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Diagonal Quadratic
Approximation for Parallelization
of Analytical Target Cascading
Analytical target cascading (ATC) is an effective decomposition approach used for engi-
neering design optimization problems that have hierarchical structures. With ATC, the
overall system is split into subsystems, which are solved separately and coordinated via
target/response consistency constraints. As parallel computing becomes more common, it
is desirable to have separable subproblems in ATC so that each subproblem can be
solved concurrently to increase computational throughput. In this paper, we first examine
existing ATC methods, providing an alternative to existing nested coordination schemes
by using the block coordinate descent method (BCD). Then we apply diagonal quadratic
approximation (DQA) by linearizing the cross term of the augmented Lagrangian func-
tion to create separable subproblems. Local and global convergence proofs are described
for this method. To further reduce overall computational cost, we introduce the truncated
DQA (TDQA) method, which limits the number of inner loop iterations of DQA. These
two new methods are empirically compared to existing methods using test problems from
the literature. Results show that computational cost of nested loop methods is reduced by
using BCD, and generally the computational cost of the truncated methods is superior to
the nested loop methods with lower overall computational cost than the best previously
reported results.
�DOI: 10.1115/1.2838334�

Introduction
When designing complex systems, generally it is not possible

or desirable to have a single decision maker in charge of all deci-
sions because of the need to manage problem complexity. Instead,
such systems are routinely decomposed hierarchically into sub-
systems and components, and various design groups interact to
coordinate their decisions and achieve a feasible and consistent
system solution. For each system in such a hierarchy, target speci-
fications are chosen for the subsystems below such that the system
can meet targets set by the supersystem above. If targets cannot be
met, then negotiation and rebalancing is necessary to ensure that
the final system solution is consistent and achieves system goals.
Ford Motor Company refers to this process as target cascading,
and the analogous model-based, computational process for such
hierarchical systems has been termed analytical target cascading
�ATC� �1�. In ATC, top-level design targets are propagated to
lower levels, which are optimized to meet the targets. The result-
ing responses are rebalanced at higher levels to achieve consis-
tency. The optimal system solution is obtained through an iterative
process until target/response consistency is achieved globally.

ATC approaches this target-setting and target-matching process
through formal mathematical decomposition methods, and thus, it
has similarities to many of the multidisciplinary design optimiza-
tion �MDO� methods that have been developed to coordinate com-
plex analysis models from various disciplines during optimization,
such as collaborative optimization �CO�, concurrent subspace op-
timization �CSSO�, and bilevel integrated system synthesis
�BLISS�. In particular, Allison et al. �2� compare and contrast ATC
and CO. Apart from the difference in initial motivation, the for-
mulation of ATC also differs in that it is defined for an arbitrarily
large hierarchy of subsystems, and formal convergence proofs en-
sure that the method will reach an optimal system solution under

typical assumptions. More recently, methods for solving nonhier-
archical quasi-separable �or block-angular� problems with proven
convergence properties have also emerged �3–5�. In this paper, we
will focus on hierarchical problems in the spirit of ATC; however,
as we will discuss, ATC works by translating a description of a
hierarchy of systems and subsystems linked by target-response
interactions into a general quasi-separable problem,1 through re-
laxation of target-response relationships between systems and
their subsystems. The methods we pose for solving hierarchical
ATC systems could also be used to approach general quasi-
separable systems. ATC has been applied to complex systems such
as automotive design �6�, architectural design �7�, and multidisci-
plinary product development �8,9�, and these studies demonstrate
scalability of ATC on large and computationally onerous case
studies.

In this paper, we summarize existing methods for coordination
of subsystems in ATC and present two new methods that enable
parallelization and overcome some of the drawbacks of existing
methods. We start by providing an overview of ATC in Sec. 2. In
Sec. 3, we describe existing coordination methods, and in Sec. 4,
we describe two new methods, including a discussion of conver-
gence properties. In Sec. 5, we compare approaches empirically
using test problems from the literature, and we discuss results in
Sec. 6 and conclude in Sec. 7.

Overview of ATC

System Structure. ATC is applicable for problems that have a
hierarchical structure so that the top-level design is a supersystem
that consists of a number of systems, each of which may consist
of its own subsystems. For example, an automobile may be com-
posed of powertrain, body, and chassis, and the power train may
be composed of engine and transmission, etc. This model is gen-
eral enough to account for any number of levels in the hierarchy
�10�. The objective function for the overall system can be de-
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1A quasi-separable problem is nearly separable except for a few linking variables
that appear in multiple subsystems, as we will define rigorously later.
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scribed as a sum of the objective functions of its components.
Typically, the objective function is entirely at the system level.
Moreover, the subproblems are nearly separable except for a few
linking variables. Figure 1�a� shows an example. Specifically, a
parent and child are connected by a response variable, which rep-
resents a child’s response to the design specification that its parent
imposes. This “response variable” may or may not be a variable in
the original predecomposition formulation: It is typically the out-
put of the subsystem simulator and the input to the system simu-
lator, and it may be treated as an intermediate calculation of the
original formulation. The effects of subsystem response on system
behavior is what prevents subsystems from being designed
independently.

Notation. Different notations are used in describing and defin-
ing ATC, depending on the application �1,10–12�. In this paper,
we adopt the notational system of Tosserams et al. �12� for sim-
plicity. Consider a system that can be decomposed into N levels
and M elements. The subscript ij is used to denote the jth element
of the system in the ith level. f ij is the scalar objective function,
and gij �0 and hij =0 are the inequality and equality constraints,
respectively. Local variables of element j are denoted by xij. rij is
the response of element j calculated by analysis model aij. Gen-
erally speaking, this model is an engineering simulation or a set of
equations predicting the behavior of the subsystem. Ei is the set of
elements at level i, and Cij is the set of children of element j. The
system in Fig. 1 is shown corresponding to this notation.

