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ABSTRACT

Engineering optimization methods for
development model consumer demand as a functigmozfuct
attributes and price in order to identify desighattmaximize
expected profit. However, prior approaches haveorigg the
ability of competitors to react to a new productrant; thus
these methods can overestimate expected profit sabect
suboptimal designs that perform poorly in a contjppetimarket.
We propose an efficient approach to new productigdes
accounting for competitor pricing reactions by irsjpgy Nash
and Stackelberg conditions as constraints, and est the
method on three product design case studies frermtrketing
and engineering design literature. We find thattaci&lberg
leader strategy generates higher profit than a Ndisdtegy.
Both strategies are superior to ignoring competiéactions: In
our case studies, ignoring price competition resuih
overestimation of profits by 12%-79%, and accounfor price
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competition over a sufficiently long time perfothat all firms
in the market are able to redesign their produstsvall as set
new prices competitively [3,5-8]. Short-run comgeti
assumes that the design attributes of competitodymts are
fixed®, but that competitors will adjust prices in resgerio a
new entrant [2,9-11]. We focus here on new prodiggign
problems in short-run price competitfon

Table 1 lists prior studies for price competitiongroduct
design and distinguishes them by solution approdemand
model type, equilibrium type, case studies, andsgmee of
design constraints. The solution approach is thinodeused to
find the design solution under price competitiomeTdemand
model type specifies the market demand functiomigation.
Equilibrium type distinguishes Nash and Stackeltstrgtegies
[13]: Nash equilibrium refers to a point at which firm can
achieve higher profit by unilaterally selecting atgcision other
than the equilibrium decision (i.e. price). Thec&berg case,

also known as thdeader-follower model, assumes that the
leader is able tgredict the response of followers, in contrast
with the Nash model, which assumes that each fimy o
observes competitor responses [13]. The Stackelberg case is
appropriate for cases where one player is ablentove first”,

and introduction of a new product entrant is a oskere the
firm can exploit this first-move advantage. Finalthe last
column in Table 1 identifies whether the model mpaoates
design constraints representative of tradeoffschifyi present

in engineering design.

competition increases realized profits by up to%.4The
efficiency, convergence stability, and ease of anmntation of
the proposed approach enables practical implenmentdor
new product design problems in competitive markets.

Keywords: Design  Optimization; Nash  Equilibrium;
Sackelberg Competition; Game Theory; Demand Model;
Logit; Design for Market; New Product Development

1. INTRODUCTION

Product design optimization problems that accownt f
competitive market decisions can be categorized itto
groups: Short-run price equilibrium and long-runsida
equilibrium * [1-3]. The long-run scenario represents

2 Advances in CAD tools, concurrent engineeringjdamototyping, and
production technologies that reduce lead time canrahse the relevant
timeframe of “long-run” equilibria [8].

3 The situation of fixed competitor attributes undearket competition is
alternatively described as “sticky” [1].

4 We came across an article [12] discussing shami-fice competition
of multiple products with fixed product attributdsyt it did not consider new
product entry, thus excluded from the list.

! Unlike long-run equilibrium concepts in economies do not account
for firm entry and exit [4].



Table 1: Literature on new product design optimization under price competition

Literature Solution approach Demand modél Price equilibrium Case study Design constraints

Choiet al. (1990) [2] iﬁi?&;ﬁ;gﬁ;ﬂrﬁﬂi Ideal point logit Stackelberg Pain reliever Yes
Horsky and Nelson (1992) [9] fralrflclr:%ecsseclleucttilgr?s Logit Nash Automobile No
Rhim and Cooper (2005) [10] Two;;?frji?hgr]:]enetlc Ideal point logit Nash Liquid detergents No

Lou et al. (2007) [11] %esr;rt.ie\;[s (S)Sltieriti;);;igzd HB mixed logit Nash Angle grinder No

. . 1) Pain reliever
. One-step NLP/MINLP Ideal point logit and Nash and .
This paper with FOC constraints  latent class model Stackelberg 2) Angle grinder Yes

3) Weight scale

Choiet al. [2] (henceforth CDH) proposed an algorithm for
solving the new product design problem under price
competition while treating the new product entraas
Stackelberg leader, and they tested the method @uia
reliever example with ingredient levels as decisiamiables
and an ideal point logit demand matelith linear price utility.
The study applied the variational inequality diagjmation
algorithm [14] to solve the follower Nash price difpia. In
Section 3, we use CDH'’s problem as a study caseslam that
the method can have convergence difficulties, ana @sult the
Stackelberg solution found by their algorithm ist rfally
converged.

In contrast to the continuous decision variablesduby
CDH, other prior approaches restrict attention fscrbte
decision variables that reflegroduct attributes observed by
consumers, as opposed tesign variables controlled by
designers under technical tradeoffs. We refer to fttus on
product attributes ggroduct positioning, in contrast tgoroduct
design. These prior product positioning problems assuhag t
all combinations of discrete variables are feasiltheis no
additional constraint functions are considered. ddpr and
Nelson [9] used historic automobile market dat@dastruct a
logit demand model and cost function using four dpici
attribute decision variables. With five levels feach of their
four variables, they applied exhaustive enumeratiosolve for
equilibrium prices of all 625 possible new prodwaitrant
combinations using first-order condition equatioRfim and
Cooper [10] used a two-stage method incorporatiagetic
algorithms and first-order conditions to find Nas#lutions for
new product positioning problems. The model allowdtiple
new product entries to target different user madegments.
The product in the study is liquid detergent witlo tattributes.
Recently, Louet al. [11] conducted a study for optimal new
product positioning of a handheld angle grinder arntlash

5 The ideal point model assumes that each consuaseamideal point in
the product attribute space, and utility of a pirids calculated as a function
of the Euclidean distance between the ideal poidtthe product.

price competition in a manufacturer-retailer charstucturé.
There are six product attributes with various level the
problem, resulting in 72 possible combinations. iBimto
Horsky and Nelson [9], the study also used a discselection
method, but the design candidates were pre-screémed
smaller number in order to avoid full exhaustiveireration,
and the profits of a few final candidates at Nagficep
equilibrium were calculated through a sequenti@raitive
optimization approach.

