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A Deterministic Lagrangian-
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We propose a deterministic approach for global optimization of nonconvex quasisepa-
rable problems encountered frequently in engineering systems design. Our branch and
bound-based optimization algorithm applies Lagrangian decomposition to (1) generate
tight lower bounds by exploiting the structure of the problem and (2) enable parallel
computing of subsystems and use of efficient dual methods. We apply the approach to two
important product design applications: (1) product family optimization with a fixed-
platform configuration and (2) single product design using an integrated marketing-
engineering framework. Results show that Lagrangian bounds are much tighter than the
factorable programming bounds implemented by the commercial global solver BARON,
and the proposed lower bounding scheme shows encouraging robustness and scalability,
enabling solution of some highly nonlinear problems that cause difficulty for existing
solvers. The deterministic approach also provides lower bounds on the global optimum,
eliminating uncertainty of solution quality inherent to popular applications of stochastic
and local solvers. [DOI: 10.1115/1.3087559]
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1 Introduction

Many important optimization problems in engineering design,
computational chemistry, molecular biology, and logistics are
modeled as nonconvex formulations that exhibit multiple local
optima [1]. These problems create difficulty for local optimizers
that guarantee global optimality only under certain convexity as-
sumptions and could be trapped in suboptimal solutions depend-
ing on the starting point. Heuristics such as the use of multiple
random starting points have been employed to mitigate this de-
fect; while these methods provide some insight regarding the na-
ture of the problem and existence of multiple local optima, they
cannot guarantee global optimality and do not provide conclusive
information about the global quality of the local solutions. Global
optimization algorithms aim to avoid these uncertainties by
searching for global solutions.

Global optimization algorithms can be classified as either de-
terministic or stochastic: Deterministic approaches find solutions
within a selected tolerance of the global optimum in finite time
[1,2]. These include outer approximation, cutting plane methods,
and generalized Benders decomposition for convex mixed integer
nonlinear programs (MINLPs) [3] and branch and bound methods
for nonconvex MINLPs [4]. Stochastic techniques include random
search methods, genetic algorithms (GAs), and simulated anneal-
ing among others. While stochastic methods can often provide
good solutions to difficult problems in practice, they offer no
guarantee regarding the optimality of solution in finite time; in
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addition, they require problem-dependent fine tunings, and they
do not eliminate the risk of premature convergence to local op-
tima.

In mechanical design applications, optimization problems are
almost always highly nonlinear and nonconvex. Stochastic
techniques—particularly genetic algorithms—have been used ex-
tensively to solve these problems; however, since they offer no
lower bound on global optima, the modeler is left to hope without
evidence that a near-global solution has been found when the
algorithm converges.

In contrast, rigorous deterministic global optimization tech-
niques have been developed for solving nonconvex MINLPs in
chemical engineering, including application to protein folding,
chemical equilibrium, and process system engineering [5,6]. Gen-
erally speaking, most optimization problems in the aforemen-
tioned applications are very large-scale problems that (1) can be
formulated as factorable programs,l (2) are mostly linear except
for a relatively small number of nonlinear terms, and (3) have
nonconvexities that are primarily limited to bilinear or multilinear
terms, which have closed-form convex envelopes.2 To solve these
problems, algorithms convert the original nonconvex MINLP to
mixed integer linear programming (MILP) formulations by first
using tight nonlinear convex underestimators to convexify non-
convex terms [7-9], followed by an optional linearization tech-
nique to enable application of efficient linear programming (LP)
solvers [10]. Due to the specific nature of these problems, the

'Factorable programs refer to a class of nonlinear programming problems in
which the objective function and constraints are defined in terms of factorable func-
tions. A factorable function is any function that can be formed by taking recursive
sums and products of univariate functions.

The convex envelope is tightest possible convex underestimator of a nonconvex
function. A convex underestimator of a nonconvex function is a convex function,
which lies below the original function.
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convexification and linearization strategy typically provides tight
lower bounds in the context of global optimization, resulting in
efficient performance, whereas in mechanical engineering appli-
cations, these methods usually fail to locate the global optima in a
reasonable time because the presence of many nested nonconvex
terms leads to weak lower bounds.

