
Struct Multidisc Optim (2009) 39:187–201
DOI 10.1007/s00158-008-0321-9

INDUSTRIAL APPLICATION

An efficient decomposed multiobjective genetic algorithm
for solving the joint product platform selection and product
family design problem with generalized commonality

Aida Khajavirad · Jeremy J. Michalek ·
Timothy W. Simpson

Received: 10 June 2007 / Revised: 11 August 2008 / Accepted: 22 September 2008 / Published online: 5 November 2008
© Springer-Verlag 2008

Abstract Product family optimization involves not only
specifying the platform from which the individual prod-
uct variants will be derived, but also optimizing the plat-
form design and the individual variants. Typically these
steps are performed separately, but we propose an
efficient decomposed multiobjective genetic algorithm
to jointly determine optimal (1) platform selection, (2)
platform design, and (3) variant design in product fam-
ily optimization. The approach addresses limitations of
prior restrictive component sharing definitions by in-
troducing a generalized two-dimensional commonality
chromosome to enable sharing components among sub-
sets of variants. To solve the resulting high dimensional
problem in a single stage efficiently, we exploit the
problem structure by decomposing it into a two-level
genetic algorithm, where the upper level determines
the optimal platform configuration while each lower
level optimizes one of the individual variants. The de-

A preliminary version of this paper was presented at the
2007 AIAA Multidisciplinary Design Optimization
Specialists Conference.

A. Khajavirad
Mechanical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
e-mail: aida@cmu.edu

J. J. Michalek (B)
Mechanical Engineering and Engineering and Public Policy,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: jmichalek@cmu.edu

T. W. Simpson
Mechanical and Industrial Engineering,
The Pennsylvania State University,
University Park, PA 16802, USA
e-mail: tws8@psu.edu

composed approach improves scalability of the all-in-
one problem dramatically, providing a practical tool for
optimizing families with more variants. The proposed
approach is demonstrated by optimizing a family of
electric motors. Results indicate that (1) decomposi-
tion results in improved solutions under comparable
computational cost and (2) generalized commonality
produces families with increased component sharing
under the same level of performance.

Keywords Product family · Optimization ·
Genetic algorithms · Decomposition ·
Generalized commonality

1 Introduction

A product family is a group of related products (i.e.,
variants) that are derived from a common set of compo-
nents, modules, and/or subsystems called product plat-
forms to satisfy a variety of market niches. Designing
a family of products is a difficult task that embodies
all of the challenges of product design while adding
the complexity of coordinating the design of multiple
products in an effort to increase commonality across the
variants without drastically compromising their individ-
ual performance (Simpson et al. 2001). This challenge
manifests early in the design process wherein designers
must not only specify the platform configuration—also
referred to as platform variable selection or platform
selection (Khire et al. 2006)—but also optimize the
design of the platform as well as the individual variants
derived from the platform.

Resolving the inherent tradeoff between platform
commonality and distinct variant performance is para-

188 A. Khajavirad et al.

mount: Increasing the degree of commonality among
products generally reduces total cost, but it can also
compromise the ability of each variant to fully achieve
the desired characteristics making it distinct and attrac-
tive to different market segments. The broad problem
of product family design involves many issues, such as
supply chain management, manufacturing investment,
estimation of cost structures, and market positioning
(de Weck 2005). We focus here on developing an
improved optimization algorithm for solving the joint
product family platform selection and design problem
by mapping the tradeoff between increased component
commonality among variants vs. achievement of dis-
tinct, exogenous performance targets for each product.
The aforementioned issues could be integrated within
the proposed framework through appropriate modifi-
cation of objective functions and problem formulation.
In the next section, we review related optimization-
based research that has sought to address this tradeoff,
and in Section 3 we describe our novel multiobjective
genetic algorithm (MOGA)-based approach for solving
the joint product family platform-selection and vari-
ant design problem with generalized commonality. In
Section 4, the structure of the product family problem
is exploited to decompose the all-in-one formulation
into a two-level MOGA, which improves its search
efficiency and scalability dramatically by reducing the
search space of each sub-GA and enabling use of par-
allel processing. In Section 5, an example involving
the design of a family of electric motors is presented
and optimized, and the effects of decomposition and
commonality generalization and also the complexity of
the proposed method with respect to the number of
variants are investigated. Closing remarks and future
work are discussed in Section 6.

2 Review of related literature

2.1 Classification: product family optimization

Numerous optimization approaches have been devel-
oped within the engineering design community during
the past decade to solve the product family design
problem. Simpson (2005) reviews and classifies forty
such approaches from the literature. In many of these
approaches, product platforms are known or specified a
priori, i.e., before performing the optimization, whereas
in other instances, platform-selection is determined
during optimization (i.e., the platform is specified a
posteriori.) In a similar manner, Fujita (2002) classified
product family optimization problems into three classes
(see Fig. 1): In Class I problems (boxes 1 and 2), prod-

uct attributes are optimized under a fixed platform con-
figuration (i.e., the platform is known a priori); Class II
problems (boxes 3 and 4) find the optimal module se-
lection from predefined sets of modules (i.e., the design
of each module is known a priori); and finally, in Class
III problems (boxes 5 and 6) the product attributes and
platform configuration are optimized simultaneously.
It is this Class III, a posteriori problem that we refer
to as the joint product family platform selection and
design problem (or the joint problem for short) in that
it involves determining the optimal combination of 1)
platform variable selection, 2) platform design and 3)
variant design. Each of these decisions is generally
dependent on the others (it is typically not possible to
know the optimal platform without first knowing the
variant design, and vise versa); so, Class I and Class II
problems cannot generally offer optimality with respect
to the full problem. Thus, we focus our attention on
approaches to address the Class III joint problem.