Prior approaches to product design and positionimger
price competition suffer from inefficient computati and
convergence issues due to iterative strategies damntify
equilibria and combinatorial limitations of disceesttribute
models. We propose an alternative approach to diptimal
design and equilibrium competition solutions ingsnstep. Our
approach poses a nonlinear programming (NLP) orediix
integer nonlinear programming (MINLP) formulatioar fnew
product profit maximization with respect to pricasd design
variables subject to first-order necessary conastiofor
competitor Nash price equilibridmWe examine three case
studies from the literature and show that accogntfor
competitor price competition can result in differesptimal
design decisions than those determined under thengxion
that competitors will remain fixed. The approactwisll-suited
to engineering design optimization problems, raggirlittle
additional complexity and offering greater effiaign and
convergence stability than prior methods, partiduldor the
highly-constrained problems found in engineeringigie

The remainder of the article is organized as fafiown
Section 2, we explain the detailed formulation e proposed
approach with Nash and Stackelberg competitionegiias, and

6 Lou et al’s [11] study assumed the channel reaction folloavs
manufacturer Stackelberg scenario, but price gptinthe retailer level is a
Nash solution. This is distinct from taking the n@roduct entrant as a
Stackelberg leader.

" Such formulation is also called mathematical pmogmning with
equilibrium constraints (MPEC) [15]. The first-ordeprice equilibrium
equations can also be expressed in variationaluadiy [14] or mixed
complementarity form [16], but in this paper we ntain the system equation
form to represent equilibrium conditions.



we introduce a modified Lagrangian formulation to
accommodate cases with price bounds. In Sectionwe,
demonstrate the proposed approach by solving tpreduct
design examples from the literature, and we corclndSection
4.

2. PROPOSED METHODOLOGY

We first construct price equilibrium optimizationodels
for Nash and Stackelberg strategies for unconstdarices.
We then examine the special case where pricescm®rained
and develop a Lagrangian extension for this caske T
assumptions for the proposed approach are: 1) dta firm
will design a set of differentiated products thait enter into a
market with existing products sold by competitord)
competitors are Nash price setters for profit maedtion with
fixed products; 3) competitor product attributesl aosts are
known; and 4) price is continuous, and each firprefit
function is differentiable with respect to its cesponding price.

2.1 Profit Maximization under the Nash Strategy
The proposed formulation for new product design
optimization under Nash price competition is:

maximize I, = Z o} ( P, _C,—)
03,
with respect toX ;, P;, P;.
subjecttoh(xj):O; g(Xj)SO;
aHi' —
op;
where @; = Qs ( P;. 2, pj”zi')
z,=f (x].)
0j0J,; 0y'0J,; Ok OK\k

(1)

In the above formulation, the objective functiorihie total
profit TT, of producerk, which is the sum of all its producig
Each new produgthas design vectos, attribute vectog; (as a
function of the desigg= f(x;)), pricep;, predicted market share
§, and predicted demargl. The total size of the market @
The equality and inequality constraintgx;) andg(x;), define
the feasible domain of the engineering design. Eachpetitor
k'OK\k has price decisiong with fixed design attributes: for
all its productslj' 0Jy.

In the Nash game, each producer observes the paiues
attributes of other products as exogenous paramefene
proposed formulation determines the profit-maximigzinew
product desigrx; and pricep; that are in Nash equilibrium with
competitor priceg;, 0j'0Jy, Ok OK\K. More precisely, for each
competing productj’, price p;, must satisfy the first-order
necessary conditions for Nash price equilibriumthié profit

function is concave with respect to price, whichasnmof, the
first-order condition is sufficient. However, inethcase of
nonconcavity, the solutions found by the proposethod must
be verified as Naspost hoc. The mathematical expression of a
Nash equilibrium is given by [13]:

M (PLreeer Py P)Z T (By sy e 1Py ) @

0oJ, OkOK

where the * denotes the decisions at Nash equihitriThis
formulation states that no unilateral change tangls firm’s
price decision can result higher profit for thatrfithan its Nash
price, or, alternatively, each firm is respondirgimally to the
others. To test this condition, we take the FOGutsmh and
optimize each individual producer’s profit with pest to its
own pricing decisions while holding other produckscisions
fixed. If no higher profit is found throughout thest, the price
solutions are Nash prices.

2.2 Profit
Strategy
For the proposed Stackelberg competition stratégis

assumed that the new product enters the market laadar,
while other competitors react as followers. Follosvebserve
one others’ price decisions, including the new pddrice, as
exogeneous variables and compete with one anatherath a
Nash price equilibrium. The new product leader ldeato
predict its followers’ Nash price settings withte optimization,
giving it an advantageThe formulation for new product design
optimization with the Stackelberg pricing stratégy

Maximization under the Stackelberg

maximize 1, = z q; (pj —cj)

i03,

with respect to X i P

subjecttoh(xj)=0; g(xj)so

where quQSj(pj,Zj,pj,,Zj,); Zj=f(xj) 3

... OIT,
p, satisfies—-= (
ap;

0j0J,; 07 0J,; Ok 0K \k

The Stackelberg formulation appears similar to kash
case in Eqg. (1), but the meaning is largely diffierét can be
seen that the Stackelberg formulation contains paly product
design and price as decision variables. Competitaces
satisfying Nash equilibrium equations are included the

8 Andersoret al. [17] proved that there exists a unique price élopiiim
under logit demand when decision sets are convelxtla@ profit function is
strictly quasi-concave.

® CDH [2] used a duopoly game to prove that a Sthekg leader
strategy can always receive at least as high affpagoa Nash strategy if a
Stackelberg equilibrium exists.



objective function for giving predicted price andnket share
information to the new product leader. Computatignahis
can be thought of as the Nash condition enforcimigep
conditions only at the solution, whereas the Stiekg
condition calculates reaction prices at each inéeliate
iteration of the algorithm.