Large-scale quasiseparable optimization problems, which are
nearly separable into independent subproblems except for a rela-
tively small number of coupling constraints, arise frequently in
engineering design applications [11-14]. Several decomposition
methods have been introduced to convert the quasiseparable prob-
lem to a block-separable one and then decompose it to smaller
subproblems that can be solved efficiently [13-18]. However,
these methods either (1) employ local solvers and therefore guar-
antee global optimality only under convexity assumptions [14—17]
or (2) rely on stochastic techniques such as GAs [13]. For deter-
ministic global optimization, the special structure of these prob-
lems can be exploited to develop lower bounding schemes that
improve the convergence rate of global solvers considerably.

In this paper, we propose a deterministic global optimization
technique for solving large-scale quasiseparable nonconvex prob-
lems using Lagrangian decomposition for generating tight lower
bounds in the branch and bound tree. While the algorithmic con-
structs employed here are based on known Lagrangian relaxation
and branch and bound techniques, the main contributions of this
paper are twofold. First, we show that the lower bounds generated
by the proposed approach are much tighter than those created via
convexification of the all-in-one problem using factorable pro-
gramming techniques that are implemented in the commercial glo-
bal optimization solver. Second, we are able to solve for the first
time some realistic and highly nonconvex mechanical engineering
design problems, for which we demonstrate that global solutions
are significantly better than those obtained by prior approaches.

2 Background

The branch and bound method and its variants are popular ap-
proaches to deterministic global optimization [2]; branch and
bound refers to a set of methods that recursively (1) estimate
lower and upper bounds for the original problem, (2) branch the
domain of the problem into smaller subdomains, and (3) fathom
branches proven not to contain the global solution. Lower bounds
are generated by solving a relaxed version of the problem that is
easier to solve by enlarging its feasible region and convexitying
the objective function. Upper bounds can be found by applying
heuristics or local solvers to find good feasible points. Branching
of the problem into smaller subdomains (nodes) generally reduces
the gap between the original problem and its relaxation within the
subdomain, improving tightness of lower bounds. Nodes that con-
tain no feasible solutions, have lower bounds greater than the
best-known upper bound or have lower and upper bound differ-
ence less than some selected tolerance, are fathomed at any point
in the algorithm’s progress; thus, branch and bound accomplishes
implicit enumeration without the need for searching in all subre-
gions of the space. The branch and bound process typically termi-
nates when all nodes in the tree are fathomed and the best found
upper bound is reported as the solution. The tightness of the lower
bounds has a strong impact on the convergence rate of branch and
bound methods.

For a general nonconvex MINLP, a lower bound can be gener-
ated by dropping the integrality constraints and convexifying the
nonconvex terms using convex underestimators [7-9]. As one of
the most successful implementations of this method, branch and
reduce optimization navigator (BARON) [19] applies a recursive
algorithm to decompose factorable functions into sums and prod-
ucts of univariate functions and constructs nonlinear convex un-
derestimators of those functions, followed by polyhedral outer
approximation of the nonlinear convex functions to enable use of
efficient LP techniques [ 10]. While quite robust for problems with
relatively few nonconvex elements or structured nonconvexities,
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the recursive nature of the convexification approach can lead to
poor lower bounds for large-scale problems with deeply nested
factorable forms, such as those commonly found in mechanical
engineering applications.

Another powerful tool for obtaining lower bounds for noncon-
vex problems is Lagrangian relaxation [20-22]. In this method,
complicating constraints that make the problem difficult to solve
are relaxed using Lagrangian duality; this approach is specifically
beneficial when relaxing the complicating constraints makes the
problem much easier to solve. For instance, in quasiseparable
problems, complicating constraints are coupling constraints that
prevent the problem from being separable. Relaxation of coupling
constraints to generate independent subproblems (Lagrangian de-
composition) has been a primary motivation for applying La-
grangian relaxation to many large-scale MILPs and MINLPs
[22-25].

In this paper, we propose an efficient branch and bound meth-
odology for global optimization of large-scale nonconvex qua-
siseparable MINLPs encountered frequently in mechanical engi-
neering. For obtaining tight lower bounds, the original problem is
converted to a block-separable formulation by relaxing the cou-
pling constraints using Lagrangian relaxation. The separable dual
function is then decomposed into smaller subproblems, which can
be solved for global optimality efficiently using the commercial
software. The approximate optimal dual value, used as a lower
bound, is obtained by employing the subgradient method, a popu-
lar and easy-to-implement algorithm for solving nondifferentiable
convex problems [20]. To demonstrate the efficiency and robust-
ness of the proposed method, we apply two important applications
of quasiseparable problems in mechanical engineering: (1) the
fixed-platform product family optimization problem and (2) prod-
uct design for profit maximization.

