solutions. In Chapter 3, a long-run 

competition model was proposed to determine design and pricing decisions at market 

equilibrium. The model was utilized to examine the influence of two market modeling factors: (1) 

channel structure for manufacturer-retailer interactions; and (2) demand modeling for consumer 

preference heterogeneity. The mathematical analysis proved that design decisions become 

independent of market factors, including competition and channel structure, if demand modeling 

is linear logit with heterogeneous preferences ignored. 

In summary, the answer to the first research question is that an optimal product design 

that would perform well in the current market may perform poorly under market competition. 

When consumer preference heterogeneity in the market demand is not pronounced, designers 

may treat preference variations as noise and perform design tasks independent of market 

competition. On the other hand, if heterogeneity in demand is significant, ignoring consumer 

taste variations can lead to a design decision disengaged from market systems and result in 

suboptimal solutions. 
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2. What are the design and policy implications of plug-in hybrid technology? 

To answer this question, a life cycle analysis model for PHEV economic and 

environmental performance was developed in Chapter 4, and an optimization model for social 

objectives was proposed in Chapter 5. The primary assumptions for the PHEV optimization 

model include (1) vehicles are designed and allocated optimally to drivers via a dictated 

assignment for best social benefits; (2) each driver has a constant daily driving distance over the 

vehicle life; (3) the US NHTS weighted driving data are described using the exponential 

distribution function; and (4) vehicle performances are measured using EPA UDDS driving cycle 

simulation, and PHEV is assumed one full charge per day. The major parameters and their 

uncertainty test ranges are: PHEV lithium-ion battery pack cost $400/kWh (high $1000/kWh and 

low $250/kWh), HEV NiMH battery pack cost $600/kWh (high $700/kWh and low $440/kWh), 

retail gasoline price $3.30/gal (high $6.00/gal and low $1.50/gal), retail electricity price 

$0.11/kWh (high $0.30/kWh and low $0.06/kWh), carbon allowance price $0 to $100 per CO2-

eq-ton, and market discount rate 0% to 10%. 

Based on the analysis results, several critical factors affecting PHEV performance were 

identified: (1) Battery weight: When more batteries are added to a PHEV to increase electrical 

travel range, the electrical and fuel efficiencies are decreased due to additional weights. 

According to the simulation analysis in Chapter 4, the impact of battery weight to PHEV 

performance is visible but less influential than the following factors. (2) Distance between 

charges: While it is commonly known that PHEVs can best utilize electric mode capability when 

the driver’ charging patterns match the battery capacity, this study pointed out that small-

capacity PHEVs with frequent charges can outperform large PHEVs on life cycle cost. It is 

worth noting that an increase in gas price, a decrease in electricity price, or a decrease in battery 
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cost would make PHEV less costly for a wide range of drivers, and vice versa. (3) Specific 

energy: Battery technology that increases specific energy would not affect net cost and GHG 

emissions significantly. The result suggested that research on reducing battery cost would be 

more effective than that of improving specific energy. (4) Battery degradation and replacement: 

Since PHEVs rely on large batteries storing electrical energy, battery replacement would make 

PHEVs less cost-competitive. The study in Chapter 5 showed that recent lithium iron phosphate 

(LiFeO4) battery technology allows designers to utilize maximum energy capacity in the battery 

without nonlinearly degrading the battery life. This finding implies that greater all-electrical 

range (AER) can be achieved by smaller battery pack, and policy to subsidize battery cost on 

AER may be more effective than on capacity. (5) Carbon allowance price: Carbon allowance 

policy should be advantageous to PHEVs because of less lifecycle GHG emissions. However, 

the analysis results indicated that carbon policy with current U.S. grid mix has limited effect to 

improve the economic performance of PHEVs. If renewable energy in the source mix of the grid 

became significant, the carbon policy would create cost-saving incentives for PHEVs. 