In Fig. 1, the classification of methods is further
refined by adding the dimension of restricted vs. gen-
eralized commonality: Methods that employ restricted
commonality limit the commonality definition to all-
or-none component sharing; that is, a component can
either be common within the entire family or be distinct
among all variants. A generalized commonality formu-
lation avoids this restriction and allows for component
sharing within subsets of the variants. The restricted
definition is a simplifying assumption that is typically
employed to decrease computational complexity; how-
ever, it imposes significant limitations that are often not
observed in product family design practice (Thevenot
and Simpson 2006). Therefore, there is a need for an

Platform Selection Varia
nt D

esign

C
o

m
m

o
n

al
ity

R
es

tr
ic

te
d

G
en

er
al

iz
ed

Fixed

Variable Varia
ble

Fixed

C
la

ss
 I

C
la

ss
 I

II C
la

ss
 I

I

2 4

6

1 3

5

Fig. 1 Classification of product family optimization formulations

Product platform selection and product family design 189

approach capable of solving the joint problem using
generalized commonality (box 6) for practical product
family applications with a reasonable computational
cost.

2.2 Prior approaches to solving the joint problem

Most of the previous a posteriori optimization methods
reviewed by Simpson (2005) avoid the high compu-
tational cost of the joint problem by dividing it into
multiple stages; that is, instead of addressing a Class III
problem directly, in the first stage the platform configu-
ration is found followed by a Class I problem to find the
variant design using the fixed platform found in the first
stage. However, the two-stage approaches have been
shown to lead to suboptimal solutions (Messac et al.
2002); therefore, single-stage approaches are preferred
for optimality.

Single-stage Class III problems typically employ
commonality restrictions to reduce computational cost
(box 5) (Simpson and D’Souza 2004; Hassan et al.
2004; Khire et al. 2006), and therefore, suffer from
suboptimality. Fujita and Yoshida (2001) addressed
generalized commonality for the joint problem (box 6)
by hybridizing GA, branch and bound, and sequential
quadratic programming (SQP) to determine platform
configuration, direction of similarities and variant de-
sign respectively. The approach may be well-suited to
convex problems; however, for non-convex problems, it
may generate suboptimal solutions due to local search
in the fitness evaluation. Moreover, the nesting of opti-
mization algorithms leads to high computational costs.
Khajavirad and Michalek (2008a) proposed a decom-
posed approach that relaxes the combinatorial platform
selection variables to the continuous space and solves
the generalized joint problem (box 6) through a se-
quence of relaxations. While the proposed method is
computationally efficient, it suffers from the same prob-
lem of suboptimality for nonconvex problems due to
combining a heuristic (relaxation to continuous space)
and a local search optimization method.

In brief, a single-stage optimization approach for
solving the joint product family platform-selection and
design problem with generalized commonality (box 6)
is needed that can solve practical problems under rea-
sonable computational costs without employing local
search methods that assume problem convexity.

2.3 Decomposition approaches

An approach to reducing computational cost of the op-
timization problems with special structures is to decom-
pose the all-in-one formulation into a set of interrelated

sub-problems such that solving and coordinating the
individual sub-problems is faster or more robust than
optimizing the full problem all-in-one. The hierarchical
structure of product families can be exploited in this
way. Fujita (2002) decomposed the Class III product
family optimization problem into module combination
and module attribute optimization sub-problems, and
solved sub-problems in nested loops. Kokkolaras et al.
(2002), applied analytical target cascading (ATC) for
decomposing a Class I problem by allocating each in-
dividual product design to a separate sub-problem and
imposing commonality decisions by introducing subsys-
tems with multiple parents. Michalek et al. (2006a, b)
also applied ATC to decompose a line of products
including market demand and manufacturing data;
however, the approach considered only manufacturing
equipment sharing and did not allow for component
commonality among variants. Finally, Khajavirad and
Michalek (2008a) introduced a two-level ATC-based
decomposition scheme for solving the joint problem
through a sequence of continuous relaxations; how-
ever, the approach is intended for convex formulations
where design variables are continuous and gradients
are available. Hence, a decomposition approach based
on a non-gradient global search algorithm could avoid
assumptions of convexity, continuity, or gradient avail-
ability, broadening the scope of applicability for many
practical product family problems.

3 Proposed MOGA approach

In this paper, we introduce a powerful new MOGA
formulation for determining the tradeoff between plat-
form commonality and individual variant performance
in the class III joint product family problem with gener-
alized commonality. The underlying algorithm for our
MOGA code is the elitist non-dominated sorting GA
(NSGA-II) introduced by Deb et al. (2000) which has
been shown to be capable of finding a well-converged
and well-distributed set of Pareto optimal solutions
in a reasonable computational time for many prob-
lems. However, in order to apply the original NSGA-
II code to the joint problem, we have modified the
chromosome representation, crossover, and mutation
operators as described in the sections that follow.

3.1 Chromosome representation

We generalize the augmented chromosome represen-
tation of Simpson and D’Souza (2004) to relax the
all-or-none component sharing restriction so that plat-
form variables can be shared among any subset of

190 A. Khajavirad et al.

Fig. 2 Chromosome
representation for each
product family in the MOGA
population (pi: i th product,
m j: j th component, xij: j th

component of i th product) 311313P3

332322P2

121321P1

c4x53c3c2x23x13c4x52x42c2c1x12x61x51c3c2c1x11

m1 m2 m3 m4 m5 m6
m1 is distinct in each product.
m2 is shared between 1st and 2nd products.
m3 is shared among all products.
m4 is shared between 1st and 3rd products.
m5 is distinct in each product.
m6 is shared between 2nd and 3rd products.

(a) Commonality chromosome

Design Variable Values for
Product 1

Design Variable Values for
Product 2

Design Variable Values for
Product 3

(b) Design variable chromosome

x11 x12 x13 x14 x15 x16 x21 x22 x23 x24 x25 x26 x31 x32 x33 x34 x35 x36

variants. This generalization is achieved by introducing
two parallel chromosomes for each individual in the
MOGA population (see Fig. 2): 1) a two-dimensional
commonality chromosome that defines the platform
configuration and allows for component sharing among
subsets of products, and 2) a one-dimensional design
variable chromosome that contains design variables of
all variants in the family. Hence, in a product family
with p products, each defined by n components,1 the
commonality chromosome is a two-dimensional ma-
trix with p rows and n columns, and the design vari-
able chromosome contains np genes. The commonality
chromosome is generated so that genes can take any
integer value between 1 and p, where equal integer
values indicate that the corresponding components are
common.2 An example of this representation for a
product family with three products and six components
is shown in Fig. 2.