The remainder of this paper proceeds as follows: In Sec. 3, the
general formulation for lower bounding through Lagrangian de-
composition is developed. The product family optimization prob-
lem is formulated in Sec. 4 and solved for a family of electric
motors. The joint marketing-engineering product design problem
is defined in Sec. 5 and demonstrated through a bathroom scale
design case study. Finally, conclusions and future work are dis-
cussed in Sec. 6.

3 Proposed Method

Using the concept of functional dependence table (FDT) [26],
we define a quasiseparable problem as one with block arrowhead
FDT structure (see Fig. 1(a)). Here, x; and X; represent the vector
of local variables and constraints for the ith subproblem, respec-
tively; each independent of the other subproblems and n denotes
the total number of subproblems. y and g are the vectors of link-
ing variables and constraints, respectively, that couple the sub-
problems. In a typical quasiseparable problem, the number of lo-
cal variables and constraints is much larger than the number of
linking variables and coupling constraints. Objective function f
can in general contain both local and linking variables. Further,
for the system to be decomposable, both the objective and linking
constraints are assumed to have an additive structure. Hence, one
can formulate a quasiseparable MINLP as follows:

n

minimize Y, fi(x;,y)

i=1

subject to [x,yl e X,, Viell,...,n}

E gi(x,y) =0 (1)
i=1

To allow for decomposition, Eq. (1) should be reformulated to
make the corresponding FDT block diagonal: First, local copies of
linking variables are introduced in each subproblem (y;,i
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[x,.y,]

Fig. 1
ing local copies of linking variables (y;) and consistency constraints (c), and (c) relaxing the coupling
constraints (g,c) and applying Lagrangian decomposition

=1,...,n) and consistency constraints (¢) are added to ensure that
all copies attain equal values at the optimal point (Fig. 1(b)):

n
minimize E fix.y)

i=1

subject to [x,y;] e X;, Viell,...,n}

E gi(x,y) =0
i=1

V) =0 2)

The next step is to relax the coupling constraints; this will be
explained in Sec. 3.1. Figure 2 shows an overview of the proposed
approach; as any branch- and bound-based method, the main steps
are lower bounding, upper bounding, and branching. In the next
sections, each of these stages is described in detail.

c(yy, -

3.1 Lower Bounding. By setting X;=[x;,y;] and g(X)
=[Xg(x;,y;),c(y,...y,)] and applying Lagrangian relaxation to
the coupling constraints in Eq. (2), the Lagrangian function be-
comes

LEN) = 2, (f(K) + NTE(X) 3)
i=1

m
queue

Queue

[x,,¥ ”xp"z] [xa!yn]

(©)

Functional dependence table: (a) arrowhead structure for the original problem, (b) introduc-

and the dual function is

ESEDS inf (£(%) + Mg (X)) )
i=1 Xi€&
where N represents the vector of Lagrange multipliers; Eq. (4)
reveals that for a fixed A, the dual function is separable and there-
fore decomposes into n independent subproblems (Fig. 1(c)); thus,
the dual problem can be written as

n

maximize 2 qi(\)
A i=1

subject to A e RE (5)

where

gi(N) = inf (fi(%) + Ng(X)))
Xi€ X

The weak duality theorem ensures that any dual value g(\) is a
lower bound for the optimal primal value® [20]. Thus, solving the
dual problem (even approximately) provides a lower bound for
the primal problem that can be used in the branch and bound
algorithm. Moreover, the separable structure of the dual function
allows for fast computation of the dual subproblems, which is an
important feature for efficiency of dual methods [20].

The approximate optimal value of Eq. (5) can be found using

3Since for the general case the objective and constraints are nonconvex, strong
duality does not hold, and a duality gap may exist.