In summary, the study in Chapter 4 investigated which individual drivers save most on 

fuel, GHGs, and cost. Chapter 5 conducted an extensive PHEV optimization study with focusing 

on which drivers make most impacts on social objectives with accounting for battery degradation 

and replacement. The optimal solutions indicated different social objectives result in alternative 

optimal vehicle options. Large-capacity and medium-capacity PHEVs are the vehicle options to 

reduce petroleum consumption and lifecycle GHG emissions, respectively. The mix of PHEV 

with smaller battery capacity and ordinary hybrid electrical vehicle (HEV) for longer travel has 

lowest total cost. While each objective has distinctive vehicle choice, small-to-medium capacity 
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PHEVs with frequent charges have implications on overall benefits to designers, consumers and 

policy planners.  

 

3. How does CAFE policy affect vehicle design decisions in a competitive market? 

A long-run competition model of automaker responses to CAFE standards was proposed 

in Chapter 6 to investigate this question. The following assumptions are made in developing the 

model: (1) market competition is modeled as static and non-cooperative game with complete 

information, and market solution is defined by Nash equilibrium; (2) firms have identical design 

capability and fuel-saving technologies without branding and patenting advantages, and no firm 

enters and exits during the competition; (3) market demand is described by discrete choice model 

simulation with static consumer preferences which are estimated from market or survey data; (4) 

CAFE regulations and gasoline prices are considered exogenous factors in the model. 

A unique three-region pattern of Nash equilibrium vehicle design responses were 

identified under oligopoly of single-vehicle firms with generic demand model and design 

functions: (1) firms ignore low CAFE standards; (2) firms follow moderate CAFE standards; (3) 

firms violate high CAFE standards - firms stop to response to increased standards, and the 

amount of violation depends on the penalty parameter in the CAFE regulations. The case study 

results for midsize vehicle powertrain design using current market data and fuel-efficiency 

technologies showed that automakers’ design responses are more sensitive to gas prices than to 

CAFE standards under the ranges examined. Overall, when U.S. government, California state 

and European Union have raised fuel economy standards for the future years, automakers’ 

vehicle design decisions for pursuing maximum profit will not solely be controlled by fuel-
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economy threshold but depend on gas prices, fuel-efficiency technology costs, and violation 

penalties. 

7.2 Summary of Contributions 

The contributions of this dissertation are summarized in follows: 

1. Two optimization formulations were proposed to solve the problems of new product 

design under Nash and Stackelberg price competitions. In a game-theoretic framework, 

the case studies demonstrated that profit overestimation can be avoided by taking market 

competition into account and the proposed formulation has superior computational 

performances to the prior methods in the literature. 

2. Under the context of Nash equilibrium, the effects of consumer preference heterogeneity 

in the market-design equilibrium problems were identified. The analysis demonstration 

showed that treating consumer taste variations as noise (logit) can lead to design-market 

decoupling in the problems of design for market systems. Taste heterogeneity in demand 

model links design decisions to market systems and results in differentiated designs in 

different channel structures. 

3. The PHEV life cycle cost analysis showed that small-capacity plug-in hybrid vehicles 

have good potential to save cost and reduce greenhouse gas emissions if the drivers 

charge battery frequently. Carbon allowance policy accompanying with renewable energy 

sources may provide cost-saving incentives to consumers and thus assist market 

penetration of PHEVs. 

4. Optimal PHEV design and allocation for different social objectives showed that (1) larger 

capacity PHEVs are best for reducing petroleum consumption; (2) medium capacity 
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PHEVs are best for reducing GHG emissions; and (3) allocations of PHEV-HEV are best 

for saving lifecycle cost when PHEVs for short to medium distance travel are charged 

frequently and HEVs are used for long distance travel. 

5. The PHEV optimization study showed that cost-minimized PHEVs and HEVs have close 

economic performances. Over the driver-allocation range up to 200 daily travel miles, 

PHEVs are part of a least-cost solution as gasoline price is above $3 per gal, retail 

electricity price is below $0.14 per kWh, battery capacity cost is below $460 per kWh, or 

discount rate is below 7%. 