2.3 Incorporating Price Variable Bounds

Furthermore, we consider the special situationoim
proposed formulation when finite price equilibriwmlutions do
not exist within the domain of the demand modetissted
region (i.e.: the region based on interpolation nodasured
survey or past purchase data). For example, imargksense,
increasing price induces decreasing utility, hajdall other
factors constant. However, some consumers may a&ssuithin
some range, that products with higher prices hagteeh quality
or better non-visible characteristics [18]. A moballt on such
data will predict that higher prices result in gegademand, and
thus higher profit if no other tradeoff exists. &sesult, no price
equilibrium exists within the measurable price mngnd
extrapolation leads to infinite prices. In ordercount for the
ability to restrict firm reactions to the domainveoed by the
demand model, we incorporate variable bounds atrdduace
Lagrange multipliers to the Nash equilibrium coratis.

maximize I, = z g, ( p, —cj)
03

with respect toX , P;, P;

subjecttoh(xj)=0; g(xj)so

p-<p <p’

oIl ,

—— Uy~ 4y =0,
apj’ i i

U . L (4)
p;—p’<0;, p"-p, <0

i (=) =00 4t ( =) =0
,u;J, >0; ,UjL'ZO,

where () =Qsj(pjlzj'pj"zi’)
z,=f(x)

Oj0d,: 0)'0J,; OK OK \k

This formulation introduces lower boungs and upper

bounds p’ on the prices of all firms, and the associated

Lagrange multipliersi enforce the first order Karush-Kuhn-
Tucker (KKT) conditions [19]. Note that any solutievith an
active price-bounding constraint implies that matata is
needed to extend the domain of trusted predictioade by the
demand model.

Similarly, the price-constrained Stackelberg pigcin

strategy is:

maximize 1, = Z q; (pj —cj)
0%
with respect toX ;, ),
subject to h(Xj ) =0 g(xj ) <0
p-<p <p’
where o, =Qs, (p;.2;,p;.2; )

z =f(xj)

p, satisfies: )
oIl ,
W;+ﬂ}f‘/~lf=0
p,-p’'<0 p"-p, <0
wi(py-p)=00 i (p-py)=0
Hp 20, 420

0j0J,; 0)'0J,.; Ok 0K \k

Compared to the solution approaches in literattine,
proposed method has significant advantages in akaspects.
First, the approach is able to solve the problera single step
if a unique design solution with price equilibriuexists®.
Second, since the approach employs first-order itond
equations to find equilibrium prices, the convegerof the
whole formulation is faster and more stable tharnorpr
approaches that use iteration loops. Third, thefitations can
be solved using commercially-available NLP solvevih
minimum additional programming effort. When diserelesign
variables exist, the NLP model becomes a MINLP [mwob
However, the price equilibrium constraints remam the
continuous domain, and commercial MINLP solvers ¢en
used to solve Eq. (4) and Eg. (5) [20-22].

2.4 Strategy Evaluation

In order to compare profitability of the new protddesign
arrived at under different modeling assumptions, dedine
three profit terms:

1) Predicted profit: Profit of the design and price solution
to a particular model as predicted by that model.

2) Realized profit: Profit of the design and price solution to
a particular model as predicted via post-hoc coatprt of
competitor price equilibrium. The realized profifpresents the

10 For the cases of multiple local optima and prigaikbria, multi-start
can be implemented to identify solutions.



profit that a particular design and pricing solatiwould realize
if competitors adjust prices in response to the retrant.
Realized profit is equal to predicted profit foretiNash and
Stackelberg case, but if the new entrant is op#dhizvhile
assuming fixed competitors, the difference betwpesdicted
and realized profit measures the impact of ignodompetitor
reactions.
3) Price-adjusted profit: Profit of the design solution to a

particular model as predicted via post-hoc computatf price

equilibrium ofall firms (including the new entrant). The price-

adjusted profit represents the profit that a paldic design
solution would realize if all firms adjust prices fesponse to
the new entrant. Price-adjusted profit is equadredicted profit
for the Nash and Stackelberg case, but if the netraet is

optimized while assuming fixed competitors, thefed#nce
between predicted and price-adjusted profit measutre

impact of ignoring competitor reactions on tlesign of the

product, assuming that poor pricing choices can be carceint

the marketplace after product launch.

3 CASE STUDIES

We examine three product design case studies ftmm t

literature to test the proposed approach and exantire
improvement that Stackelberg and Nash strategiesntake
with respect to methods that ignore competitivetieas. Each
case study involves different product charactesstiutility
functions, demand models, variable types,
constraints. For each case, we solve the probleimy ube
traditional fixed competitor approach and compard&ash and
Stackelberg competition strategies.

3.1 Case study 1: Pain Reliever

The pain reliever problem was introduced by CDH: [2]

Price and product attributes of a new pain religueduct are
to be determined for maximizing profit in the pnese of
fourteen existing competitor products in the markeach
product has four attributes of pharmaceutical idgnet weight
(unit in mg), including aspirirz;, aspirin substitute,, caffeine
z; and additional ingredients,. The product specificatiofs
and initial prices of competitor products are lisia Table 2.
There are two highlights in the model. First, threduct H is
assumed a generic brand, which has a fixed prickl 9 [2].
The generic brand does not participate in the prarapetition.
Second, there are five products, A, C, |, K anavith identical
product attributes and costs. The demand modehisdeal
point model with observable utility; given by:

\4j=—[§_ﬁn(aj—ai)2+ﬁfpj+ﬂ O.j

11 The values of aspirin substitute are the weightethbination of
acetaminophen and ibuprofen. The numbers are moidad in the original
paper [2]. We obtained the attribute data from thizked complementarity
programming library (MCPLIB) [23] and verified witbriginal author. The
data of consumer preference weightings (30 indiadsjuare also included in
the data file.

and desig

Table 2: Specification of existing pain reliever
products in the market
Aspn. Add.

P&zg /?rsnpgr; sub. E:n?g) ingd. Cost Igﬁfg
(mg) (mg)
) ) Z3 Z c p

A 0 500 0 0 $4.00 $6.99
B 400 0 32 0 $1.33 $3.97
C 0 500 0 0 $4.00 $5.29
D 325 0 0 150 $1.28 $3.29
E 325 0 0 0 $0.98 $2.69
F 324 0 0 100  $1.17 $3.89
G 421 0 32 75 $1.54 $5.31
H 500 0 0 100 $1.70 $1.99
I 0 500 0 0 $4.00 $5.75
J 250 250 65 0 $3.01 $4.99
K 0 500 0 0 $4.00 $7.59
L 0 500 0 0 $4.00 $4.99
M 0 325 0 0 $2.60 $3.69
N 227 194 0 75 $2.38 $4.99