3.2 Consistency constraints

The proposed algorithm ensures that the two chro-
mosomes remain consistent during the evolution using
consistency constraints, which are classified into two
groups: design consistency and commonality consis-
tency. The design consistency constraints ensure that

1Here, without loss of generality, we assume each component
is represented by a single design variable (i.e. gene); however,
the algorithm is applicable to the case which each component
includes different number of design variables.
2In our discussion, we assume that all products include the same
number of components as candidates for commonality. However,
this representation can be modified to include a general case
in which any subset of components may be absent in a variant
by setting the corresponding gene in the 2D chromosome to a
distinct integer number (e.g. zero) and omitting those genes from
the design variable chromosome of that variant. In addition, for
the components that are only present in p′ < p products, their
commonality genes can take any integer value between 1 and p′.

the design variables are consistent with the common-
ality chromosome: For each set of components identi-
fied as common by the commonality chromosome, the
corresponding design variable genes are replaced by
the average value3 within the set (see Fig. 3a). The
commonality consistency constraint ensures that the
commonality chromosome is consistent with the de-
sign chromosomes at each iteration: If the component
genes’ values for any subset of products differ by less
than the maximum user-defined tolerance4 as a result
of the crossover or mutation operators, the correspond-
ing commonality genes are modified accordingly (see
Fig. 3b).5

3.3 Crossover operators

Due to the 2-D configuration of the commonality chro-
mosome, a two-dimensional binary crossover operator
was applied, which is a direct extension of the one-point
crossover operator to two dimensions. In this operator,
two random integer are generated in the range of (1, p)

and (1, n) to select crossover sites along p and n, where
p and n again represent the number of products and
components in each product, respectively. These two
random numbers are used to divide the commonality
chromosome into four quadrants. Then, a third random

3In case of discrete variables, the average value should be further
rounded to the closest discrete level. Moreover, this constraint
can be imposed using other strategies such as generating a ran-
dom number in the upper level and sending it to the lower levels.
4The user-defined tolerance for considering two design variables
to be equal should be set using knowledge about the problem,
including the physical interpretation of the variable values and
sensitivity of performance to the value of these variables. Thus,
setting of the user-tolerance is necessarily case-specific.
5It should be noted that the commonality consistency constraints
are only imposed for finding the optimal solution faster, and the
method can identify optimal solutions without these constraints
as well.

Product platform selection and product family design 191

Fig. 3 Consistency
constraints: (a) design
consistency and (b)
commonality consistency

223

321

123

223

321

123

x33x32x31x23x22x21x13x12x11 x33x32x31x23x22x21x13x12x11

2
3111 xx +

3
322212 xxx ++

xx ≤ ε− 3323

223

321

123

223

321

123

x33x32x31x23x22x21x13x12x11 x33x32x31x23x22x21x13x12x11

323

321

123

323

321

123

(a) (b)

integer, in the range of [1, 4], is generated to decide
which quadrant is to be interchanged (see Fig. 4).

The crossover type applied to the design variable
chromosome is the default operator used in the original
NSGA-II code, which is simulated binary crossover
(Deb 2001).

3.4 Mutation operators

The mutation operator is designed to mutate the plat-
form configuration of the product family to enhance
the searching quality of the GA for exploring various
levels of commonality. First, for each component, a
random number is generated (0 ≤ rnd1 ≤ 1). If its value
is less than the mutation probability (pm), then the
corresponding component is mutated. In mutation, a
new random number is generated (0 ≤ rnd2 ≤ 1). If
its value is less than 0.5, then that component is set as
distinct in each product, and is mutated according to the
polynomial mutation operator. Otherwise, the compo-
nent is made common among all products by first being
mutated in each variant and then being replaced by its

434234

114123

213312

324321

232131

142423

343213

142412

Parent 1

Parent 2

2nd Quadrants

Interchanged

232131

112423

213213

322412

Offspring 1

434234

144123

343312

144321

Offspring 2

Fig. 4 Two-dimensional binary crossover operator

average value followed by a rounding strategy in case of
discrete variables (see Fig. 5). After applying crossover
and mutation operators, the algorithm modifies both
chromosomes according to the consistency constraints.

3.5 Commonality objective function

In order to have the MOGA find the optimal platform
configuration, an objective function for measuring the
commonality of each family of products is added to the
set of performance objective functions. Several metrics
for measuring the commonality degree in product fam-
ilies have been proposed reflecting various commonal-
ity benefits based on company’s focus and standpoint.
Khajavirad and Michalek (2008a) argue that the com-
monality index (CI), introduced by Martin and Ishii
(1996), is a better metric for measuring tooling cost
savings of component sharing relative to prior metrics
used in product family optimization,6 and we adopt it
here as the commonality objective function. CI ranges
between 0 and 1 and is a measure of unique parts; that
is, a higher value indicates the whole product family
was made with a fewer number of unique parts: For a
product family with p products each with n components
CI can be found as follows:

CI = 1 − u − n
n (p − 1)

(1)

where u represents the total number of distinct com-
ponents in the product family. By defining Ni as the
number of distinct integers for the ith component in the

6To estimate the tooling cost savings more precisely, CI should
be reformulated to include coefficients representing the amount
of cost saving due to sharing each component. However, since
this extension does not affect the optimization approach, all
coefficients are assumed to be equal in this paper.