Put new

queue

Fig. 2 Overview of the proposed approach
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any nondifferentiable convex optimization approach.4 Subgradient
methods are among the most popular nondifferentiable convex
optimization methods [27], and they have been used extensively
for solving the nondifferentiable dual problems by generating a
sequence of dual feasible points using a single subgradient at each
iteration:

N = Py N+ g (©)

where g% and of denote a subgradient of the function and a posi-
tive step size at the kth iteration, respectively. P,, represents the
projection over closed convex set M, which for Eq. (5) is M
={N|A=0, g(N\)>—}. There are various schemes for selecting
o*; we adopt the diminishing step size rule, which converges to a
maximizing point of g over M, if the sequence of satisfies the
following conditions [20]:

lim a¥=0, X af=c0, D (a})2<w (7)
ke k=1 k=1

An example of the above scheme is o*=a/(b+k), where a and
b are scalars tuned for the problem. In each iteration, all subprob-
lems are solved in parallel for global optimality; next the multi-
pliers are updated according to Eq. (6), and the iterative process
continues for a predefined number of iterations (k). Therefore,
the greatest identified LB for Eq. (3) can be computed as

LB= max

> aiNY (8)
ke{l,. .. hmaxt \ j=1

3.2 Upper Bounding. In general, any feasible point of Eq. (3)
can serve as an upper bound (UB) to the global minimum. These
bounds enhance the algorithmic convergence by pruning the
nodes of the branch and bound tree that cannot contain any solu-
tion better than the best known feasible point. In the proposed
approach, in every node of the branch and bound tree, after lower
bounding, Eq. (3) is locally optimized using the dual optimal
value as the starting point,” local solution is compared with the
best available feasible point, and the UB is updated accordingly.

3.3 Branching. In any node of the tree, if (UB-LB) falls
within the user-specified tolerance, that node is pruned and the
upper bound is updated accordingly; otherwise, the feasible region
is partitioned into two subsets, and the two new nodes are added
to the list of open nodes. We adopt a depth-first search rule for
node selection. Branching decisions can be made by computing a
violation that measures the dual infeasibility introduced by relax-
ing the coupling constraints. For instance, if the coupling con-
straints are consistency constraints, the variance of each linking
variable among its subproblems is calculated and the one with the
maximum violation is selected as the branching variable, using the
mean value of that variable among its copies as the branching
point.

4 Application No. 1: Product Families

A product family is a set of products that share some compo-
nents to reduce manufacturing cost while maintaining variant dis-
tinctiveness to attract a range of market segments. The general
problem of finding the optimal selection of common components
and design of the product variants is a nonconvex MINLP. Among

“The dual problem has two important characteristics: (1) The dual problem is
concave regardless of the nature of the primal. (2) If there exists a duality gap, the
dual function is nondifferentiable at every dual optimal solution.

The subgradient method is not a descent method; thus the algorithm should keep
track of the best point found and report it as the lower bound.

“The dual optimal solution is usually primal infeasible but can be employed as a
good starting point for solving the primal locally. In the case of a dual feasible
solution, it can be used as an upper bound for the overall problem and the node is
fathomed.
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more than 40 approaches in the literature [28], there is no ap-
proach that guarantees global optimality for the general problem;
they either use gradient-based local optimization techniques
[12,14,29,30] or rely on stochastic global optimizers [13,31]. In
this paper, we assume that the platform configuration has been
selected a priori. The resulting problem can be formulated as fol-
lows:

maximize E fix,Sy)

i=1

subject to g;(x;,S;y) =0 )

where f; and g; denote the performance objective and vector of
constraints for the ith product, respectively; Xx; is the vector of
distinct components of the ith variant; y is the vector of r common
components, each shared among a subset of variants; and S; is a
selection matrix’ with binary elements that identify which plat-
form components (y) are present in the ith variant. Hence, indi-
vidual product designs are coupled through the common variables
y, and Eq. (9) should be reformulated by introducing copies of the
common components for each variant present in that platform and
adding consistency constraints forcing these copies to be equal:8

n
maximize E fi(x:,8:y)

i=1

subject to g;(x;,S;y;) =0
l n
Yig= _2 Yip
' bB j=1 !