Mathematical Formulation. By the assumption of the problem
structure, and using the notation described above, the hierarchical
problem before decomposition, also known as the all-in-one
�AIO� formulation, can be described as

min
xij,∀j�Ei, i=1,. . .,N

f�xij, ∀ j � Ei, i = 1, . . . ,N� = �
i=1

N

�
j�Ei

f ij�x̄ij�

s.t. gij�x̄ij� � 0,

hij�x̄ij� = 0

where x̄ij = �xij,r�i+1�k, ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �1�

Note that the response rij of each element j depends on the re-
sponse of its children, which prevents the objective function and
the constraint sets from being separable. In order to separate the

set of variables governed by each subsystem, target variables tij
are created for each shared variable. And the consistency con-
straint

tij − rij = 0 �2�
is added to ensure target/response consistency.

We rewrite the problem as

min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

tij − rij = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij� ∀ j � Ei,i = 1, . . . ,N �3�

Figure 1�b� shows the system structure and variable allocations
after introducing the target variables. Note that the problem is
almost separable except for the consistency constraint tij −rij =0.
In order to make the constraint sets separable, the consistency
constraint can be relaxed using penalty functions or Lagrangian
relaxation. In general, the problem can be relaxed via a consis-
tency constraint relaxation function �. Alternate methods for con-
sistency constraint relaxation are discussed in Sec. 3. For a gen-
eral �, the resulting formulation is the relaxed AIO problem

min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

��tij − rij�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�,

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �4�

For a general �, consider only the subset of the decision vari-
ables that are nonconstant in subsystem j to obtain the general
subproblem corresponding to each element:

min
x̄ij

f ij�x̄ij� + ��tij − rij� + �
k�Cij

��t�i+1�k − r�i+1�k�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �5�

Note that in the above formulation, the variables tij and r�i+1�k
for k�Cij are constants with respect to element j. The constraint
sets are now separable, and depending on the consistency relax-
ation function �, the subproblems may or may not be separable. If
subproblems are separable, they can be solved in parallel. Other-
wise, sequential computation of each subproblem is required.

It can be shown that by sequentially and iteratively solving each
subproblem as specified in �5� in any cyclic order, convergence is
guaranteed. This algorithm is called block coordinate descent
�BCD�, and the convergence result is applicable for any general
relaxation consistency function � because the constraint sets are
independent. The following theorem summarizes the convergence
result of block coordinate descent, and the proof is given in
Proposition 2.7.1 of �13�, p. 268.

Fig. 1 „a… Hierarchical problem structure and variable alloca-
tion for ATC; „b… variable allocation for ATC after introducing
target copies
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THEOREM 1. Suppose that for all i and j, f ij is continuously
differentiable and the constraint sets are independent, closed, and
convex. Let x̄ij

� denote the solution of �5� in the �th iteration with
tij = tij

� and r�i+1�k=r�i+1�k
�−1 for k�Cij. Furthermore, suppose that x̄ij

�

is uniquely attained for all iterations. Then �x̄ij
�� is the sequence

generated by the block coordinate descent method, and every limit
point of �x̄ij

�� is a stationary point.
In the ATC literature, nonseparable subproblems are handled in

nested loop coordination schemes that are carried out in a bilevel
fashion, and the original convergence proof for ATC �10� is based
on the nested schemes. However, by the theorem above, the
nested schemes are not necessary, and the block coordinate de-
scent method alone can produce convergence for any sequence of
subproblem solutions.

The inconsistency constraint relaxation function � has been
implemented in three ways: a quadratic penalty function
�1,10,14�, an ordinary Lagrangian function �15�, or an augmented
Lagrangian function �12,16�. Both the quadratic penalty and aug-
mented Lagrangian approaches do not allow separability of sub-
problems, and block coordinate descent is required to achieve
convergence, which limits efficiency. The ordinary Lagrangian ap-
proach does produce separable subproblems. However, the
method is not robust when duality gaps exist �17�. These methods
will be discussed in more detail in the following sections.

Prior Consistency Constraint Relaxation Methods for
ATC

Quadratic Penalty Method. In early ATC literature, a qua-
dratic penalty term was used as the constraint relaxation function
�. The basic idea in penalty methods is to eliminate the consis-
tency constraint and add to the objective function a penalty term
that prescribes a high cost to infeasible points. Associated with
this term are the penalty parameters w= �wij , ∀ i , j� that determine
the severity of the penalty and, as a consequence, the extent to
which the resulting unconstrained problem approximates the
original constrained problem.

The general quadratic penalty function is defined as

�Q�tij − rij� = 	wij � �tij − rij�	2
2 �6�

where � is used to denote the Hadamard product, so that �A �B�i

=AiBi. With �Q, �4� can be rewritten as

min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

	wij � �tij − rij�	2
2

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei,i = 1, . . . ,N �7�

Proper selection of weighting coefficients heavily impacts the
performance of this method. As wij becomes larger, the resulting
inconsistency between tij and rij pairs decreases. Convergence
properties of the quadratic penalty method have been studied thor-
oughly and can be summarized in the following theorem.

THEOREM 2. Assume that the functions fij, gij, and hij for all i , j
are continuous. Suppose that �x̄ij

�� for all i and j is an exact global
minimizer of �7� for each fixed w� and that w�↑�. Then every
limit point of �x̄�� is a solution of Eq. �3�.

Its proof is similar to that of Theorem 17.1 of �18�, p. 496,
Indeed, by letting X= �x̄�Rn :gij�x̄ij��0 , hij�x̄ij�=0 , ∀ j�Ei , i
=1, . . . ,N . �, Eq. �3� can be generalized to

min
x

f�x�

s.t. ci�x� = 0, i � E
x � X

Under the assumption that gij and hij for all i , j are continuous on
Rn, the set X is closed. Thus, replacing Rn by X in the proof of
Theorem 17.1 of �18� yields a valid proof for Theorem 2. Theo-
rem 2 is also a special case of Proposition 4.2.1 of �13�, p. 391
with ��=0 for all �.