192 A. Khajavirad et al.

Fig. 5 Mutation operators
(x′

ij = f (xij), f polynomial
mutation operator, x′

ij
mutated value of xij)

323

321

123

323

321

123

0.5rnd2

m1 Prnd ≤

≤ 0.5rnd 2 >

x33x32x31x23x22x21x13x12x11 x33x32x31x23x22x21x13x12x11

323

221

123

323

221

123

x33x32x31x23x22x21x13x12x11 x33x32x31x23x22x21x13x12x11

x' ''13 x 23 x 33

323

321

323

323

321

323

3
332313 xxx + +' ' '

x33x32x31x23x22x21x13x12x11 x33x32x31x23x22x21x13x12x11

commonality chromosome, (1) can be reformulated as
follows:

CI = 1 −

n∑

i=1
(Ni − 1)

n (p − 1)
(2)

Using this definition, the commonality objective func-
tion can be calculated using only the commonality
chromosome while the product performance-related
objectives are evaluated using each design variable
chromosome; this is the key feature that enables de-
composition of the proposed MOGA, as discussed next.

4 Decomposition and parallelization of the MOGA

Aforementioned modifications to the original NSGA-
II code make it convenient for optimizing the joint
product family problem with generalized commonal-
ity; however, this algorithm is still only practical for
problems with a relatively small number of compo-
nents and variants. The commonality generalization
also increases this complexity, making the all-in-one
algorithm inefficient in dealing with high-dimensional
problems. To address this scalability limitation, we
propose a decomposition of the original formulation
(see Fig. 6). The new method involves allocating the
commonality chromosome to an upper-level GA and
decomposing the design variable chromosome into its
product variants, where each variant is allocated to one
of the lower-level sub-GAs. In addition, the consistency
constraints are imposed to all sub-problems.

The general structure of the proposed model is
shown in Fig. 7. The steps of the algorithm proceed as
follows:

1. Initialization: Initial populations are generated in
the upper-level and lower-level GAs indepen-
dently. Next, according to the consistency con-
straints both commonality and design variable
chromosomes send the required data7 to lower- and
upper-level GAs, respectively.

2. Fitness Calculation: The commonality metric, (2),
and individual variant performance objectives are
calculated in the upper- and lower-level GAs, re-
spectively. The upper-level GA sends the com-
monality metric of each population member to all
lower-level GAs, which are included in the fitness
function of the corresponding individual in each
sub-GA in addition to the product performance
objectives. Each lower-level GA also returns per-
formance deviations to the upper-level GA, which
are then summed across variants to form the overall
performance objective functions.

3. Crossover and Mutation: Using the aforemen-
tioned crossover and mutation operators, offspring
populations are generated in all GAs indepen-
dently. Crossover and mutation operators at each
sub-problem are the same as the sequential version
except that the tasks are divided among differ-

7Data exchange necessary to enforce consistency constraints is
handled through Message Passing Interface (MPI) library. De-
tails of the implementation and a copy of the code are available
through the authors or at http://www.cmu.edu/me/ddl.

http://www.cmu.edu/me/ddl

Product platform selection and product family design 193

2

2

x11 x13 x14 x15

x33 x35 x41 x43 x44 x45

x23 x24 x25

Fig. 6 Allocating the two parallel chromosome representation to
a two-level MOGA (pi: ith product, m j: j th component, xij: j th

component of the ith product)

ent processors. For example, the upper-level GA
applies the two-dimensional binary crossover oper-
ator to the commonality chromosome while lower-
level GAs use simulated binary crossover. In case
of mutation, the upper-level GA determines which
components should be mutated, i.e., which vari-
ables should become common or distinct among
the products, and passes this data to the lower-
level GAs so that they can mutate the individ-
uals accordingly. After all offspring populations

are generated, they are modified according to the
consistency constraints, and each lower-level GA
passes back the fitness value for its corresponding
performance objective(s).

4. Replacement: The upper-level GA combines the
parent and offspring population and applies non-
dominated sorting with respect to the commonality
level and overall performance objectives to select
the best half as the new generation that will define
the new population in all (upper- and lower-level)
GAs.

5. Iteration and Termination: If the generation num-
ber is equal to the maximum generation number,
then the algorithm is terminated; otherwise, the
process is repeated from Step 2.

Using the proposed decomposition scheme, the di-
mensionality of each lower-level GA remains constant
regardless of the number of variants in the product
family; this is the key feature making the decomposed
approach scalable. However, this improved scalability
is still limited by the size of commonality chromo-
some in that it grows linearly as number of variants
increases; these desirable and adverse effects are fur-
ther quantified in section 5–5. In the all-in-one GA,
selection of product families from the population is
made with respect to the overall fitness value of those
families; in contrast, the decomposed GA involves (1)
selection of design variable chromosomes based on

Fig. 7 Decomposed MOGA
model for product family
design

MOGA for 1MOGA for 1stst ProductProduct

MOGAMOGA
for Platform Selectionfor Platform Selection

Maximize Commonality

Minimize Sum of deviations
from product targets received from
Sub-GAs

With respect to Commonality
chromosome

Minimize Deviation from 1st

product performance targets

Maximize Commonality

With respect to:
1st product design
variables

Subject to: 1st product
performance constraints

MOGA for MOGA for ppthth ProductProduct

Minimize Deviation from pth

product performance targets

Maximize Commonality

With respect to:
pth product design
variables

Subject to: pth product
performance constraints

CommonalityCommonality
DeviationDeviation

194 A. Khajavirad et al.

Table 1 Design variables and
bounds for electric motor
example

Definition Lower bound Upper bound

Wire turns on the armature: Nc 100 1,500
Wire turns on each field pole: Ns 1 500
Armature wire area (mm2): Awa 0.01 1.00
Field wire area (mm2): Awf 0.01 1.00
Radius of the motor (mm): ro 10 100.0
Thickness of the stator (mm): t 0.50 100.0
Stack length of the motor (mm): L 1.0 100.0
Current drawn by the motor 0.1 6.0

their sub-fitness values for producing offspring and (2)
coordination of the sub-GAs after each generation to
select the subset of product families from the joint
parent-offspring population that will advance to the
next generation. The commonality value for the en-
tire family is also included as an additional objective
function for each sub-GA which is only used for non-
dominated sorting of the population prior to selection;
however, since each sub-GA explores within the search
space of an individual variant and selects on the basis
of that sub-fitness value, the search quality enhances
significantly and each lower-level GA can carry over
features of high-performing subsets of the full prod-
uct family chromosome to the offspring population.
While searching for high quality individual variants in
lower levels, the upper level selects the next generation
members with respect to the overall family objectives
by applying nondominated sorting with respect to the
commonality level and the overall performance value
(formed by summing the sub-performances calculated
at lower levels). Therefore, although the search for
optimal platform configuration and variant design are
performed in separate GAs, the aforementioned re-
placement scheme applied in each generation in the
upper level differentiates the proposed method from
multi-stage methods that find the optimal platform and
variant design in separate stages. Finally, due to the
parallel nature of this decomposed method, each sub-
GA can be executed on a separate processor using the
MPI library (Pacheco 1997) for sending and receiving