Vie{l,2,....n}, BeS, (10)

where
e=[S].8%. ... 1]

The consistency constraint in Eq. (10) simply requires that each
copy of each variable in y is equal to the average of all of its
copies. The notation accounts for y variable copies that each ap-
pear in a different subset of the subproblems: The y;g symbol
indicates the ith subproblem variable copy of the Bth dimension
of the vector y, and [1] denotes a matrix of 1s with rows equal to
the total number of y variable copies and columns equal to m;
thus, ¢ has the same length as y, and it counts the number of
subproblems in which each y term appears. Copies of y that are
not selected by S; fall out of the problem and are taken as equal to
zero, and the set S; is the subset of 1,2,...,r selected by S,;.

Relaxing the consistency constraints and applying Lagrangian
decomposition, the ith Lagrangian subproblem can be rewritten as

1 n
maximize f;(x;,S;y;) + 2 Vigl Nig— —E Nig
BeS; Pp j=1

subject to g;(x;,S;y;) =0 (11)

where
e=[S[.S5. ....S/ 1]

The lower bounding step involves global optimization of indi-
vidual variants in parallel followed by subgradient updates of the
multipliers from Eq. (6) for a predefined number of iterations. We

For example, S;=[1 0 0; 0 0 1]and y=[y,, y,, ys]” indicates that y, and y;
are 8plalform components for the first variant, but y, is not.

There are alternative methods for formulating the consistency constraints; our
numerical experiments show that the above formulation leads to the tightest lower
bounds after a finite number of iterations.
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Table 1 Average mass and efficiency for the electric motor
product family using alternative optimization schemes

Table 2 Computational time of the electric motor product fam-
ily for all-in-one versus decomposition approach

Example 1 Example 2
[33] BARON [28] BARON
Mass (kg) 0.672 0.622 0.660 0.599
Efficiency (%) 0.629 0.684 0.621 0.674

select as the branching variable the term in y with the largest
variance among its copies and the corresponding mean value as
the branching point.

4.1 Case Study: Universal Electric Motors. The universal
electric motor product family example [28] has been applied as a
case study to compare the efficiency of various approaches in the
product family optimization literature. In this example, the goal is
to design a product family of electric motors that satisfy a variety
of torque requirements while reducing manufacturing cost through
commonality. According to the original formulation [28], the de-
sign of a single motor involves eight design variables, two equal-
ity constraints, and four inequality constraints. We propose a re-
formulation in which the equality constraints are used to solve for
two of the design variables reducing the number of design vari-
ables to 6 for each motor, and the two equality constraints are
replaced by four inequality constraints representing lower and up-
per bounds for the omitted design variable.” Among the existing
objective-function formulations, the following are considered for
comparison purposes.

L. Goal programming approach [29]. The objective is to mini-
mize undesirable deviation of mass and efficiency from their
targets, 0.5 kg and 70%, respectively; that is, the deviation
value for any motor that weighs less than 0.5 kg and has an
efficiency of 70% or more is set to zero.

II. Direct optimization of mass and efficiency [13]. The objec-
tive is formulated as the weighted sum of the mass and
efficiency over the entire family: f=3 w,(1—7)+wm;,
where m; represents the normalized mass (mass/myy,,) for
the ith motor, and w; and w, are the weight coefficients for
efficiency and normalized mass, respectively [32].

4.1.1 Comparison of Alternative Optimizers. To highlight the
need for deterministic global optimization, two examples employ-
ing a local solver and a stochastic global optimizer were selected
from the literature and solved for global optimality using BARON
[19]. To avoid numerical problems, all variables and NLP expres-
sions in the model must be bounded within finite values, which
can be impractical for formulations with many nested functions.
Moreover, supported nonlinear functions are exponential, logarith-
mic, and power functions; other forms such as trigonometric terms
are not supported. = In all the following examples, the relative
terminaltlion tolerance between upper and lower bounds was set to
0.01%.

Example No. 1. Messac et al. [33] used physical programming
for optimizing a family of ten electric motors treating radius
and thickness as platform variables along with the goal pro-
gramming objective. The same problem was solved using
BARON; results are compared in Table 1: by switching from a
local to a global optimizer, the optimal family on average is

The proposed  reformulation can be obtained from authors or
www.ddl.me.cmu.edu.

In a recent comprehensive study, Neumaier et al. [32] solved over 1000 test
problems from the literature using commercial global solvers and showed that BARON
is the fastest and most robust one.