For each subproblem, we have

min
x̄ij

f ij�x̄ij� + 	wij � �tij − rij�	2
2 + �

k�Cij

	w�i+1�k � �t�i+1�k − r�i+1�k�	2
2

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �8�

With this formulation, constraint sets are separable, but the ob-
jective function is not. Subproblems are solved sequentially
throughout the hierarchical chain for fixed w as an inner loop. As
noted before, either the nested coordination scheme or the block
coordinate descent method �BCD� can be used as the inner loop.
Upon convergence of all inner loops, an outer loop is used to
update w. Figure 7 shows the procedure using nested and BCD
schemes. Prior approaches to update w are either setting the pen-
alty weights through trial and error or initializing them to a small
value and then increasing their value by a linear update method,
i.e., multiplying the current weights by a constant. However, the
trial and error approach can be difficult for large-scale problems.
Michalek and Papalambros �14� observed that although any posi-
tive w can ensure convergence to a consistent solution for prob-
lems that have attainable targets, no finite w will lead to perfect
consistency for problems with unattainable targets. They proposed
an efficient weight update method �WUM� for finding values of w
that achieve solutions within user-specified inconsistency toler-
ances. It is demonstrated that the WUM achieves better perfor-
mance than a constant w.

In practice, large penalty weights can cause ill-conditioning
�13�. Moreover, the quadratic term prevents each subproblem
from being separable, preventing the use of parallel computing.

Ordinary Lagrangian Method. An alternative choice for the
constraint relaxation function � is an ordinary Lagrangian func-
tion �15�. This method �OL� is based on Lagrangian duality theory
�13,18�. Let �= ��ij , ∀ i , j� be the vector of Lagrangian multipli-
ers. The consistency constraint relaxation function is specified as

�L�tij − rij� = �ij
T�tij − rij� �9�

With �L, �4� can be rewritten as

���� = min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

�ij
T�tij − rij�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �10�

And the dual problem for �10� is
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max
�

���� �11�

Under convexity and constraint qualification assumptions, the
strong duality theorem holds and there is no duality gap. As a
result, an iterative process can be carried out by first solving �10�
with a fixed �, then updating � via the subgradient method until
convergence. Note that this process is based on solving the dual
problem �11�, with �10� as its nested problem, to obtain the overall
solution of �3�. This procedure is theoretically justified by the
following theorems, which are presented in Proposition 5.3.2 of
�13�, p. 514. Again, readers are referred to the text for proofs.

THEOREM 3 �STRONG DUALITY THEOREM�. Assume that f ij and
gij are convex, and hij is linear for ∀j�Ei , i=1, . . . ,N. Suppose
that �x̄ : t−r=0 ,g�x̄��0 ,h�x̄�=0� is nonempty. Assume that the
optimal value of problem �3� is finite. Then there is no duality gap
and there exists at least one Lagrange multiplier.

THEOREM 4. Assume that the strong duality theorem is satisfied
for Eq. �3�. If �* is the optimal solution to Eq. �11� and if x̄*

= �x̄
ij
* ∀ i , j� solves Eq. �10� with �=�*, then x̄* also solves Eq.

�3�.
For each subsystem, consider a fixed �ij. Also note that since tij

and r�i+1�k are constants with respect to element j, the terms �ijtij

and ��i+1�k
T r�i+1�k can be eliminated from the objective function,

resulting in the following subproblem:

min
x̄ij

f ij�x̄ij� + �ij
T�− rij� + �

k�Cij

��i+1�k
T t�i+1�k

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �12�

In this method, each subproblem is separable and can be solved
in parallel, with fixed Lagrange multipliers. Starting with arbitrary
Lagrange multiplier estimates, we update � using the subgradient
method, defined as follows:

��+1 = �� + ���t� − r�� �13�

The superscript � denotes the number of iterations, and � is a
scalar representing the step size. The subgradient method is
proven to converge, under assumptions shown in the following
theorem �15�.

THEOREM 5. If the feasible set of the solution of �10� is bounded
and a sequence of step size �� satisfies the conditions

1. ��→0 as �→�
2. ��=1

� ��=�

then either the iterative process of the subgradient method termi-
nates finitely at �=�* with ����*�=���*�, or else an infinite
sequence of iterates is generated such that ����*�→���*� as
�→�.

Figure 7 shows the OL procedure. By the theorems above, it is
necessary that the strong duality condition holds in order to obtain
global convergence. This is the main drawback of this method
because duality gaps may exist �17�, which can cause instability
and limit application of the method for practical problems.

Augmented Lagrangian Method. An improved method, the
augmented Lagrangian method �AL� applied to ATC formulations
by Tosserams et al. �12� combines both the quadratic penalty term
and the Lagrangian term, which overcomes some drawbacks of
both QP and OL. The Lagrangian term is used to avoid ill-

conditioning. The quadratic term also reduces duality gaps. The
augmented Lagrangian function is defined as follows:

�AL�tij − rij� = �ij
T�tij − rij� + 	wij � �tij − rij�	2

2 �14�

With �AL, the general problem is

�̂��� = min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

��ij
T�tij − rij�

+ 	wij � �tij − rij�	2
2�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �15�

The dual problem for �15� is

max
�

�̂ ��� �16�

The following theorem is the basic convergence result of the
augmented Lagrangian function. This theorem is a specialization
of Proposition 4.2.1 of �13�, p. 391. let X= �x̄�Rn :gij�x̄ij�
�0 , hij�x̄ij�=0 , ∀ j�Ei , i=1, . . . ,N . �. Under the assumption that
gij and hij for all i , j are continuous on Rn, the set X is closed.
Thus, Eq. �3� satisfies all assumptions of Proposition 4.2.1 of �13�.
Readers are referred to the text for the proof.

THEOREM 6. Assume that the objective and constraint functions
of Eq. �3� are continuous. For �=0,1 , . . ., let x̄� be the global

minimum of the problem �̂���� with w�, where �� is bounded,
0�w��w��+1� for all �, and w�→�. Then every limit point of
the sequence �x̄�� is a global minimum of Eq. �3�.