Table 2 Design constraints for the electric motor example

1. Torque (Nm) = {0.05, 0.1, 0.125, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40,0.5}

2. Power (W) = 300 (for all motors)
3. Feasible geometry for all motors: t < ro

4. Maximum magnetizing intensity for each motor: M ≤ 5000
Amp×turns/m

5. Maximum mass of the each motor: Mass ≤ 2 kg
6. Minimum efficiency of each motor: η ≥ 15%

data among nodes during the evolution.8 Hence, in
addition to the improved performance due to decom-
position, it is possible to achieve further reductions in
computational time using parallel processing.

5 Demonstration: universal electric motor family

The universal electric motor family example was first
created by Simpson et al. (1999, 2001) and has since
been applied as a case study in the product family
optimization literature. In this example, the goal is
to design a scaled-based product family of universal
electric motors that satisfy a variety of torque require-
ments using common platforms. Hence, the optimiza-
tion process involves selecting the platform and scaled
design variables and their corresponding values so that
the range of torque requirements is satisfied while the
commonality among the motors is maximized, individ-
ual motor weight is minimized, and individual motor
efficiency is maximized. The detailed analysis including
all equations relating the motor design variables to the
output parameters can be found in Simpson et al. (1999,
2001). Based on this formulation, the design of a single
motor involves eight design variables (see Table 1), two
equality and four inequality constraints (see Table 2),
treating mass minimization and power maximization
as the two objectives. However, as opposed to other
physical components which can be shared for reducing
tooling cost, any current value (within the initial range)
could be drawn from the motor based on other motor

8It should be noted that the parallelization method applied in this
paper is the direct benefit of the proposed decomposition scheme
and should not be confused with general types of parallel GAs
(e.g. fine-grain, coarse-grain and master-slave models), which are
derived from the evolutionary nature of the GA and are indepen-
dent of the specific problem being solved. Generic parallel GAs
could additionally be used to solve subproblems in the proposed
decomposition if the optimization of an individual product is too
complex for a single GA or if further speedup is desired, but we
do not pursue this possibility here.

Product platform selection and product family design 195

Performance

C
om

m
on

al
ity

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

10 sub-GAs

2 sub-GAs

5 sub-GAsall-in-one

Fig. 8 Pareto fronts of the electric motor family for different
decomposition schemes using all-or-none commonality

characteristics and constraints. Hence, in this paper,
current is written as a function of other variables using
the power equality constraint9 rather than being an
independent variable and therefore is not considered
for component sharing.

Hence, the number of design variables is reduced to
7 for each motor, and the power equality constraint is
replaced by two inequality constraints representing the
lower and upper bounds for current.

5.1 Product family objective functions

To demonstrate the tradeoff between commonality
and individual performance as well as to visualize the
Pareto curves conveniently; the three objectives intro-
duced in Akundi et al. (2005) were reduced to two ob-
jectives by combining the two performance objectives
into one using a fixed weighted sum:

f1 =
10∑

i=1

w1ηi + w2
(
1 − m∗

i

)

f2 = CI (3)

in which ηi and m∗
i represent efficiency and the normal-

ized mass (mass of each motor has been normalized
by dividing it over the maximum allowable: mmax =
2 kg) for the ith motor, respectively, and w1 and w2 are
the weight coefficients, which are assumed to be equal
(w1 = w2 = 0.5) in this paper. Moreover, all constraints

9Power equality constraint is a 2nd order equation as a function
of current and has two positive roots if any. Therefore, the roots
are compared with respect to feasibility and objective value, and
the better one is picked as the current value.

Performance

C
om

m
on

al
ity

0.94 0.95 0.96 0.97 0.98 0.99
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decomposed

all-in-one

Fig. 9 Pareto fronts of GAA family for decomposed and all-in-
one formulations using generalized commonality

are handled using the constrained dominated approach
(Deb 2001).10

5.2 Decomposition

To compare the efficiency of the decomposed approach
relative to the all-in-one formulation, the electric mo-
tor family was optimized for the restricted representa-
tion for commonality genes suggested by Simpson and
D’Souza (2004) using several alternative decomposi-
tion schemes. First, the product family was decomposed
into ten lower-level GAs, each optimizing a single prod-
uct. A population size of 2,500 and maximum genera-
tion number of 800 were used. This parameter tuning
was verified by running the same code using larger
values for population size and maximum generation
number, resulting in negligible improvement for the
Pareto curves. Next, the same problem was solved
using three alternative schemes: (1) five sub-GAs, each
containing two motors; (2) two sub-GAs, each with
five motors; and (3) the all-in-one formulation for all
ten motors. The estimated Pareto curves are plotted in
Fig. 8. Since we are interested in finding the benefit
of decomposition in producing better results for the
same computational cost, the same population size and
maximum generation number (which implies the same
number of function evaluations) was applied in all four
cases.

10Since GAs are generally inefficient for handling equality con-
straints directly and need a large population size for finding
feasible solutions, the torque equality constraint has been imple-
mented using an adaptive coefficient strategy in the constrained
dominated approach.