"There are various termination options in BARON, which can be controlled by the
user. In this paper, we used the relative termination tolerance, which is &,=100

X (UB-LB)/UB%.
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Computational time

(s)
No. of products BARON (all-in-one) Proposed method
5 26 31
10 690 77

15 2725 108
— 156

8.0% more efficient and weighs 7.4% less. This example dem-
onstrates that using local solvers for nonconvex formulations
may lead to suboptimal solutions with significant performance
losses in practice.

Example No. 2. Simpson [28] used a GA to optimize a family of
ten electric motors to jointly determine the optimal platform-
selection and variant design using the direct objective-function
formulation. To compare the solution quality, one of the Pareto
optimal solutions with radius and thickness shared among all
products was selected and optimized using BARON holding the
platform configuration fixed (Table 1): the GA-reported solu-
tion is a product family which on average is 7.9% less efficient
and weighs 9.2% more than the global optimum. Although GAs
search the entire feasible region for the global optima, they
typically fail to locate the global solution in finite time. This
example illustrates how using stochastic global solvers such as
GAs can lead to suboptimal solutions in practice.

4.1.2  Scalability and Decomposition. In both previous ex-
amples, the all-in-one problem was solved using BARON without
Lagrangian decomposition because both cases are relatively
small-scale problems. In this section, we demonstrate the effect of
increasing the problem size on the convergence rate of BARON:
The electric motor product family was optimized for 5, 10, 15,
and 20 products, respectively, under various platform configura-
tions using the direct mass and efficiency formulation as the ob-
jective function. First, for all cases, the all-in-one formulation was
solved using BARON; computational time for each family is listed
in Table 2. Results show that while BARON is quite efficient for
relatively small problems, it slows down significantly when in-
creasing the size of the problem. That is, by increasing the number
of products from 5 to 15, the computational time increases expo-
nentially, and the solver failed to find a feasible solution for 20
products. As will be shown, this undesirable trend is due to weak
lower bounds created by convex underestimations. Next, we ap-
plied the proposed Lagrangian-based branch and bound approach
to solve the same problem (Table 2) using a randomized incre-
mental subgradient method'? with a diminishing step size rule for
lower bounding. In each iteration, one individual motor was se-
lected randomly and optimized globally using BARON.'? Next, the
multipliers were updated using Eq. (6) and the process was re-
peated for 20 iterations. coNoPT'* was used as the local solver for
upper bounding, using the dual solution as the starting point.
Table 2 shows that while the method is slower than BARON for five
products, it outperforms BARON significantly as the number of
products increases, showing an almost-linear complexity. The key
feature of the decomposed algorithm is that it only uses BARON for
optimizing a single product at a time, for which the solver is quite
fast and efficient (less than 0.5 s on average), to generate lower

"’Randomized subgradient method is an extension of the ordinary method devel-
oped for separable problems. In each step, only one random subproblem is solved
and the multipliers are updated accordingly [20].

3The electric motor optimization formulation is a nonconvex NLP; therefore, to
find a valid lower bound, it should be solved using a deterministic global optimizer
(e.g., BARON).

1conopr is a NLP local solver based on the generalized reduced gradient method.
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Table 3 Factorable versus Lagrangian bounds at the root
node for electric motor product family

BARON
No. of Optimal Lagrangian factorable
products solution bounds bounds
5 1.748 1.736 0.1674
10 3.426 3.419 0.323
15 5.112 5.101 0.265
20 6.646 6.638 0.015

bounds using Lagrangian decomposition. These tight lower
bounds then enable fast convergence of the branch and bound tree
for the entire family.

Table 3 compares the lower bounds at the root node of the
branch and bound tree for the families of Table 2 using Lagrang-
ian decomposition versus factorable programming bounds gener-
ated by BARON. The Lagrangian bounds in the root node are
within 1% of the optimal solution whereas factorable program-
ming bounds are much weaker. Therefore, although Lagrangian
bounds are computationally more expensive to compute than the
factorable programming bounds (optimizing one motor globally
20 times versus solving the convexified family of ten motors
once), their high quality reduces the overall execution time con-
siderably.