For each subproblem, we have

min
x̄ij

f ij�x̄ij� + �ij
T�− rij� + 	wij � �tij − rij�	2

2

+ �
k�Cij

���i+1�k
T t�i+1�k + 	w�i+1�k � �t�i+1�k − r�i+1�k�	2

2�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �17�

Duality theory also applies to the augmented Lagrangian for-
mulation so we can use the same procedure as OL. However, the
subproblems as shown in �17� are not separable due to the qua-
dratic penalty term. As a result, instead of solving all subproblems
in parallel as in OL, either the nested coordination scheme or the
block coordinate descent method is carried out as an inner loop
for the AL relaxation formulation, similar to the QP approach. In
order to achieve convergence, we must update the Lagrange mul-
tipliers so they approach to the optimal values. The augmented
Lagrangian function allows the use of method of multipliers. The
scheme for selecting new terms � from loop iterate � to ��+1� is
given by the following formula2:

���+1� = �� + 2w� � w� � �tij
� − rij

�� �18�
Before addressing convergence properties of the method of

multipliers, we introduce a new concept called generalized

2Note that the penalty weights are squared in the definition of multipliers in this
case because they are squared in the definition of the quadratic penalty term.
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Lagrange multiplier.
DEFINITION 1 �GENERALIZED LAGRANGE MULTIPLIER�. Consider

the following problem:

min f�x�

s.t. c�x� = 0, x � X �19�

where f :Rn→R, c :Rn→Rm are continuously differentiable, and
X is a given subset in Rn. For the set X, the set of feasible direc-
tions at x*�X is defined as DX�x*�= �0�p�Rn :x*+ tp�X , ∀ t
� �0,	� for some 	
0�. �*�Rm is called a generalized
Lagrange multiplier for the constraint c�x�=0 at x=x* if

pT��f�x*� + �T � c�x*�� � 0, ∀ p � DX�x*�
holds.

Clearly, when X=Rn, we have DX�x*�=Rn \ �0�, and the gener-
alized Lagrange multiplier �* becomes a standard Lagrange mul-
tiplier that satisfies

�f�x*� + �T � c�x*� = 0

Let

Lw�x,�� = f�x� + �Tc�x� +
w

2
	c�x�	2

We next address convergence properties of the method of multi-
pliers for Eq. �19�.

PROPOSITION 1. Assume that f�x� and c�x� are continuously dif-
ferentiable, and that X is a closed convex set. For �=0,1 , . . ., let
x� be a global minimum of the problem

min Lw��x,���

s.t. x � X

where ���� is bounded, 0�w��w�+1 for all �, and w�→�. As-
sume that a subsequence �x��K converges to a vector x* and ���

+w�c�x���K→�*. Then x* is a minimum of Eq. �19� and �* is a
generalized Lagrange multiplier for the constraint c�x�=0 at x
=x*.

Proof. It immediately follows from Proposition 4.2.1 of �13�, p.
391 that x* is a minimum of Eq. �19�. We next show that �* is a
generalized Lagrange multiplier for the constraint c�x�=0 at x
=x*. Without loss of generality, we assume that the entire se-
quence �x�� and ���+w�c�x��� converges to x* and �*, respec-
tively. Let

�̃� = �� + w�c�x��, ∀ � �20�

By definition of x� and the first-order optimality condition, we
have

pT��f�x�� + ��̃��T � c�x��� � 0, ∀ p � DX�x�� �21�

For any p�DX�x*�, there exists a t
0 such that x*+ tp�X. This
together with the fact that X is convex and x��X implies that
��x*+ tp�+ �1−��x��X for �� �0,1�. Thus, x�+��x*+ tp−x��
�X , ∀�� �0,1�. It follows that x*+ tp−x��DX�x��. Using this
relation, �20� and �21�, we have

�x* + tp − x��T��f�x�� + ��̃��T � c�x��� � 0, ∀ p � DX�x*�

Upon letting �→�, and using the assumption that x�→x* and

�̃�→�*, we further obtain that

tpT��f�x*� + ��*�T � c�x*�� � 0, ∀ p � DX�x*�

Noting that t
0, we have

pT��f�x*� + ��*�T � c�x*�� � 0, ∀ p � DX�x*�

and hence, �* is a generalized Lagrange multiplier for the con-

straint c�x�=0 at x=x*. �

We observe that Eq. �3� lies in the class of problems described
in �19� with the set X defined as

X = �x̄ � Rn: gij�x̄ij� � 0, hij�x̄ij� = 0, ∀ j � Ei, i = 1, . . . ,N�

�22�
Convergence properties of the method of multipliers applied to
Eq. �3� are presented as the following theorem. Its proof is similar
to that of Proposition 1.

THEOREM 7. Assume that the objective function of Eq. �3� is
continuously differentiable, and the set X defined in �22� is closed
convex. Let

fAL�x̄,�,w� = �
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

��ij
T�tij − rij� + 	wij � �tij

− rij�	2
2�

where x̄= �x̄11, . . . , x̄NM� and �= ��11, . . . ,�NM�. Let x̄� be a mini-
mum of Eq. �15� and suppose that ���� is bounded, and �w��
satisfies

0 � w� � w�+1 ∀ �, w� → �

Assume that a subsequence �x̄��K converges to a vector x̄* and
���+2w� � �t�−r���K→�*. Then x̄* is a minimum of Eq. �3� and
�* is a generalized Lagrange multiplier corresponding to the con-
straints tij −rij =0 at x̄= x̄* for all j�Ei , i=1, . . . ,N.

There are other ways of updating � when using the augmented
Lagrangian method. For example, the subgradient update scheme
is used in �16�. In AL, the penalty weight w is also updated. A
linear scheme with constant scale  for updating w is used in �16�

w��+1� = w�,  � 1 �23�
Because the quadratic term prevents subproblems from being

separable, the nested coordination scheme or BCD is used in the
inner loop for finding the optimal solution with respect to fixed �
and w. The outer loop applies �18� and �23� for updating the
Lagrange multipliers and penalty weights. In implementing the
AL method, the update of w can also be separate from the update
of �. w can be updated only if the improvement of the current
iteration is not large enough �5�. Figure 7 shows the procedure
using nested and BCD schemes. Although the augmented La-
grangian approach shows stable convergence properties and a su-
perior performance compared to QP, the inner loop can still in-
duce large computational cost. Moreover, throughput is low due to
nonseparability of subproblems.