196 A. Khajavirad et al.

Performance

C
om

m
on

al
ity

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9
I

II

IIIall-or-none

Generalized

Fig. 10 Pareto fronts of the electric motor family for the gener-
alized and all-or-none commonality definitions

As can be seen from Fig. 8, the all-in-one formulation
cannot find a well-distributed optimal front: It produces
only the high-commonality portion of the curve in that

Table 3 Platform configuration of points on the Pareto frontier
in Fig. 10

Module I II III

Nc 10 2, 4 2, 2
Ns 10 3, 7 4, 2, 2, 2
Awa 10 9 5
Aw f 4, 4 4 4
ro 5, 5 7 4
t 6 5, 2 4
L 10 2, 4 2, 2

this region has a lower dimensionality. By increasing
the number of sub-GAs (the extent of decomposition),
the Pareto curve moves toward the optimal front, and
best results are obtained for the most decomposed case.

While we focus here on results from the universal
electric motor example, the trends observed in this case
study are also consistent with results we obtained apply-
ing the proposed decomposition to the family of three
general aviation aircraft (GAA) examined in Simpson

Fig. 11 Scalability of the
proposed decomposition
method versus the all-in-one
problem

Performance

C
om

m
on

al
ity

0. 65 0.66 0.67 0.68 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=600

MaxGen=400

MaxGen=200

MaxGen=100

 Performance

C
om

m
on

al
it

y

0. 65 0.66 0.67 0.68 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

case I: 2 products, population size=1500

Performance

C
om

m
on

al
ity

0. 64 0.65 0.66 0.67 0.68 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=200

MaxGen=400

MaxGen=600 MaxGen=800

 Performance

C
om

m
on

al
it

y

0.67 0.675 0.68 0.685 0.69
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

case II: 4 products, population size=2500

Product platform selection and product family design 197

Fig. 11 (continued)

Performance

C
om

m
on

al
it

y

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=600

MaxGen=200

MaxGen=400

MaxGen=800

 Performance

C
om

m
on

al
ity

0.655 0.66 0.665 0.67 0.675
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-II

AIO-I

case III: 6 products, population size=2500

Performance

C
om

m
on

al
it

y

0.63 0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=400

MaxGen=800

MaxGen=1000

MaxGen=600

 Performance
C

om
m

on
al

it
y

0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-II

AIO-I

case IV: 8 products, population size=3000

Performance

C
om

m
on

al
ity

0.64 0.65 0.66 0.67
0

0.15

0.3

0.45

0.6

0.75

0.9

MaxGen=800

MaxGen=1400

MaxGen=1200

MaxGen=1000

 Performance

C
om

m
on

al
it

y

0.655 0.66 0.665 0.67 0.675
0

0.15

0.3

0.45

0.6

0.75

0.9

Decomposed

AIO-I

AIO-II

case V: 10 products, population size=3000

and D’Souza (2004). Specifically, the Pareto set ob-
tained through decomposition is significantly superior
to that obtained without decomposition (see Fig. 9)
indicating the robustness of the proposed approach to
solve families with different number of variants and
components. Details of the GAA case study can be
found in Khajavirad et al. (2007).

5.3 Generalization

As described in previous sections, using all-or-none
commonality definition results in a loss of the benefit of
component sharing among subsets of products, which
is frequently applied in practice. The scalability benefit
of decomposition is even more critical for addressing

198 A. Khajavirad et al.

number of products

R
el

at
iv

e
co

m
pu

ta
ti

on
al

 c
os

t

2 4 6 8 10
0

20

40

60

80

100

120

Decomposed

all-in-one

Linear

Fig. 12 Complexity of the proposed method as a function
of the number of variants (Relative computational cost for p
products = No. of function evaluations for p products/No. of
function evaluations for optimizing a single product)

this generalized case: Since adding the two-dimensional
chromosome along with the design variable chromo-
some and searching through all possible platform con-
figurations adds to the complexity of the algorithm
dramatically, the all-in-one formulation becomes im-
practical even for smaller numbers of products. For
example, in the GAA case study with only three vari-
ants (Khajavirad et al. 2007), the all-in-one code failed
to generate good results for the generalized case (see
Fig. 9). This will be demonstrated numerically in section
5–5.

Therefore, in order to show the benefit of gen-
eralized commonality, the all-in-one formulation was
decomposed to ten sub-GAs, each optimizing an in-
dividual variant. The population size and maximum
generation number are 3,000 and 1,400, respectively,
verified as before.

The Pareto frontier for the generalized commonality
is depicted in Fig. 10 and compared with the all-or-
none case using the same decomposition scheme. As
can be seen from the figure, relaxing the all-or-none
restriction to generalized commonality improves the
product family performance dramatically and allows an
average 30% of increased component sharing for the
comparable level of performance leading to significant
tooling cost savings.

In addition, to demonstrate the concept of gener-
alized commonality, platform configurations for the
three labeled points of the Pareto frontier are listed in
Table 3. The numbers indicate the number of vari-
ants that share each component (1’s are omitted). For
instance, the notation {5, 2} indicates one design is
shared among five variants while another design is

common between two variants and the remaining three
have distinct components. The presence of several sub-
platforms for most of the components shows the im-
portance of the generalization and also the efficiency of
our new chromosome representation for capturing this
feature.

5.4 Complexity of the decomposition scheme

To investigate the scalability of the proposed decompo-
sition compared to the all-in-one problem; the electric
motor example has been solved for different numbers
of products. Pareto frontiers for 2, 4, 6, 8 and 10 variants
are depicted in Fig. 11. Two graphs are shown for
each case: The left hand shows the evolution of the
decomposed algorithm, and the right hand compares
the decomposed algorithm to the all-in-one approach.
Specifically, the left hand graphs show the estimated
Pareto front for several different values of MaxGen,11

the maximum number of generations. Convergence was
assumed when the average performance improvement
between two consecutive 200-generation steps was less
than 1%. The right hand graphs compare the converged
estimated Pareto front from the decomposed MOGA
to two all-in-one cases: (1) AIO-I represents the results
of running the all-in-one algorithm for an equal num-
ber of function evaluations, and (2) AIO-II represents
the results of running the all-in-one algorithm until
it is within 1% of the decomposed solution or has
exceeded the maximum allowed function evaluations,12

whichever is less. Meanwhile, Fig. 12 compares the
computational cost required to achieve convergence for
both the decomposed and the all-in-one algorithms.
Error bars represent the 200-generation step within
which the 1% convergence criteria was achieved.