5 Application No. 2: Design for Profit Maximization

Designing products for the maximum profit through simulta-
neous consideration of consumers’ preferences and engineering
constraints has received great attention in recent years [34-36].
However, prior approaches have employed either local solvers
[34] or GAs [35,36] to solve the nonconvex MINLP problem and
therefore are not able to ensure global optimality. In this example
we adapt the formulation proposed in Ref. [34] to solve the joint
marketing-engineering product design problem for a single prod-
uct. Using the logit function for demand modeling and the latent
class model for capturing preference heterogeneity, the all-in-one
problem can be formulated as follows:

maximize Il=¢g(p-cy)—¢;
SubjGCt to Xmin =X= Xmax>  Pmin = p = Pmax>  Zmin = =z= Zpy,

z=r(x)

n{w € {071}’

g(x) =0,

VYoe{2 ...,
h(x)=0,

Agmu=yp=Aln 0= Yo, = Afgszﬂg(ng—l)

A2§m7]§w = Yo = Afgmﬂg(m-l)s Voe {Zs e sﬂg_ l} (12)
where
m . zZ
evi R R
q=0 2 i o | Uis vio(Bio:B) + 2 Ui{(ﬂi{’zg)
i L+el =1
Q
ﬁt&w B;g(w 1) {
Vie=Biat 2 ( Vew =Zat E Véw
w=2 Zfa) Z§(w 1) =2
To)e 5 Q;
0w — BiO(a}—l) A
10—13101"'2 ( - )yOw’ P=P1+EYOw
w=2 pw P(w-1) =2

Afga):f.fa)_ég(w*l)’ Vwe {2, e ,Q{}

where Il represents profit; g is the product demand, which is a
function of product attributes (z) and price (p); ¢y and ¢; are unit
variable and investment costs, respectively; s; is the size of the ith
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market segment; and Q is the overall market size. Product utility
in each segment (v;) is assumed to have a continuous form using
piecewise linear interpolation over the discrete part-worths () at
each discrete level of z, obtained from conjoint analysis. The in-
cremental cost formulation [37] has been applied to represent
piecewise linear functions, which requires introduction of inter-
mediate continuous (y) and binary (z) variables. x denotes the
vector of design variables; g and h are the vectors of inequality
and equality engineering constraints, respectively; and product at-
tributes are related to the engineering variables through equality
constraints (z=r(x)). Equation (12) is a nonconvex MINLP and,
as will be illustrated in Sec. 5.1, cannot be solved all-in-one using
BARON. Following the same scheme introduced in Ref. [34], Eq.
(12) can be decomposed into marketing and engineering subprob-
lems by first introducing marketing (z") and engineering (zF)
product attribute copies along with the consistency constraints
(zM=2F) and then relaxing the consistency constraints in the La-
grangian decomposition framework. Applying the aforementioned
steps, one obtains the following.

I. Marketing subproblem:

z
maximize I1=¢q(p—cy)—c;— E )\lzlgw
=1
subject to zﬁfin =M= zﬁfax, min = P = Pmax>
T €{0.1}, Voe{2,....0,-1}

M M M
Ao =yp=Ain, 0= Yo, = Azgnﬂg(nfl)

Q- 1}
(13)

Afgu’rkw = y{w = Afgun{(w—l)’ Voe {2’ cees

where

‘]=Q(E Sil
i=1

A
eli N M
u,-) , U= viO(ﬁzO’p) + 2 l),{(ﬂig,zg )
+e =1

Bicu= B <

iEw i&(w-1) M M

Vie=Biat E <—>y§w’ g =i+ > Véw
w=2

=2 Zg’w Z§(u)—l)
QO 8, Q;
0w~ BiO(wfl) A
10—5101"'2 ( N ))’ow, P=P1+E)’ow
w=2 pw P(o-1) w=2
Azt =20 -2, VYoe{2,...04
II. Engineering subproblem:
z

maximize — 2 A ng

=1
subject t0 Xy = X = Xpuo 2oy, =28 =125
gx)=0, h(x)=0 (14)
where
zF=r(x)

In each iteration, Egs. (13) and (14) are solved in parallel, and
Lagrange multipliers are updated using the subgradient method
providing an upper bound" for the branch and bound framework.
Moreover, the branching variable and branching point selection
are defined the same as the first example.