Augmented Lagrangian With Alternating Direction Method
of Multipliers. To reduce computational cost of the augmented
Lagrangian approach, Tosserams et al. �12� applied the augmented
Lagrangian with alternating direction method of multipliers
�ALAD�. The key observation is that all elements in the odd levels
of the hierarchy only depend on the elements in the even levels
and vice versa; thus, it is possible to first solve all odd-level ele-
ments in parallel, then all even-level elements, for a fixed number
of iterations. The Lagrange multipliers are then updated using the
method of multipliers. The penalty weight can also be updated.
Contrary to quadratic penalty method �QP� or AL, a large penalty
weight may have negative effect on convergence, but a small pen-
alty weight may result in unbounded subproblems �19�. In �12�,
Tosserams et al. keep a constant w. Furthermore, the inner loop is
solved for only one iteration to minimize computational effort.
This method is demonstrated to be effective on all example prob-
lems with superior computational properties compared to QP and
AL. It has been proven to converge under the assumption that the
problem is convex, the feasibility sets are nonempty, and the con-
straint sets are bounded �19�. In practice, however, ALAD shows
good numerical convergence behavior for nonconvex problems as
well �5�. Figure 7 shows the ALAD procedure. This method is
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promising because it demonstrates both good convergence prop-
erties and low computational cost through the truncated inner
loops and partial parallelization �12�.

Summary. Except for the ordinary Lagrangian approach, all
other prior methods for consistency constraint relaxation prevent
fully parallel computation of subproblems. The ALAD method
requires sequential computation of odd levels and even levels, and
the QP and AL methods require sequential computation of all
levels. As parallel and distributed computing becomes more popu-
lar, it is desirable to have fully separable subproblems so that each
subproblem can be solved concurrently and computational
throughput can be improved. Because the ordinary Lagrangian
approach has convergence difficulties and other approaches pre-
vent separability, we are motivated to explore alternate ap-
proaches.

Proposed Consistency Constraint Relaxation Methods
for ATC

Diagonal Quadratic Approximation Method. In order for the
subproblems of the augmented Lagrangian approach to be sepa-
rable, we apply the diagonal quadratic approximation �DQA�
originally proposed in �20�, where it is used to solve block-
angular structure problems. Proofs on convergence and conver-
gence rate are available for this method �20�. There are other
variations of solving similar problems using approximation tech-
niques, for example, the method discussed in �17�.

In the original paper, DQA is used to solve problems in the
following form:

min
x

f�x� = �
i=1

L

f i�xi� �24�

s.t. �
i=1

L

Aixi = b �25�

xi � Xi, i = 1,2, . . . ,L �26�

where f is convex, and X1 ,X2 , . . . ,XL are nonempty closed convex
sets. Our ATC formulation, as in �3�, falls into this form for con-
vex problems. First, the objective function is separable with re-
spect to individual subproblems. Second, the consistency con-
straint function is in the form of �25�. Third, the inequality and
equality constraints g and h, now fully separable, form sets Xi. In
DQA, a linear approximation is applied on the cross term tij �rij

included in the quadratic penalty term 	tij −rij	2
2 in �15�.

	tij − rij	2
2 = 	tij � tij + rij � rij − 2�tij � rij�	1 �27�

Using the Taylor expansion for multiple variable scalar functions
up to the first order, a linearization at the point tij

� , rij
� gives

tij � rij 
 tij
� � rij

� + rij
� � �tij − tij

�� + tij
� � �rij − rij

��

= rij
� � tij + tij

� � rij − tij
� � rij

� �28�
Combining �27� and �28�, we have

	tij − rij	2
2 
 	tij � tij + rij � rij − 2�rij

� � tij + tij
� � rij − tij

� � rij
��	1

= 	�tij
� � tij

� + rij � rij − 2�tij
� � rij��	1 + 	�tij � tij + rij

� � rij
�

− 2�tij � rij
���	1 + 	2�tij

� � rij
�� − tij

� � tij
� − rij

� � rij
�	1

= 	tij
� − rij	2

2 + 	tij − rij
�	2

2 + const �29�

By substituting �29� and �15� where tij
� and rij

� are solutions ob-
tained from the previous iterations and are constant with respect to
the problem of the current iteration, we have derived the overall
problem after applying DQA. Note that we have omitted the con-
stant term because the solution of the objective function will not
be affected by a constant.

min
x̄11,. . .,x̄NM

�
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

��ij
T�tij − rij� + 	wij � �tij

� − rij�	2
2

+ 	wij � �tij − rij
��	2

2�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �30�

And for each subproblem,

min
x̄ij

f ij�x̄ij� + �ij
T�− rij� + 	wij � �tij

� − rij�	2
2

+ �
k�Cij

���i+1�k
T t�i+1�k + 	w�i+1�k � �t�i+1�k − r�i+1�k

� �	2
2�

s.t. gij�x̄ij� � 0

hij�x̄ij� = 0

where x̄ij = �xij,t�i+1�k ∀ k � Cij�

rij = aij�x̄ij�

∀ j � Ei, i = 1, . . . ,N �31�

The DQA approach consists of an inner loop and an outer loop.
The inner loop is used to improve linearization while the outer
loop is used to implement the method of multipliers. We concur-
rently update the penalty weight using the linear update method,
similar to the AL approach. The general DQA algorithm consists
of the following steps:

1. Initialize x̄, �, and w, and set �=0, where � denotes the
number of outer loop iteration.

2. Given x̄�, the final solution of the previous ��−1�st outer
loop iteration upon inner loop convergence, set s=0, where s
is the inner loop iteration, and x̄�+1,0= x̄�, where x̄�+1,s is the
solution of the sth inner loop iteration and the current outer
loop iteration.

3. For each element, solve for x̄ij in �31� in parallel, and obtain
x̄ij

�+1,s+1.
4. If max�	t�+1,s+1− t�+1,s 	 , 	r�+1,s+1−r�+1,s 	 ���inner, where

�inner is the inner loop consistency deviation tolerance, set
x̄�+1= x̄�+1,s+1, and go to step 5. Otherwise, set x̄�+1,s+1

= x̄�+1,s+��x̄�+1,s+1− x̄�+1,s�, where � is the step size, set s
=s+1, and go to step 3.