As can be observed from Figs. 11 and 12, as the
number of variants in the family increases, the compu-
tational requirements increase exponentially for both
methods. In the full decomposition scheme, increasing
the number of variants has no effect on the size of
each sub-GA; however, the 2D commonality chromo-
some size does grow, acting as the limiting factor for
the algorithm scalability. This adverse effect could be
seen from Fig. 12 by comparing the decomposed curve
with the linear case. However, the relative benefit of

11Because of dynamic penalty function parameters for constraint
handling that depend on the MaxGen parameter, the algorithm
was restarted in each case from the same starting point.
12We set the maximum allowed number of function evaluations
to twice the number of function evaluations required for solving
the 10 product case using the decomposed algorithm.

Product platform selection and product family design 199

Table 4 Parallelization times
for the motor example using
various decomposition
schemes

Decomposition scheme Time per generation (s)

Computation Communication and Total execution
time idle time time

2-sub GAs (3 processors) 0.178 1.84 2.081
5-sub GAs (6 processors) 0.081 3.38 3.461
10-sub-GAs (11 processors) 0.045 4.39 4.435

decomposition over the all-in-one approach increases
substantially as the number of variants increases, sup-
porting improved scalability and the ability to solve
larger problems than possible without decomposition.

5.5 Parallelization

As was shown in previous sections, decomposing the
initial “all-in-one” formulation enhances the search
quality of each sub-GA and decreases the total com-
putational cost dramatically. To further reduce the
computational time, the decomposed approach can be
parallelized by running each sub-GA on a separate
processor and using the MPI library for exchanging
data among different nodes. Total execution time of
the parallel codes can be divided into three main parts:
computation time, communication time (i.e., time for
exchanging data among processors) and idle time (e.g.,
synchronization time). Hence, the final speedup de-
pends on how these three factors change by increasing
the number of processors, which is problem specific. In
our decomposition scheme, the computational time for
each sub-GA is inversely proportional to the number
of sub-GAs. This is due to the fact that the number
of genes in each sub-GA chromosome is inversely
proportional to the total number of sub-GAs and the
MOGA operators act on each gene separately. How-
ever, increasing the number of processors increases the
communication and idle time. Hence, parallelization is
beneficial for cases in which the computation time is the
dominant part of the total execution time, which in the
case of GAs is determined by the computational cost of
the fitness calculation phase.

The computation, communication and total execu-
tion time for one generation of the motor example are
listed in Table 4 for 2, 5 and 10 sub-GAs (3, 6 and
11 processors) respectively. The reported times are the
maximum time value among all the sub-GAs, i.e. the
communication time and idle time are combined. As
can be seen from the table, since each electric motor
analysis (i.e., fitness calculation) involves only a number
of analytic equations, and as result a very low computa-
tional cost (1.7 × 10−6 s), total execution time is domi-
nated by the communication time which is increased by
increasing the number of processors. Hence, the total

execution time is increased by increasing the number of
processors. However, as can be found from Table 4, the
computation time is reduced considerably by increas-
ing the number of processors and the communication
time is negligible for cases involving time consuming
product-level simulations. Hence, parallelization is not
recommended for the motor example; however, for
more computationally intensive applications, a high
speedup can be achieved through parallel processing.

6 Conclusions and future work

In this paper, we introduced a new single-stage ap-
proach for solving the joint product family optimization
problem using a unique decomposed MOGA formula-
tion with a generalized commonality chromosome. The
augmented chromosome representation introduced by
Simpson and D’Souza (2004) was generalized to ad-
dress component sharing among subsets of products.
In order to improve the scalability of the proposed
approach, the all-in-one MOGA was decomposed into
a novel two-level optimization problem in which the
upper-level GA finds the optimal platform configu-
ration while each lower-level GA optimizes a sub-
set of products in the family. The proposed approach
was demonstrated by optimizing a family of universal
electric motors. First, the effect of decomposition de-
gree on the quality of estimated optimal fronts under
fixed computational cost was investigated by solving
the restricted commonality case using different decom-
position schemes. The most decomposed case outper-
formed other schemes and found a well-converged and
well-distributed optimal curve with a relatively low
computational cost. Next, the same example was solved
using the generalized commonality definition for the
most decomposed case. Results show that the general-
ized commonality representation improves the optimal
points dramatically, dominates all solutions of the all-
or-none algorithm and captures the tradeoff between
commonality and performance more effectively. These
trends are consistent with a second case study of a
family of three general aviation aircraft, thus support-
ing generalizability of the empirical results. Finally,
the complexity of the decomposition scheme in terms

200 A. Khajavirad et al.

of number of variants was examined by solving fam-
ilies with different numbers of products; results show
the proposed decomposition improves the scalability
of the all-in-one problem significantly; extending the
applicability of the optimization algorithm to families
with more variants. More scalable algorithms could be
explored by investigating alternatives to the proposed
2D commonality chromosome for representing the gen-
eralized component sharing.

In conclusion, common restrictions of commonal-
ity to degrees of all-or-none may significantly limit
the quality of the resulting solutions and the ability
to take full advantage of commonality options. Thus,
we recommend that all-or-none restrictions be used
only when the firm is truly uninterested in generalized
commonality for reasons of logistics, etc. Secondly, the
proposed decomposition is significantly more efficient
than all-in-one approaches, and it is able to generate
evenly-distributed Pareto curves. We see no disadvan-
tage to the decomposed approach, and we recommend
the approach for future work in product line and prod-
uct family optimization. In addition, for cases in which
the fitness calculation phase (i.e., the product level
simulation) involves high computational cost; a high
speedup can be achieved by running the decomposed
approach on a parallel machine.