Cost 0.3 0.8 0.4 0.2  cost unit: $/100mg

wherez, is the value of product attributeon product, Finis
consumeri’s desired value for attribute, 5, is consumei’s
sensitivity of utility to deviation from the ideadoint, & is
consumeri’s sensitivity of utility to price, and is a constant
utility term. In this formulation, product attriteg that deviate
from ideal attributes cause reduced utility, which less
preferred by consumers. Under the standard assomptiat
utility u; is partly observable;; and partly unobservablg so
that u;=v;+g;, and that the unobservable terp is an 11D
random variable with an extreme value distributiche
resulting choice probability is defined in logitrfo with a unit
dummy outside good [24]:
ex ;
§ = TP
1+ exp(xv;)
j=1
The weighting coefficieny is arbitrarily given byy=3? The
profit function is:

1< .
M, :Q(pj-cj),—Zsj 0 (8)
i=1

In this problem, the market demand and profit amsedl on a
simulated market size of 30 people. The first-ordendition
for the price equilibrium is (the detailed deriwats shown in
Appendix A.1):

ot
ﬁezsj [1-XxB7(p;—¢)1-5)]=0 (9

Two constraint functions on the new product desigm given
by the ingredient weight limitations [2]:

()

12 The weighting coefficient affects the degree ahpetition, wherg=3
is defined by CDH [2].



9,=325-2,-2,<0
9, =, +2,,-500=< 0

By applying the above equations into Nash and $iaekg
formulations of Eq. (4-5), the model was solvedgdilatiat®,
The solutions to the pain reliever problem with efix
competitors, Nash, and Stackelberg strategies @gepted in
Table 3, with CDH’s Stackelberg solution shown ke tlast
column. Several interesting observations are fofroch the
results. First, the fixed competitor solution hasrestimated
profit and market share predictions by presumingt th
competitors will not act. When competitors areatid to react
by altering prices under Nash competition, theizedl profit
shows a profit reduction from predicted. Secona; fhice-
adjusted and realized profits are nearly identftalsignificant
digits). The price-adjusted profit from the fixednepetitor case
is lower than the Nash and Stackelberg cases, imgplihe
attribute decisions determined by assuming fixethetitors
are suboptimal, even if the new entrant’s priceadjusted
optimally in response to market competition. Thiwek found
the solution under the Stackelberg strategy hasiffareht
design and price point, resulting in slightly higtgrofit than
NasH*, which supports the claim that Stackelberg is tiebe
strategy when promoting new product developmentfaprth,
we found the CDH’s Stackelberg solution is notyfdbnverged
since our Nash test (Eq. (2)) results showed thadyxers are
able to find alternative price decisions that haigher profit.
Moreover, the realized profit has a significant dgapm the
CDH's predicted profit, which shows the solutiomist a stable
one. Table 4 lists the price, market share andtpiefails of all
products in market. A further evidence that CDH&1tions had
not converged is that CDH has different solutf8ramong
products A, C, I, K and L, while our proposed metho
converged to a consistent anstfeince these five products
have identical attributes, their solutions shoudd itbentical at
market equilibrium.

(10)

We compare the computational time and convergence

stability of the proposed method vs. the variatidnaquality
diagonalization algorithm [14] used in the CDH pap€he
results are shown in Table 5. The computer systetapsis
comprised of Pentium D 2.80Hz processor with 1.0 M.

When solving the competition problem under the Nash

13 We use the sequential quadratic programming (S@REr, fmincon,
in the Matlab Optimization Toolbox.

14 CDH [2] compared their Stackelberg solution witptimal new
product solution of competitor fixed at Nash pri¢ssboptimal solution) and
concluded Stackelberg resulted higher profit. Hevethe comparison for the
two strategies should base on fully converged dayitim solutions.

15 The Stackelberg price solutions for the five ideaitattribute products
reported by CDH are A=$2.41, C=%$2.39, 1=$2.39, K442 and L=%2.39,
which are not consistent values. To be noticed(Beél prices listed in Table 4
are the prices calculated for realized profit basedCDH’s optimal product
attributes, not the original price solutions froPI€s paper.

16 The proposed approach is able to reach 12 consistsignificant
digits for the five identical products at marketudiprium. This shows the
superior convergence of the proposed approachivimgahis case study.

scenario, the proposed approach is three timeserfésan the
iterative method on CPU time benchmarking. It hapesior
convergence precision at 1) while the iterative method
cannot find the equilibrium solution when the comence
tolerance tightened to 0 For the Stackelberg case, the
proposed formulation is able converge to a stablglibrium
solution at tolerance 18 and iterative method fails to reach a
valid solution even with fairly loose convergenadetances
(10%). Furthermore, the proposed approaches are lesitise

to the choice of starting point.

Table 3: Design attribute and pricing solutions of the
new product entrant for the pain reliever problem

F|xeql Nash Stackelberg CDH
competitors
Price $3.74 $3.86 $3.74 $3.77
Aspirin z; 124.0 101.8 101.5 102.1
Aspirin sub.z, 201.0 223.2 223.5 222.9
Caffeinez; 0 0 0 0
Add. ingd.z, 0 0 0 0
Cost $1.98 $2.09 $2.09 $2.38
Market share 16.26% 14.69% 15.74% 16.13%
Predicted profit $8.60 $7.78 $7.80 $8.16
Realized profit $7.68 $7.78 $7.80 $7.80
Adjusted profit $7.68 $7.78 $7.80 $7.78

Table 4: Comparison of solution strategies for the

pain reliever problem on realized profits
Prod Price Realized Market Shdre Realized Profit
-uct | Nash Stkg. CDH| Nash Stkg. CDH Nash Stkg. CDH

A | $6.27 $6.29 $6.28 3.45% 3.41% 2.34%] $2.35 $2.34$2.34
$2.26 $2.26 $2.26 6.18% 6.16% 1.72% $1.73 $1.72$1.72
$6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34
$2.28 $2.28 $2.28 7.79% 7.73% 2.33% $2.34 $2.32$2.33
$1.97 $1.97 $1.97/11.47% 11.3% 3.40% $3.42 $3.39 $3.40
$2.18 $2.19 $2.19 9.16% 9.08% 2.76% $2.78 $2.76 $2.76
$2.47 $2.47 $2.47 4.63% 4.62% 1.29% $1.29 $1.29 $1.29
$1.99 $1.99 $1.99 7.57% 7.56% 0.66% $0.66 $0.66 $0.66
$6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34
$4.76 $4.77 $4.77 3.36% 3.29% 1.74% $1.76 $1.74$1.74
$6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34
$6.27 $6.29 $6.28 3.45% 3.41% 2.34% $2.35 $2.34 $2.34
$4.26 $4.26 $4.2611.46% 11.2% 5.62% $5.70 $5.59 $5.62
$3.93 $3.95 $3.95 6.33% 6.11% 2.89% $2.93 $2.88 $2.89
$3.86 $3.74 $3.77|14.7% 15.7% 7.80%|$7.78 $7.80 $7.80

gzil—xc_.—Im'nrnUOw

Table 5: Comparison of computational time and
convergence accuracy

Nash Stackelberg
CPUtime  Convg. CPU time Convg.
(sec) tolerance (sec) tolerance
Proposed 547 102 6.969 162
methods
COH 9.969 10 Unstable
methods
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Figure 1: Comparison of four strategies for the pain
reliever problem