5. If max�	t�+1− t� 	 , 	r�+1−r� 	 ���outer, where �outer is the
outer loop consistency deviation tolerance, then stop and set
the optimal solution x̄* to be x̄�+1; otherwise, set �=�+1
and update the Lagrange multipliers using the method of
multipliers by setting ��+1=��+w� � �t�−r��, w��+1�=w�,
and go to step 2.

This procedure is shown in Fig. 7. Note that the consistency de-
viation tolerance for both the inner loop �inner and outer loop
�outer should be significantly smaller than the step size � to pre-
vent premature convergence.

Convergence is proven for the above algorithm with �inner=0,
as stated in �20�. For practical purposes, however, we allow �inner
to be small but nonzero.

THEOREM 8. Suppose that the constraint sets are bounded,
�inner=0, and the step size �� �0,1� is significantly small. The
following statements hold

1. lims→��t�,s+1− t�,s�=0, lims→��r�,s+1−r�,s�=0
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2. Each limit point of the sequence �x̄�,s�s=0
� is a solution of

�̂����.

The proof of the theorem is based on the estimation of the
difference between the approximation and the augmented La-
grangian function. This estimation shows that a progress in the
former also introduces progress in the later. The step size � plays
an important role in the DQA method. Because linearization is
only accurate in a neighborhood of the point at which the linear-
ization takes place, we use a small step size to obtain a good
approximation. As noted in �20�, the step size � is related to the
number of linking variables. Proof of the above theorem requires
smaller � for problems with a larger number of linking variables.
However, empirical results indicate that a step size close to 1 can
bring convergence to all example problems presented in this
paper.

Local convergence is also discussed in �20�, and this property
of DQA is based on the quadratic growth condition of the aug-
mented Lagrangian function, defined as follows:

DEFINITION 2 �QUADRATIC GROWTH CONDITION�. Let

fAL = �
i=1

N

�
j�Ei

f ij�x̄ij� + �
i=2

N

�
j�Ei

��ij
T�tij − rij� + 	wij � �tij − rij�	2

2�

and x̄* is the solution of �15�, where x̄= �x̄11, . . . , x̄NM�. The aug-
mented Lagrangian function is said to satisfy the quadratic
growth condition if there exists �
0 such that for every x̄,

fAL�x̄� − fAL�x̄*� � �	x̄ − x̄*	2
2

Under the quadratic growth rate of the augmented Lagrangian
function, the rate of convergence for DQA is linear. However,
other factors, such as a large number of linking variables can slow
down the progress �20�. As a variation, it is possible to linearize at
the midpoint of the solution from the previous iteration ��t�

+r�� /2, �t�+r�� /2�. We obtain similar results as linearization at
end points in all our test examples.

Truncated Diagonal Quadratic Approximation Method. As
will be discussed in the next section, DQA performs well on test
problems in terms of throughput, but the overall computational
cost is still high. From the experiments, we have found out that
much of the computational effort is spent on the inner lineariza-
tion loop. We have also observed that usually the inner loop
progresses slowly and introduces a high cost to reach the desirable
inner loop convergence tolerance. However, when the Lagrange
multipliers are not optimal, high accuracy of the subproblem so-
lutions is not necessary, and the computational effort is wasted. It
is more desirable to quickly update the Lagrange multiplier to
move toward its optimal value. This can be achieved by limiting
the total number of inner loop iterations in DQA by treating it as
a user-specified parameter in a way that is similar to the ALAD
approach, which reduces the computational cost for solving the
inner loop. Because some inner loop calculation is omitted in
DQA, this method is called the truncated diagonal quadratic ap-
proximation method �TDQA�. The outer loop of TDQA imple-
ments the method of multipliers. Similar to ALAD, the penalty
weight is held fixed.

In order to minimize overall cost, only one iteration of compu-
tation is carried out in the inner loop. The TDQA algorithm is
given as follows:

1. Initialize x̄0 ,�, and w, and set �=0, where � denotes the
number of loop iterations.

2. For each element, solve for x̄ij in �31� in parallel, and obtain
x̄ij

�+1= x̄ij
� +��x̄ij

�+1− x̄ij
�� where � is the step size.

3. If max�	t�+1− t� 	 , 	r�+1−r� 	 ���, where � is the outer loop
consistency deviation tolerance, then stop, and set the opti-
mal solution x̄* to be x̄�+1; otherwise, set �=�+1, update
the Lagrange multipliers using the method of multipliers by

setting ��+1=��+w� � �t�−r��, w��+1�=w�, and go to step
2.

This procedure is shown in Fig. 7. The outer loop tolerance �
should be significantly smaller than the step size � to prevent
premature convergence. Furthermore, we can also linearize at the
midpoint of the solution obtained from the previous iteration.
Again, empirical results show similar performance as linearization
at end points.

Empirical results show promising results of the TDQA method.
The intuition is that TDQA can be considered as an approximation
of the ALAD method. As long as the approximation is accurate,
solution of TDQA at each iteration is close to that of the ALAD
method, and convergence follows by the convergence property of
the ALAD method. We can also impose a strategy for increasing
the total number of inner loop iterations when the improvement of
the actual function is not large enough. In the extreme case when
we allow the limit of the number of inner loop iterations to
achieve infinity, the method becomes the DQA method and con-
vergence can be obtained. A proof of convergence for finite inner
loop truncation is left for future work.

DQA and TDQA With the Trust Region Technique. From the
discussion above, it is possible to have a linearization at the cur-
rent point that is a poor approximation to the augmented Lagrang-
ian function. A small step size � can ensure accuracy of the ap-
proximation. However, if the step size is too small, convergence
will be slow. As a result, some trial and error is required for
finding a good value of the step size for practical applications.

An alternative approach for finding a good step size is to use a
trust region. To determine whether the current linearization is ac-
curate, we estimate the ratio � of the actual reduction �the reduc-
tion of the original augmented Lagrangian function� to the pre-
dicted reduction �the reduction of the diagonal quadratic
approximation of the augmented Lagrangian function� between
current solution x̄ij

�+1 and previous solution x̄ij
� . If � is close to 1,

the linearization is accurate. On the other hand, whenever the ratio
� is far from 1, it indicates that the step size for the current
solution is too big, the linearization is not accurate, and it is de-
sirable to use a smaller step size. The algorithm of DQA and
TDQA can be modified according to this method in the following
way. Instead of using a predetermined step size, we calculate the
reduction ratio � after each iteration. If ���, where � is the ratio
threshold, then accept the solution. Otherwise, shrink the step size
by half. The recommended value of � is 0.25 in the standard trust
region method. This procedure can also be carried out iteratively.