13Since this example is a maximization problem, lower (upper) bounding steps are
equivalent to upper (lower) bounding stages of Fig. 1.
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Table 4 Optimal scale design-marketing attributes

Attributes (z) Lower bound  Optimal value  Upper bound

z,: weight capacity 200.0 250.0 400.0
250 aspect ratio 0.75 1.04 1.33
z3: platform area 100.0 140.0 140.0
z4: tick mark gap 0.0625 0.1237 0.1875
Zs: number size 0.750 1.432 1.750
p: price 10.0 25.0 30.0

Lower bound: 66.436

Upper bound: 66.497 Relative gap: %0.092

5.1 Case Study: Dial Read-Out Bathroom Scale. The bath-
room scale design problem was introduced in Ref. [34] as a case
study for the integrated marketing-engineering approach. The
same example was used here to show the efficiency of the decom-
position approach.16 Each scale is represented by 5 product at-
tributes (z), 8 design variables (x), and 14 engineering constraints.

First, the all-in-one problem (Eq. (12)) was optimized using
BARON; setting the maximum execution time to 24 h, the best
upper bound was 87.76 with a relative gap of 32.1% from the
lower bound. However, using the proposed decomposition method
with a relative gap tolerance of 0.1% with BARON to solve the
upper bounding subproblems and picopT!” as the lower bounding
local optimizer, the algorithm terminated after 4 h and 26 min
(Table 4). Upper bounds generated at the root node, using factor-
able techniques and Lagrangian decomposition, are compared in
Table 5. Lagrangian bounds are reported after 20 iterations of the
subgradient method: While requiring more computation than the
factorable approach, the tightness of Lagrangian bounds lowers
the overall execution time significantly, consistent with the con-
clusion from the first example.

6 Summary and Conclusions

In this study, we presented a deterministic global optimization
approach for solving nonconvex quasiseparable MINLPs. The de-
composable structure of the problem was exploited to provide
tight lower bounds for the branch and bound algorithm using La-
grangian decomposition and to enable application of efficient dual
methods for speeding up the convergence. To show the efficiency
and robustness of the proposed approach, two important applica-
tions in mechanical engineering, the fixed-platform product family
optimization and design for profit maximization, were considered
and demonstrated through case studies taken from the literature.
Results were compared with those obtained from solving the all-
in-one problem using BARON. While BARON was efficient for the
small-scale problems (e.g., a product family with five variants),
the computational effort increases exponentially with the size of
the problem, making most of the real-world mechanical engineer-
ing applications intractable. In contrast, the proposed approach
proved to be quite robust and scalable, and the Lagrangian lower

While the same marketing model and part-worth values were used for this
example, the engineering model is modified to be more suitable for global optimiza-
tion; the detailed formulation can be obtained from authors or www.ddl.me.cmu.edu.

"Discrete and continuous optimizer (picopT) is a solver for optimizing convex
MINLPs using outer approximation.

Table 5 Factorable versus Lagrangian bounds at the root
node for bathroom scale design

Upper bound (millions $)-(Relative gap (%))

All-in-one (BARON) Proposed method

122.530 (84.43%) 68.850 (3.63%)
Global optimum (millions): $ 66.436

Journal of Mechanical Design

bounding scheme was capable of generating very tight bounds in
both examples. Moreover, due to the separability of the dual func-
tion and the use of efficient dual methods, the lower bounds were
obtained with reasonable computational cost.

Unlike popular stochastic and local approaches to optimization
of nonconvex problems in engineering design, deterministic glo-
bal optimization offers the ability to ensure that the global quality
of solutions is obtained. Results show that solutions reported in
the literature using stochastic and local approaches can be signifi-
cantly suboptimal, and without a lower bound the modeler cannot
be sure of solution quality. However, this guaranteed global opti-
mality comes with a considerable increase in the computational
cost compared with local solvers; thus, deterministic solvers are
preferable when the computational cost is affordable.

Deterministic global solvers, such as branch and bound deriva-
tives, have found wide use in chemical engineering and operations
research; however, their application in mechanical design is lim-
ited because the highly nonlinear structure of most formulations
can lead to weak lower bounds under convexification strategies.
We see a need for efficient deterministic global optimization tech-
niques that are designed for highly nonlinear and nonconvex prob-
lems encountered in mechanical design. Our proposed Lagrangian
decomposition-based approach takes a step in this direction, of-
fering encouraging results for achieving scalability and robustness
for quasiseparable problems. Our future work will involve testing
the empirical properties of the approach on a broader range of
problems, such as product line design, joint product family
platform-selection and design, as well as problems outside of
product design.
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