Figure 1 presents a visual comparison of the redliz
profits for the four different approaches. The dxeompetitor
strategy has the worst performance when market ettigm is
present, while Stackelberg leads to a higher ptbfin Nash,
and CDH’s realized profit does not quite reach tnee
Stackelberg equilibrium due to incomplete conveogen
Compared to the fixed competitor case, Nash andkslizerg
strategies result in a realized profit 1.22% and6% higher
than the fixed competitor case, respectively, ia hoblem.

3.2 Case study 2: Angle Grinder

The angle grinder case study, introduced by éiiel. [26],
determines the optimal attributes and price of adhaeld
power grinder [11,25-28]. The market demand mosl@ atent

class modéf’ with four market segments and six discrete

attributes, including price (3 levels, unit: dojlacurrent rating
(3 levels, unit: ampere), product life (3 levelgjitu hour),

switch type (4 levels) and girth type (2 levelsheTpart-worth
utilities of product attributes and price at eaetel are shown
in Table 6. The utility of the no-purchase optiorddhe market
size ratio in each segment are given in the lastrows of the
table.

In order to derive analytical expressions for pritiéty, we
interpolate the discrete price part-worths into tirederlying
continuous space. Therefore, the observable utitijmponent
for productj in market segmemh is given by:

Dn
—\ /P
ij - ij ( pj ) + ;Wrmd anj

wherem is the market segment inde\fm- is the interpolated
price utility for market segmemt as function of pric;, Wmyg is

the part-worth utility at levedl of attributen in market segment
m, andz is a binary indicator variable that is equal tof 1
productj contains attribute at leveld and 0 otherwise. Further,
M is the number of segments adgis the number of levels for

(11)

7 The original demand model was presented in latkrsis model form
with four market segments [23-24,26], while latér With a hierarchical
Bayesian method in mixed logit form [14].

Table 6: Conjoint part-worths in the angle grinder
latent class model
Market segment

Attribute Level Seg.1 Seg.2 Seg.3 Seg.4
$79 -0.11 -0.09 0.005 -0.02

Pricep $99 -0.89 -1.15 1.92 -0.24
$129 1.00 1.25 -1.92 0.26

New -0.55 0.45 2.21 -0.17

A 0.18 1.06 -2.37 -0.20

Brandz B 083 011  -159 115
C -0.47 -1.63 1.74 -0.79

6 amps. 1.25 0.45 -1.48 -0.46

%‘i;‘rge;‘: 9amps. 013  -142  -0.65  -2.38
12 amps. -1.39 0.97 2.13 2.84

80 hrs -0.86 -0.13 -4.72 0.80

P”rf‘;dzi‘:t 110hrs 134 047 583 074
150 hrs -0.47 0.60 10.5 -1.55

Paddle 0.43 0.30 -3.29 -0.65

Switch ~ Top slider  -1.02 -0.65 -3.05 0.42
typez, Side slider 2.39 -0.07 2.46 0.56
Trigger -1.81 0.43 3.87 -0.33

Girth size  Small 1.51 0.72 151 0.41
Zs Large -1.51 -0.72 -1.51 -0.41
No-purchase -0.02 -0.02 -0.02 -0.02
Market size ratio 37.8% 24.8% 12.1% 25.3%

Plart—wort

& Segment1 m Segment 2
A Segment3 X Segment4
-3 T T T T T

75 85 95 105 115 125
Price ($)
Figure 2: Price part-worth fitting functions for the
angle grinder demand model

attribute n. The price utility function in each segment is fit
through the discrete levels with a quadratic fLOTCl‘i/ij =
a2mp2j + aymP; + aom, Whereaym, ayn and apm are coefficients
determined via ordinary least squares regressidre four
resulting price utility curves are plotted in Figu2. It can be
seen that the price responses in each segment @re n
monotonically decreasing when price increases withé range
of $75-$130. This implies that the data will predaic unusual
increase in demand with increasing price in segs&n®, and
4, providing incentive for firms to charge highqas.

The share of choice captured by produict segmenim in
logit form is given by:

exp vy )
exp (Vo ) + ;exp(vmj,)

S = Hj,m (12)



Thus the profit function of produgis:
M
rlj :zqmsmj(pj _Cj) ]
m=1

where g, is the market size of segment The first-order
condition for the Nash price equilibrium (derived Appendix
A.2)is:
on, M
i —
- qusmj |:(2a2m pj + alm)

op;
(1-54)(p,-c) +1]= 073
Based on the available price part-worth utilitythe demand
model, we confine the price decisions within a Eofp-=$75

(13)

(14)

to p’=$130. Furthermore, the specifications of competin

products in the market are shown in Table 7. Thenated
costs of product A, B and C are $68.15, $100.94 $41©58
respectively [14], and the new product cost is amEslito be
$75, independently of the design. The total masdie¢ is 9
million units.

The profit maximization problem for this case formas
MINLP model because of the discrete design atteibuand
continuous price variables. The problem is solvgdviNLP
solver GAMS/DICOPT® [20]. For the fixed competitor case,
the optimal design attributes of the new produ@ ewrrent
rating 12 amperes (level 3), product life 110 ho(lesel 2),
side slider switch (level 3), and small girth s{gevel 1) with
price at the upper bound of $130. The market shamd9rofits
of all products are shown in the left block of T@l8l. It can be
seen that new product and product B dominate thiéehavith
relatively high shares and profits, while producagd C have
low market shares. Solutions to the Nash price etitipn case
are shown in the right block of Table 8. The desagmibutes
and price of the new product are identical to tlveed
competitor case, but it can be seen that all cotopetrevised
their price decisions in response to the new eht@imcrease
profitability. As a result, all product prices réac the upper
bound ($130) of the model, and the predicted meskates and
profits of product A, B and C are higher than tleecompetition
case. Stackelberg solutions are identical to thehNsolution
because prices are constrained by the upper bdiutine upper
bound is removed, no solution exists because atlymrers will
tend toward prices of infinity in order to maximipeofit.