For future work, we intend to examine deterministic
global optimization approaches to solve the joint prod-
uct family problem (Khajavirad and Michalek 2008b)
and compare the true optimal front with those found
using popular heuristics and local solvers in the product
family optimization literature, quantifying the benefits
and limitations of each group. In addition, current ob-
jectives for commonality and deviation from exogenous
performance targets used in this paper, which are the
standard in product family optimization, are some-
what artificial and limited substitutes for the benefits
of commonality and differentiation. Future work aims
to introduce methods for quantifying cost benefits of
commonality and revenue benefits of differentiation
in a heterogeneous marketplace in order to make the
most profitable tradeoff in product family planning and
design (Kumar et al. 2006; Michalek et al. 2006b).

Acknowledgements This work is supported in part by the Penn-
sylvania Infrastructure Technology Alliance, a partnership of
Carnegie Mellon, Lehigh University, and the Commonwealth of
Pennsylvania’s Department of Community and Economic De-
velopment (DCED). Dr. Simpson also acknowledges support
from the National Science Foundation under CAREER Award
No. DMI-0133923. Any opinions, findings, and conclusions or

recommendations presented in this paper are those of the authors
and do not necessarily reflect the views of the sponsors.

References

Akundi S, Simpson TW, Reed PM (2005) Multi-objective de-
sign optimization for product platform and product family
design using genetic algorithms. ASME design engineering
technical conferences—design automation conference. Long
Beach, CA

de Weck O (2005) Determining product platform extent. In:
Simpson TW, Siddique Z, Jiao J (eds) Product platform and
product family design: methods and applications. Springer,
New York, pp 241–301

Deb K (2001) Multi-objective optimization using evolutionary
algorithms. Wiley, Chichester, West Sussex, UK

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. Parallel problem solving from na-
ture VI conference. Paris, France, pp 849–858

Fujita K (2002) Product variety optimization under modular
architecture. Comput Aided Des 34(12):953–965

Fujita K, Yoshida H (2001) Product variety optimization: simul-
taneous optimization of module combination and module at-
tributes. ASME design engineering technical conferences—
design automation conference. Pittsburgh, PA

Hassan R, de Weck O, Springmann P (2004) Architecting a
communication satellite product line. In: 22nd AIAA in-
ternational communications satellite systems conference &
exhibit (ICSSC). Monterey, CA

Khajavirad A, Michalek JJ (2008a) A decomposed approach for
solving the joint product family platform selection and de-
sign. Mech Des v130 p071101

Khajavirad A, Michalek JJ (2008b) A deterministic Lagrangian-
based global optimization approach for large scale de-
composable problems. In: ASME international design
engineering technical conferences & computers and infor-
mation in engineering conference IDETC/CIE. ASME, New
York, USA

Khajavirad A, Michalek JJ, Simpson TW (2007) A decomposed
genetic algorithm for solving the joint product family op-
timization problem. In: 3rd AIAA multidisciplinary design
optimization specialists conference. Honolulu, HI

Khire RA, Messac A, Simpson TW (2006) Optimal design of
product families using Selection-Integrated Optimization
(SIO) Methodology. In: 11th AIAA/ISSMO symposium
on multidisciplinary analysis and optimization. Portsmouth,
VA

Kokkolaras M, Fellini R, Kim HM, Michelena NF, Papalambros
PY (2002) Extension of the target cascading formulation
to the design of product families. Struct Multidisc Optim
24(4):293–301

Kumar D, Chen W, Simpson TW (2006) A market-driven ap-
proach to the design of platform-based product families. In:
AIAA/ISSMO multidisciplinary analysis and optimization
conference. Portsmouth, VA

Martin M, Ishii K (1996) Design for variety: a methodology for
understanding the costs of product proliferation. In: Design
theory and methodology—DTM’96. Irvine, CA

Messac A, Martinez MP, Simpson TW (2002) Effective prod-
uct family design using physical programming. Eng Optim
34(3):245–261

Product platform selection and product family design 201

Michalek JJ, Ceryan O, Papalambros PY, Koren Y (2006a) Bal-
ancing marketing and manufacturing objectives in product
line design. J Mech Des 128(6):1196–1204

Michalek JJ, Ceryan O, Papalambros PY, Koren Y (2006b) Bal-
ancing marketing and manufacturing objectives in product
line design. ASME J Mech Des 128(6):1196–1204

Pacheco P (1997) Parallel programming with MPI. Morgan
Kaufmann, San Francisco, CA

Simpson TW (2005) Methods for optimizing product plat-
forms and product families: overview and classification. In:
Simpson TW, Siddique Z, Jiao J (eds) Product platform and
product family design: methods and applications. Springer,
New York, pp 133–156

Simpson TW, D’Souza BS (2004) Assessing variable levels
of platform commonality within a product family using a
multiobjective genetic algorithm. Concurr Eng Res Appl
12(2):119–129

Simpson TW, Maier JRA, Mistree F (1999) A product plat-
form concept exploration method for product family design.
In: Design theory and methodology—DTM‘99. Las Vegas,
Nevada

Simpson TW, Maier JRA, Mistree F (2001) Product platform
design: method and application. Res Eng Des 13(1):2–22

Thevenot HJ, Simpson TW (2006) Commonality indices for
product family design: a detailed comparison. J Eng Des
17(2):99–119

	An efficient decomposed multiobjective genetic algorithm for solving the joint product platform selection and product family design problem with generalized commonality
	Abstract
	Introduction
	Review of related literature
	Classification: product family optimization
	Prior approaches to solving the joint problem
	Decomposition approaches

	Proposed MOGA approach
	Chromosome representation
	Consistency constraints
	Crossover operators
	Mutation operators
	Commonality objective function

	Decomposition and parallelization of the MOGA
	Demonstration: universal electric motor family
	Product family objective functions
	Decomposition
	Generalization
	Complexity of the decomposition scheme
	Parallelization

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