6. The study results indicated that the recently developed lithium iron phosphate (LiFePO4) 

battery technology has important implication to optimal PHEV designs: instead of 

limiting battery capacity in use for reserving battery life, designers should optimally 

utilize full battery capacity and replace batteries as needed. 

7. The unique patterns of Nash-profit-seeking automakers’ optimal design responses under 

CAFE regulations and market competition are identified. Firms’ fuel efficiency design 

decisions at Nash equilibrium may fail to response to higher CAFE fuel standards if 

violation penalty is not further increased. The case study results showed that design 

decisions are more sensitive to gasoline prices than CAFE standards. 

7.3 Open Questions 

There are still many open questions beyond the scope of this dissertation and worthy of 

future investigation. In Chapter 2 and 3, uncertainty in design for market systems is a research 

direction that requires verifications. In a framework of design and market, there are at least two 

uncertainty sources: (1) uncertainties in engineering system (e.g. distributions in design 
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parameters), and (2) uncertainties in market systems (e.g. consumer preference heterogeneity). 

The potential research questions include: How do market demand uncertainties propagate into 

final design decisions? What are the potential interacting effects between two types of 

uncertainties? How do different channel structures affect the robustness of optimal design 

solutions? These factors may alter the design implications in designers’ optimal decisions. 

In the market competition models in Chapter 3 and 6, symmetric equilibria were found 

even if consumer preference heterogeneity (standard deviations in random coefficients) was 

significant. Such result implies that potential artifacts may still exist in the heterogeneity 

modeling of well-known mixed (random-coefficient) logit models, which has been considered a 

solution to eliminate IIA properties in the logit model family. The answer to this question is not 

found in the marketing or econometric literature as yet, and awaiting more research effort to 

resolve. 

For the PHEV analysis and design in Chapter 4 and 5, there are still many influential 

factors and possible implications to be examined. First, the scope of the study was confined to 

all-electric PHEVs, whereas blended-mode PHEVs can make use of the gasoline engine during 

CD-mode to allow additional control flexibility and smaller motors and battery packs. Analysis 

of blended-mode PHEVs requires further examination of the control strategy variables. Second, 

the study assumed fixed Li-ion battery technology and constant battery capacity cost for all 

PHEV designs. In practice, different hybrid systems may require different battery designs, such 

as thin electrode design (high cost) for high power and thick electrode design (low cost) for high 

capacity applications. Future investigation for the technical feasibility of heterogeneous battery 

designs is required. Third, infrastructure advancements, such as automatic charging connections 

installed in garages or designated public parking spaces, may help to ensure frequent charging 
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and increase the number of drivers for whom PHEVs are competitive. However, the tradeoff in 

the costs of the smart charging devices may alter the economic implications of PHEVs. Finally, 

the benefits of PHEVs can only be effective when substantial market penetration occurs. 

However, market penetration of new vehicle technology is difficult to be estimated since 

consumer preferences on unique features of PHEVs are unknown. A possible approach is to 

examine the relative importance to consumers of attributes such as purchase cost, operating cost, 

fuel economy, performance, reliability, perceived sustainability and charging requirements. This 

may help designers and policy makers on which vehicles may emerge as successful in the 

competitive marketplace. 

The CAFE policy study in Chapter 6 has several limitations that provide opportunities for 

future work: First, the assumption of a single vehicle design per producer helps to produce 

closed-form results and general conclusions; however, it restricts the ability to predict sales shifts 

from one vehicle type to another and instead presumes that firms respond only through redesign. 