Results and Comparisons
For the purpose of a clear comparison among all ATC methods,

we use the four examples discussed in �12�, in the same order.
Readers are referred to �12� for a more in-depth discussion on the
structures and properties of each problem. To make sure that the
comparison is fair, we use the same condition on terminating the
update of the Lagrange multipliers for all methods, as shown in
the following:

max�	t� − t�−1	,	r� − r�−1	� � �outer �32�
This is different from �12�, where the termination condition is

max�	�t� − r�� − �t�−1 − r�−1�	� � �outer �33�
We use a new criterion because �33� might result in premature
convergence.3

3Generally speaking, three convergence criteria are widely used in the implemen-
tation of optimization methods: The gradient of the Lagrangian function is close to 0,
objective function value stops changing, and solution point stops changing. We are
using the third method here, and for practical purposes, a small nonzero convergence
tolerance is given to determine when the solution stops changing.
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In this paper, three quantities are used to evaluate performance:
The solution error, the total number of function evaluations, and
the overall computational throughput. Solution error � is defined
as follows, the same as �12�:

� = 	x* − xATC	�,

where x* is the actual optimal solution and xATC is the solution
found by ATC. The magnitude of the solution error is controlled
by the convergence tolerance. The tighter the tolerance, the more
accurate the solution. The total number of function evaluations,
also defined in �12�, is used to measure the overall computational
cost, and is reported by the subproblem solver, in this case, TOM-

LAB NPSOL. Computational throughput is defined as the number of
tasks that can be performed for a given time period. Because each
problem is considered a task, for simplicity we use the inverse of
throughput, or latency in CPU seconds, to compare the speed for
solving each problem of each method. In other words, latency
measures the total CPU time required to solve the overall prob-
lem, taking into account parallelization.

We compare the performance of each method in the following
two ways: function evaluations versus solution error and compu-
tational latency versus solution error.4 The methods being com-
pared are the quadratic penalty method with the nested coordina-
tion scheme and WUM �QP�; the quadratic penalty method with
BCD and WUM �QP-BCD�; the augmented Lagrangian method
with nested coordination scheme �AL�; the augmented Lagrangian
method with BCD �AL-BCD�; ALAD; DQA; and TDQA. The
value of  for updating penalty weights is set to 2.0 for AL and
DQA, and 1.0 for ALAD and TDQA. w step size for DQA is 0.9
for all problems. For TDQA, we invoke the trust region once to
ensure the accuracy of the linearization and the initial step size is
set to 0.7. Note that OL is not included because it encounters
convergence difficulties for the last three problems. All tests are
carried out on the same machine with the same applications; thus,
comparison is fair.5

Example 1. The first example is a two-level decomposition of
the geometric programming problem. It has a unique solution z*

= �2.15,2.06,1.32,0.76,1.07,1.00,1.47� with all constraints ac-
tive.

min
z1,. . .,z7

f = f1 + f2 = z1
2 + z2

2

s.t. g1 = �z3
−2 + z4

2�z5
−2 − 1 � 0

g2 = �z5
2 + z6

−2�z7
−2 − 1 � 0

h1 = �z3
2 + z4

−2 + z5
2�z1

−2 − 1 = 0

h2 = �z5
2 + z6

2 + z7
2�z2

−2 − 1 = 0

z1,z2, . . . ,z7 � 0 �34�

Figure 2 shows the structure of the problem and Fig. 3 shows
results for each method. Note that since this is a two-level prob-
lem, QP and QP-BCD are identical, as are AL and AL-BCD. It is
clear that the truncated methods ALAD and TDQA perform better
than all the nested loop methods in terms of both function evalu-
ations and latency. TDQA outperforms ALAD. DQA requires
more function evaluations than AL but has a lower latency due to
parallelization. QP does not perform as well as the other methods.

Example 2. The second example problem is a three-level de-
composition of a posynomial geometric programming problem. Its
unique solution is z*= �2.84,3.09,2.36,0.76,0.87,2.81,0.94,
0.97,0.87,0.80,1.30,0.84,1.76,1.55� with all constraints active

min
z1,. . .,z14

f = f1 + f2 = z1
2 + z2

2

s.t. g1 = �z3
−2 + z4

2�z5
−2 − 1 � 0

g2 = �z5
2 + z6

−2�z7
−2 − 1 � 0

g3 = �z8
2 + z9

2�z11
−2 − 1 � 0

g4 = �z8
−2 + z10

2 �z11
−2 − 1 � 0

g5 = �z11
2 + z12

−2�z13
−2 − 1 � 0

g6 = �z11
2 + z12

2 �z14
−2 − 1 � 0

h1 = �z3
2 + z4

−2 + z5
2�z1

−2 − 1 = 0

h2 = �z5
2 + z6

2 + z7
2�z2

−2 − 1 = 0

h3 = �z8
2 + z9

−2 + z10
−2 + z11

2 �z3
−2 − 1 = 0

h4 = �z11
2 + z12

2 + z13
2 + z14

2 �z6
−2 − 1 = 0

z1,z2, . . . ,z14 � 0 �35�
Figure 2 shows the structure of the problem, and Fig. 4 shows the
results.

4We did not use the number of redesigns �i.e., the number of times each subprob-
lem must be solved� as a metric because it can be misleading. In some iterations the
subproblem may take many function evaluations to solve, whereas in many of the
later iterations it will be very fast because the starting point is close to the solution.
Thus, the redesigns metric does not seem to be an accurate or easy-to-interpret metric
of computational cost.