There are several practical observations for tage study.
First, we demonstrate that the new product desigm aiscrete
variables under the proposed formulation can bédyesslved
by a MINLP solver without exhaustive search or Fegiar
selection used in prior methods [12,14]. Second, filked
competitor model has significantly overestimatecdicted
profit by 22.5%. Third, since all product pricesch the upper

18 DICOPT implements the outer-approximation algaritivith equality
relaxation methods to solve optimization problemghwcontinuous and
discrete variables [21]. It is a local MINLP solvep that the solutions shown
in the article are local optima found by the msttt method.

Table 7: Specifications of existing angle grinder
products in the market

Product Price  Current Product Switch Girth
brandz; p ratingz, life z typez, sizezg
A $99 9 amps 110 hrs  Side slider Large
B $129 12 amps 150 hrs Paddle Small
C $79 6 amps 80 hrs Paddle Small

Table 8: Optimal new product solutions

Scenario Fixed competitors Nash / Stackelberg
. Mkt Predicte . Mkt Realized
Product Price . Price .
share  d profit share profit
A $99 1.9% $5M $130 10.0% $56M
B $129 34.4% $87M $130 34.0% $89M
C $79 2.4% $6M $130 6.0% $43M
New $130 60.3%  $299M  $130 49.3%  $244M
No- - 0.9% - - 07% -
purchase
Predicted profit $299M $244M
Realized profit $244M $244M
Adjusted profit $244M $244M

Table 9: Market shares in each segment at equilibrium

Market segment 1 2 3 4 Total
Market size ratio 37.8% 24.8% 12.1% 25.3% 100%
A 25.6% 0.9% 0% 0.2%  10.0%
B 51% 70.8% 99.8% 10.0% 34.0%

C 13.1% 3.6% 0% 0.6% 6.0%

New product 55.6%  23.6% 0.1% 88.5%  49.3%
No-purchase 0.6% 1.1% 0.1% 0.8% 0.7%

bound, price competition becomes ineffective, s the fixed
competitor model and the Nash and Stackelbergesfies all
result in the same design solutions. Thus all #edized and
price-adjusted profits in Table 8 are all identidaburth, as the
detailed market shares in each segment show ineTabl
product B dominates market segments 2 and 3, whédenew
product is designed to dominate segments 1 andhithvare
the two biggest segments. In a heterogeneous matksign
and pricing decisions are often coupled, and ths belution
depends on the positioning of competitors; themsfor
accounting for competitor reactions can be critical

successfully locating new products in the marketd Ainally,

without applying an upper bound to price, we fihdttall price
decisions diverge, and no finite price equilibrissolution

exists. As we can see in Figure 2, extrapolatirgpthice utility
curves of segments 1, 2, and 4 results in highlrydor higher

prices. Applying an upper bound creates finite oy, but

the bound activity clearly suggests that the datanckt support
the solution. This model is problematic for the imtation

application, and results suggest that more datauldhbe
collected beyond the existing range in order to suea the
eventually-decreasing utility associated with iased price. It
is also possible in this case that survey respdsaderferred
high quality from high prices in the survey, sirtbey tend to
see such correlations in the marketplace.



3.3 Case study 3: Weight Scale

The weight scale case study was introduced by Nb&ret
al. [29-31]. Compared to the first two study caséss todel
has more complicated design constraints and praattributes
with a highly nonlinear formulation. The fourteeresin
variables x;—Xy4, thirteen fixed design parameteys-y;; and
eight design constraint functiogs-gs for the new weight scale
design are shown in Table 10. The five producikattesz-z;
and engineering constraint functiogsgs are shown in Table
11 as functions of the design variables. Table fe&sents the
part-worth utility of five attributes and price frothe latent
class model constructed in [31]. There are sevemkeha
segments, where the no-choice utility in each segmsdixed at
zero during regression. The discrete part-wortbsrgerpolated
by using cubic splines [29], so that the utilityeafch attribute is
expressed as a continuous spline functipn Thus the
observable utility of produ¢tin market segmenmh is given by:

Vmi mJ (pl) waml (an)

And the logit choice probab|I|ty of produicin segmenm is:
exp (v )

(15)

= 0j, m
T > exp(viy ) ae
].,
The profit function of produgtis given by:
M
:qusmj(pj _Cj)_CF 0] (17)
m=1

where the segment market sigg is calculated by multiplying
the total market size, $5 millions units, by theresponding
market size ratio listed in Table 13. The unit agss $3, and
the fixed investment cost” is $1 million dollars [29]. The
analytical expression of the first-order conditiohNash price
equilibrium under the latent class model is obtditreough the
derivations in Appendix A.2.

a P
% o -ejo]o

on. WM

] —
—1=Y"q,s, 18
op & S (18)

Table 13 shows the specifications of four competing

products, C1, R2, S3 and T4, in the market, whaoh @roduct

Table 10: Design variables, parameters and constraint
functions in the weight scale design problem

e . Upl/lower

Description Unit bounds
X  Length from base to force on long lever in. [0.126]
X>  Length from force to spring on long lever in. [P51 36]
X3  Length from base to force on short lever in. [3.124]
X4  Length from force to joint on short lever in. (@5, 24]
xs  Length from force to joint on long lever in. [08,236]
Xe  Spring constant Ib/in [1, 200]
x;  Distance from base edge to spring in. [0.5, 12]
Xg  Length of rack in. [1, 36]
X9  Pitch diameter of pinion in. [0.25, 24]
X0 Length of pivot horizontal arm in. [0.5, 1.9]
X1 Length of pivot vertical arm in. [0.5, 1.9]
X1»  Dial diameter in. [9, 13]
X3 Cover length in. [9, 13]
X4  Cover width in. [9, 13]
y;  Gap between base and cover in. 0.30
y»  Min. distance between spring and base in. 0.50
ys Internal thickness of scale in. 1.90
Y4  Minimum pinion pitch diameter in. 0.25
ys  Length of window in. 3.0
Vs  Width of window in. 2.0
y;,  Distance from top of cover to window in. 1.13
Ye  Number of Ibs measured per tick mark Ib 1.0
Yo  Horizontal dist. spring to pivot in. 1.10
YVio  Length of tick mark plus gap to number in. 0.31
yi1  Number of Ibs that number spans Ib 16
Y1 Aspect ratio of number (length/width) - 1.29
yiz  Min. allow lever dist. base to centerline in. 4.0