The role of consumer heterogeneity and differences in firm brand and cost structures must be 

better understood in order to predict product line design response in equilibrium. Second, 

attribute-based CAFE standards will imply different incentives for vehicle responses than single-

target standards. Further study of attribute-based standards is warranted. Third, non-regulation-

fee costs for CAFE violation could be incorporated to examine the general effect and the effect 

when some firms observe higher costs than others. We see opportunity for a range of potential 

follow-up studies examining transportation policy while accounting for the effects of 

differentiated vehicle design, consumer responses to differentiated products, and technical 

tradeoffs in the ability to achieve vehicle attributes that are competitive in the regulated 

marketplace. 
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In the end, this dissertation has accomplished only a small portion of the research tasks in 

the domain of design decisions for market system and public policy by posing integrated models, 

offering solution strategies, and examining practical implications. When a number of questions 

are still awaiting exploration, it is the author’s hope that the findings from this study can provide 

fundamental knowledge for the future research.  
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APPENDIX A.  LAGRANGIAN FOC METHOD 

This appendix presents a solution approach using general NLP solvers to find Nash 

equilibria in oligopolistic competition problems. We call this approach Lagrangian FOC method 

since it is a combination of FOC equilibrium equation and Lagrange formulation. This method is 

used in solving the market competition problems in Chapter 2, 3 and 6. 

Several approaches to compute Nash equilibrium can be found in the literature, including 

the relaxation methods (Harker, 1984; Nagurney, 1993), the projection method (Nagurney, 1993), 

the nonlinear complementarity problem (NCP) approach (Facchinei and Pang, 2003), the 

combined-gradient fixed-point method (Morrow and Skerlos, 2009), and the ordinary FOC 

method (Friedman, 1986). The relaxation methods, which are developed based on the variational 

inequality theory, can be divided into relaxation parallel and relaxation serial approaches. The 

former formulates each firm’s optimization with competitors’ best responses concurrently (in 

parallel within each round) (Harker, 1984; Choi et al., 1990; Nagurney, 1993), and the latter 

models that each firm is optimized in turn while holding all other firms fixed and the process is 

repeated sequentially over all firms until convergence (in sequential rounds) (Nagurney, 1993; 

Michalek et al., 2004). The relaxation methods are straightforward and easy to be programmed 

(merely adding external loop to single optimization), but it can be computationally expensive, 

especially when the number of firms’ in the game is large or each sub-optimization task is 

complex. The method may fail to converge, which is demonstrated in the weight scale case study 

in Chapter 2. The projection method, another variational inequality based approach, does not 
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require an internal optimization loop and is computationally efficient, but it may not always 

converge (Konnov, 2007). The NCP method is a powerful tool to solve equilibrium problems 

(Ferris and Pang, 1997). However, it requires specialized solver and complementarity 

reformulation (Ferris and Munson, 2000), which can be an issue for designers who are not 

familiar with complementarity conditions to implement. The fixed-point iteration method also 

requires derivations for the specific fixed-point equations (Morrow and Skerlos, 2009). The 

characteristics of these solution approaches are summarized in Table A.1. 

We select the FOC method as our primary Nash price solution tool for several reasons. 

First, its solution process does not require iterative optimization loops. Second, the method only 

requires first-order derivatives of the profit function with respect to the decision variables, and 

no further reformulation is needed. FOC equations can be derived analytically or obtained by 

numerical differentiation. Third, the system of FOC equations can be solved by general-purpose 

NLP algorithms, and no special solver is required. 

 

 

Table A.1 Numerical approaches to computing Nash equilibrium 

Solution approach 
FOC 

information 
Solver 

External 

iteration loop 

Relaxation parallel Optional NLP solver Yes 

Relaxation series Optional NLP solver Yes 

Projection method Required None None 

Fixed-point iteration Required None None 

Nonlinear complementarity problem Required NCP solver None 

Lagrangian FOC method Required NLP solver None 
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The fundamental concept of Lagrangian FOC method is necessary condition of Nash 

equilibrium. The mathematical expression of Nash equilibrium is given by (Fudenberg and 

Tirole, 1991): 

   * * * * *

1 1,..., ,..., ,..., ,..., ,  k j J k j J kj J k K     x x x x x x  (A.1) 

xj is the design variables of product j of firm k and the 
*
 denotes the decisions at Nash 

equilibrium. This formulation states that no unilateral change to a single firm’s design decision 

can result in higher profit for that firm than its Nash decisions, or, alternatively, each firm is 

responding optimally to the decisions of the others. Assuming no variable bounds and other 

constraints, the FOC formulation for profit maximization with respect to decision variables x can 

be expressed as (Friedman, 1986):
 
 

*

* * * *

1

Find  such that 0;

where [ ]

k

k

k K

k


 




X
x

X x x x

 (A.2) 

where Пk is the profit of firm k, xk is the variable vector of product k and X is variable vector of 

all K firms. When equation constraints h(xk) = 0 and inequality constraints g(xk) ≤ 0 are given in 

the model, the Lagrange function L for each firm k becomes 

   T T

k k k k k kL    λ h x μ g x  (A.3) 

where λk and μk are the vectors of Lagrange multipliers for h and g, respectively. The first-order 

necessary Karush-Kuhn-Tucker (KKT) conditions for a Nash equilibrium in a general 

constrained formulation can be expressed in Lagrangian formulation as a set of system equations 

with inequality conditions (Papalambros and Wilde, 2000): 
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 (A.4) 

The above formulation is a general NLP form with a dummy objective. The solutions found by 

Eq. (A.4) satisfy the Nash necessary conditions but may not fulfill sufficient conditions. If the 

profit function is concave with respect to price, the first-order conditions are sufficient (Friedman, 

1986). For a non-cooperative game with complete information, a Nash equilibrium exists if: (1) 

strategy set is nonempty, compact and convex for each player; (2) payoff function is defined, 

continuous and bounded; and (3) each individual payoff function is concave with respect to 

individual strategy (Friedman, 1986). Specifically, Anderson et al. (1992) proved that there 

exists a unique price equilibrium under logit demand when the profit function is strictly quasi-

concave. However, in the case of nonconcavity, the solutions found by the proposed method 

must be verified using the Nash equilibrium definition (Eq. (A.1)) post hoc. 
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APPENDIX B.  EQUATIONS FOR EQUILIBRIUM NECESSARY 

CONDITIONS 

This appendix provides the detailed derivations for the Nash equilibrium FOC equations 

under different logit demand model forms, including ideal point logit model (Section B.1), latent 

class model with multiple market segments (Section B.2), and mixed logit model (Section B.3). 

For the mixed logit FOC equations in Section B.3 are derived with respect to design variables, 

wholesale price and retail margin for the channel structure study in Chapter 3 specifically. In 

Section B.4, the discrete conditions of the mixed logit FOC equations are prepared for the CAFE 

policy study in Chapter 6. 

B.1 FOC Equations with Ideal Point Logit Model 

The utility function of an ideal-point logit model is given by 

 
2

1

N

ij i nj in i j i

n

v z p b i j  


 
      

 
 ,  (B.1) 

where znj is the value of product attribute n on product j, θin is consumer i’s desired value for 

attribute n, i is consumer i’s sensitivity of utility to deviation from the ideal point, ̄i is 

consumer i’s sensitivity of utility to price, and bi is a constant utility term estimated from 

consumer i. The first-order derivatives of utility function with respect to price pj and product 

attribute znj are: 
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The first-order derivative of logit choice probability with respect to price and design are 
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Therefore the FOC equation for profit maximization with respect to price pj is 
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Thus, 
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Similarly, the FOC equation with respect to design attribute znj is: 
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B.2 FOC Equations with Latent Class Model 

We derive the following equations for the general latent class model with multiple market 

segments. Logit model (one market without segmentation) can be considered as a special case of 

the general latent class model. We consider that each firm k has one specific brand-product jJk. 