has a unique combination of product characteristiés used
Matlab solver with multi-start method and found tipié
solutions that satisfy first-order conditions. Afteerifying post-
hoc with the Nash definition (Eq. (2)) the uniquearket
equilibrium was identified. The optimal price anttriaute
solutions under the fixed competitors, Nash, anatci&tlberg
cases are presented in Table 14. The realizedtneith price
predictions and market shares under three stratetdter new
product entry are listed in Table 15. The fixed pefitor case
produces a distinct design solution from the otivey, while
Nash and Stackelberg cases have similar desigbuits but
significantly different price decisions. The desigariables (not

Table 11: Attribute design functions and engineering constraint functions

Design attribute functions

Engineering design aaiist functions

4nX6X9X10(X1+ XZ)(X3+ X4)
X (% (s + %) + X4( X, X))
2, = %X
23 = X13Xl4
Z4 = 7Tx1221_.1
~ (2tan(rrynzl'1))( 0.5, Y1)
T (12 tan(y,zY))

Z].=

0, X, S Xy =2y,
0,1 X S X3~ 2y~ X7 Y
gS:(X +X)SX13—2y]
9, X=X,

Os 1 X; + Yo+ Xyp+ XS Xy5= 2y

Qs : xs2(x13—2y1)—(0.5x12+y7)—x7—y9—xl(
9;: (X1+X2)2 s()(13_2)/1_

x,) +0.25x,- %)’

O - (X1+ X2)2 2 ()(13_23/1_)(7)2 + y21:




Table 12: Latent class model for the weight scale Table 13: Specifications of weight scale competitors

problem Product Weight Aspect Platform Qap Ngmber Price
Market Segments capacityz; ratioz, areazz Slzez, Slzezg P
Attribute Level 1 2 3 4 5 6 7 c1 350 1.02 120 0.188 1.40  $29.99
200 -1.34 -060 -038 -0.34 -092 -0.70 -1.19 R2 250 0.86 105  0.094 1.25  $19.99
Weight 250 -0.36 -0.11 0.03 0.34 050 0.02 055 S3 280 0.89 136 0.156 1.70  $25.95
Capacity 300 0.06 0.21 008 070 0.37 004 034_ T4 320 1.06 115 0125 115  $22.95

7 (Ib) 350 -0.21 0.05 -0.14 0.70 0.57 -0.09 -0.20
400 -0.13 -0.15 020 051 055 -012 -0.19 Tgple 14: New product design solutions for the weight

075 -079 020 -004 044 010 -0.18 -1.40 scale problem
Aspect 0.88 007 070 015 050 032 023 -0.62

Ratio 1 038 079 020 055 051 029 -002 —m-— Fixed gﬁrgpze;'mrs ':i‘? = Sacl;dj_t;e{rg%
2 1.14 -0.09 -0.07 012 054 0.16 -0.10 057 i et 61 61
133 -1.34 -1.73 -056 -0.08 0.09 -0.89 0.39 = L o46 L 039 1040
100 0.01 -045 0.19 036 0417 045 -045 > 13 140 140
Platform 110 -0.04 -0.21 -0.02 0.28 0.09 0.10 -0.49 3 0.117 0.119 0119
Area 120 -0.41 -0.03 0.00 050 0.05 -0.05 -0.01 “ 1350 1388 1385
z(n?d 130 -068 010 -0.12 046 030 -048 0.00 Pre(zficte 5 ' ' '
140 -0.86 0.00 -0.27 0.31 045 -0.87 0.25 Brofit $24.07M $13.86M $13.92M
2/32 -156 -055 -349 018 032 -039 006 .
Gap size 332 089 021 -065 039 028 015 -008 "' $13.46M $13.86M $13.92M
Ziny 432 -007 022 092 066 022 015 013 o
7 532 018 -002 148 049 000 -013 028 $13.68M $13.86M $13.92M
6/32 037 -003 156 020 0.23 -0.33 -0.14
075 -096 -1.20 -0.73 -035 -040 -1.24 -1.13 14
Number 1 -0.44 -051 -0.18 0.15 0.17 -0.72 -0.26
size 125 012 034 025 058 022 017 0.07 @ 138
z(n) 15 -030 032 021 072 060 048 017 =
1.75 -0.39 047 024 081 048 046 0.46 5
$10 047 013 043 070 3.19 164 0.24 £ 136
price $15 -008 013 041 064 192 128 0.9 2
$20 -0.22 0.02 003 052 040 0.36 0.03 S 134
P $25 -0.79 -0.02 -029 0.25 -1.48 -1.12 -0.34 =
$30 -1.35 -0.86 -0.79 -0.20 -2.97 -3.02 -0.81
Outside good 0 0 0 0 0 0 0 132
MKL. size ratio  7.1% 19.29%14.2% 19.8% 13.6% 15.8% 10.3% Fixed Nash Stackelberg

Figure 3: Realized profits under various strategies for

shown) vary arbitrarily within the space of feasildlesigns that the weight scale design problem

produce optimal attributes in this model. Similay the
observations in the previous two cases, the fixechpetitor
assumption gives the highest predicted profit, thet realized
profit demonstrates the prediction is actually estimated
when market competition is taken into account. Artimg for
competition when designing the new product resalta 3.4%
increase in realized profit. The price-adjustedfipis 1.6%
higher than realized profit, which implies that pguicing is a
significant component of the realized profit logsthe fixed
competitor case, but poor design is a larger compriFinally,

Figure 3 compares the realized profits of threeegak shows hi h ) little additional lexind off
that the Stackelberg strategy leads to a higheeagd profit This approach requires little additional complexityd offers

than Nash. The Nash and Stackelberg strategiesaldee to greater eﬁiciencylgnq convergence stability theiorppethods.
produce 3.0% and 3.4% higher realized profits ttian fixed Because the equilibrium conditions are set onlhwitspect to

competitor case. In this case, the new product k8therg compet!tor pricing _decisions, it_is not necessany know
leader has the lowest product price, but the gjyaie able to CO”!pe“t‘?r cost .structures or mg_—zmal compgtlltonoquct
gain the highest market share and profit. This casdy again engineering deta|I§, .and the equ|I|br|_um conqnmmm_ |_.be
demonstrates that incorporating price competitionproduct added to_ any. existing product des'gn prof_lt optamzn
design can not only avoid overestimation of praiiigy, but problem, including those with black box simulaticrsdiscrete

also help designer make the best strategic desigisidns. variables, with appropriate solvers.

4. CONCLUSIONS

Prior profit maximization methods in engineeringsida
ignore competitive reactions. We propose an approacolve
the new product design problem for profit maximiaatwhile
accounting for competitive reactions under Nash and
Stackelberg price competition strategies. Our aaghi@ccounts
for competitive reactions through inclusion of difpium
conditions as constraints in the optimization framek, and we
propose a Lagrangian extension for cases with prmends.

10



Table 15: Realized profits with product prices and market shares after new product entry

Fixed competitors Nash Stackelberg
. Market  Realized . Market  Realized . Market  Realized
Product Price . Price ) Price )
share profit share profit share profit
C1 $16.86 21.8% $14.13M  $17.00 21.2% $13.85M $17.120.7% $13.64M
R2 $14.98 15.0% $8.00M $15.06 14.6% $7.77TM $15.11 4.2% $7.59M
S3 $17.37 20.9% $14.00M $17.59 20.1% $13.68M $17.8119.6% $13.48M
T4 $17.48 17.2% $11.44M  $17.73 16.7% $11.26M $17.9416.2% $11.13M
New $18.24 19.0% $13.46M  $16.87 21.4% $13.86M $15.80 23.3% $13.92M
No-purchase - 6.1% — - 6.0% - - 6.0% -
Prior profit maximization methods in engineeringide ignore NOMENCLATURE
competitive reactions. We propose an approachlt@ she new a = Polynomial coefficient
product design problem for profit maximization vehil = Constant utility term
accounting for competitive reactions under Nash and = Cost

Stackelberg price competition strategies. Our apght@ccounts
for competitive reactions through inclusion of didpium

conditions as constraints in the optimization frarmek, and we
propose a Lagrangian extension for cases with pimends.
This approach requires little additional complexayd offers
greater efficiency and convergence stability thearpmethods.
Because the equilibrium conditions are set onl\hwitspect to
competitor pricing decisions, it is not necessany khow

competitor cost structures or internal competitaiodoict

engineering details, and the equilibrium conditioten be
added to any existing product design profit optatian

problem, including those with black box simulatimrsdiscrete
variables, with appropriate solvers.

We show that failing to account for competitive atians
can result in suboptimal design and pricing sohgicand
significant overestimation of expected market penfance.
Application of the method to three case studieanfrthe
literature exhibits its ability to handle problewfsinterest in the
engineering domain. The case study results inditiat the
Stackelberg strategy is most preferred becauskeofdpability
to generate higher profits than Nash by anticigatiompetitor
reactions.
overestimation of market performance and potegtigbor
product design positioning resulting from the comnfixed
competitor model.

We have focused on accounting for competitor pgicin

reactions, assuming that in the short-run compstitall not be
able to change their design decisions in respansew product
entrants. However, an important topic for futureeaarch is to
account for long-run competitor design changes mate
reaction to a new product entrant in order to suplamg-run
competitive strategy in design optimization.
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Both Nash and Stackelberg strategiesidavo

= Inequality constraint of new product design
= Equality constraint of new product design
= Variable index

= Number of individuals (observations)
= Product index

= Set of all products

= Producer index

= Set of all producers

= Index of market segments

= Number of market segments

= Index of product attributes

= Number of product attributes

= Price

= Price lower bound

= Price upper bound

= Market size within segment

Total market size

= Share of choice

= Observable utility

= Price utility

= Utility of outside good (no-purchase option)
= Design variable

= Design variable vector

= Design parameter

= Product attribute

= Consumer desired attribute

= Product attribute vector

= Preference coefficient

= Profit

= Spline utility function

= Price utility in spline form

= Utility weight coefficient
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APPENDIX

A.1 Derivation of first-order conditions for Nash price
equilibrium under the ideal point logit model
The first-order derivation of the choice probailih the

disutility function is:
S TS| X5 S
ap] J J apJ J

L (
ap;
= (_X/Bpi ) Si (1_ Si )
Therefore the first- order condition for profit mmi'zation is:

o,
N QIZS, Qp, —¢) Z

T

i=1

J

P, =6 (~45,)5 (1- %)i
?3_ le: [1-xB,(p—c)(1-5) |=

A.2 Derivation of first-order conditions for Nash price
equilibrium under the latent class model with multiple
market segments

We derive the following equations as the generakdar
multiple market segments. A demand model with akeatar
without segmentation can be considered as a speasd of
general equation. We consider that each prodiichas one
specific brand-produci1J,. The share of choices for the
productj in segmenmiis:

N (V)
" exp(v o)+Ze><p(

The first-order derivative of choice probabilitytivirespect to
price for each segment is:

0j0J,,m

05y _
Sy(1-sy)

ap; apj S
The profit function of produgtis:

:(iqm%(pj _Cj)J_

m=1
The first-order condition equation is:

6I‘I M Shi _
Gpj {Z_‘iqma (p,—¢;)+ sm}

-qusm{ — (- S,,,)(p,-C)+1}

Therefore, the necessary condition for profit mazation at
price equilibrium is:

6p] Z_lqm m,[ (1= Sm,)(p,-C)+1}

For the angle grinder problem, the price utilityech segment
is a quadratic function. The first-order derivathes a closed
form expression a&vy,/p; = 28,up; + aum. Therefore, the
equilibrium equation becomes:

o, u
S = 2 sy | (2200, 2y
pJ m=1

(1-5,)(p,-c)#1]=0
For the weight scale problem, the part-worth pritdity is
interpolated with a piece-wise spline functigfi, which has

first-order and second-order continuity. Thus tlestfrder
condition is given by'

O it (1
Op, mzi s"‘

j)(pj _Cj)+1 =
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