The share of choices for the product j in segment m is 
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The first-order derivative of choice probability with respect to price for each segment is 
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The profit function of product j is 
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The first-order condition equation is 
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Therefore, the necessary conditions for Nash equilibrium are 
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For the weight scale problem, the utility in each segment is fit with fourth order polynomial: 
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Therefore, the equilibrium equation becomes 
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For the angle grinder problem in the third case study, the part-worth price utility is interpolated 

with quadratic function. Thus the first-order condition for price decision is given by 
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B.3 FOC Equations with Mixed Logit Model and Channel Structure 

This appendix provides the derivation details of the FOC equations for manufacturer’s 

wholesale price and design decisions, and retailer’s margin decisions under multiple common 

retailers (MCR) scenario. The manufacturing profit function for manufacturer k in the MCR 

scenario is 
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And the profit function for retailer t in the MCR scenario is given by 
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Wholesale Price FOC Equation: From the manufacturer profit function, the total profit of 

manufacturer k is the sum of product jJk and all other products j’{Jk/j}: 
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The reaction function of product price with respect to wholesale price is 
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The marginal changes of market share with respect to wholesale price are 
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Take the derivative with respect to wjt:
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The above expression can be simplified as 
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Design Variable FOC Equation: From the manufacturer profit function, the total profit 

of manufacturer k is the sum of product jJk and all other products j’{Jk/j}: 

   

M M M

F F     

k

k

k jt j t

t T j J t T
j j

jt jt j j j t j t j j

t T j J t T
j j

k

q w c c q w c c

t k j J



  


   

  


    

    
         
    

 

 

  

, ,

 
(B.26) 

The marginal change in market share with respect to design variables are 
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Take the derivative of retailer profit with respect to xj: 
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The above expression can be simplified as 
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If design constraints present in the model, Lagrange formulation needs to be imposed into the 

above FOC equation (Appendix A): 
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The additional equations for completing the Karush-Kuhn-Tucker conditions, h=0, g≤0, μ
T
g=0, 

must be included in the system and solved simultaneously. 

Retail Margin FOC Equation: Starting from the retailer profit function, the total profit 

of common retailer t can be separated into three parts: 1) profit of the specific product j from 

manufacturer k; 2) the sum of profits from other products of manufacturer k; and 3) the sum of 

profits from all other manufacturers’ products. 

R R R R R

k k k

t jt jt j t j t

k K j J j J k K j J
k kj j

kt
t k j J



 

      


       

 

   

, ,
 

(B.31) 

In the Nash game, manufacturer’s wholesale price decision is made under a fixed retailer’s retail 

margin decision: 
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Take the derivative of retailer profit with respect to mjt: 



 

201 

 

R R RR

   

  

k k

k k

j j jt

j J k K j Jjt jt jt jt
k kj j

jt j t j t

jt jt j t j t

j J k K j Jjt jt jt
k kj j

jt

jt jt

jt

m m m m

q q q
m q m m

m m m

s
Q m s

m





 

    


 

 

    


  
  

   

   
                        

 
  

  

  

  

|β

|β

   1

           

k k

k

j t j t

j t j t

j J k K j Jjt jt
k kj j

jt jt

jt jt jt jt jt j t j t

j Jjt jt
j j

jt

s s
m m f d

m m

v v
Q s s m s Q s s m

p p

v
Q





 

 

    


 




   
     

    
     

 
               




  



|β |β

β

|β |β

|β |β |β |β |β

β

|

(β) β

k

k

jt j t j t

k K j J jt
k k

jt jt

jt jt jt jt j t j t

k K j Jjt jt

s s m f d
p

v v
Q s m s s s m f d

p p









 

  


 

  

 
 
 
  

    
     

       

 

 

β

|β |β

|β |β

|β |β |β |β

β

(β) β

(β) β

 

(B.33) 

The above expression can be simplified as 
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B.4 FOC Equations with Mixed Logit Model and CAFE Regulations 

This appendix provides the design and pricing FOC equations for the three discrete cases 

under the CAFE regulation: 

Case 1 (surpassing the CAFE standard):  

The price solution with mixed logit demand function is expressed as 
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The design FOC equation with mixed logit demand function is 
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Case 2 (Equal to CAFE standard):  

The price FOC equation is 
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The design solution is the inverse function of vehicle fuel economy equal to mpg standard κ: 
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Case 3 (Violating the standard): 

The price solution equation is 
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The design FOC equation is 
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