5Application: MATLAB Version 7.0 with TOMLAB NPSOL SOLVER Version 5.3; OS:
SUSE Linux; Processor: Intel�R� Xeon�TM�; CPU: 2.80 GHz. Also, for the test
results we used the time required to complete the longest running subproblem in each
iteration to measure the effect of imperfect load balancing. We did not explicitly
capture the communication overhead of multiprocessors, but this aspect will be very
small in the examples compared to the computation time required at each iteration.

Fig. 2 Example problem structures

Fig. 3 Example 1: Computation cost and latency versus solu-
tion accuracy
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In this example, the advantage of BCD is clear because QP-
BCD and AL-BCD outperform QP and AL, respectively. More-
over, AL outperforms QP and QP-BCD. DQA outperforms AL and
AL-BCD in computational latency due to parallelization. Similar
to example 1, the truncated methods are superior to all nested loop
methods, and TDQA outperforms DQA in terms of both function
evaluations and latency.

Example 3. The third example is a slight variation of the sec-
ond, changing only the objective function so the targets are attain-
able. The objective function is now f = f1+ f2= �z1−2.9�2+ �z2
−3.1�2. In this example, only z1=2.9 and z2=3.1 are unique. The
other variables can have different values as long as all constraints
are satisfied.

This example is a special case. As discussed in �12�, the
Lagrange multipliers were originally set to zero, which happens to
be the optimal value for this problem. As a result, the outer loops
of all nested loop methods are theoretically unnecessary. How-
ever, due to numerical errors, the outer loops are updated several
times in practice.

Similar to example 2, QP-BCD and AL-BCD outperform QP
and AL, respectively. However, because � is at its optimal value
originally, the advantage of the Lagrangian term cannot be ob-
served, and the QP methods outperform the AL methods in this
example. For the truncated methods ALAD and TDQA, which
outperform all nested loop methods, ALAD outperforms TDQA in
terms of both function evaluations and latency. These results are
shown in Fig. 5. The total computational cost, and the variation
among methods, is small for this problem because updating � and
w is unnecessary.

Example 4. The fourth example is a structured optimization

problem based on the analytical mass allocation problem. It has a
unique solution z*= �0.0346,0.0349,0.0294,0.0046,0.0028�

min
d1,d2,dr,1,dr,2

�
i=1

3

mi + �
j=1

2

mr,j

s.t. g1,i = �b,i − �̄ � 0,i = 1,2 ,3

g2,j = �a,j − �̄ � 0, j = 1,2

g3,i = Ft,i − Ft
¯ � 0, i = 1,2,3

g4 = f1 − f 1̄ � 0

h1 = f i − f i+1 − fr,i = 0, i = 1,2

where mi =
�

4
di

2L�, i = 1,2,3

mr,j =
�

4
dr,j

2 L�, j = 1,2

�b,i =
32L�Fi − Fi+1�

�di
3 , i = 1,2,3

f i =
64L3�Fi − Fi+1�

3�Edi
4 , i = 1,2,3

Fig. 4 Example 2: Computational cost and latency versus so-
lution accuracy

Fig. 5 Example 3: Computational cost and execution latency
versus solution accuracy

Fig. 6 Example 4: Computation cost and latency versus solu-
tion accuracy

Fig. 7 Flow charts of methods
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�a,j =
4Fj+1

�drj
2 , j = 1,2,

fr,j =
4Fj+1L

�Edrj
2 , j = 1,2

� = 2700 kg/m3, E = 70 GPa, F1 = 1000 N �36�
Figure 2 shows the structure of the problem. The results shown

in Fig. 6 are very similar to those in example 2. QP-BCD and
AL-BCD outperform QP and AL, respectively. The AL methods
outperform the QP methods. DQA outperforms AL: It has a larger
number of function evaluations than AL-BCD, but it has the
smallest latency among all nested loop methods. The truncated
methods are superior to all nested loop methods, and TDQA out-
performs ALAD.

Discussion
The biggest advantage of both DQA and TDQA is their ability

to separate subproblems for parallel computation. This property is
highly desirable, especially in large-scale problems. Because each
subproblem is separable, nested loops are avoided. Moreover, be-
cause each problem can be solved in parallel, throughput is
greatly increased. Although we only present DQA and TDQA in
the context of hierarchical ATC problems, these methods can be
used in a wide variety of decomposition methods. DQA was first
proposed in �20� as a method solving general block-angular struc-
tured problems, and TDQA can be applied to any problems to
which DQA can be applied. For example, in �5�, an augmented
Lagrangian approach is used in solving nonhierarchical dual-
block angular problems, and DQA and TDQA can also be used for
solving these problems. This is also an advantage of DQA and
TDQA over ALAD. DQA and TDQA do not require problems to
be hierarchical, whereas ALAD requires identification of indepen-
dent levels in hierarchical problems. It is expected that DQA and
TDQA will perform similarly in nonhierarchical decomposition
schemes as in ATC.

One limitation of DQA and TDQA is that, theoretically, these
methods achieve good performance only when the number of
linking variables is small, as in the case of quasiseparable prob-

lems. Further investigation is needed to determine their perfor-
mance in practice on problems that have large number of linking
variables after decomposition. Future research is also needed to
investigate the global and local convergence properties of the
TDQA method.

Conclusion
In this paper, we have summarized the existing methods, com-

pared the block coordinate descent method to nested schemes, and
presented the diagonal quadratic approximation method and the
truncated diagonal quadratic approximation method used in han-
dling consistency constraint relaxation in ATC. The DQA method
is supported by theoretical justification. Fundamental results show
that by using BCD instead of the nested coordination scheme,
computational cost and throughput are greatly improved. BCD is
also theoretically justified. In general, DQA has lower computa-
tional cost than most nested loop methods and it has the highest
throughput due to parallelization. TDQA has the least total cost
and best throughput of all methods in all the test examples, except
for Example 3, for which ALAD has achieved the best perfor-
mance. In this degenerate case, updates of the penalty weights and
Lagrange multipliers are unnecessary, and the total computational
time is much smaller than the other nondegenerate cases, making
distinctions less critical. As a result, we believe that TDQA is
more preferable when parallel processing is available. DQA has
proofs for local and global convergence, and proofs for TDQA are
left for future work. The flowcharts for the algorithms of all meth-
ods are shown in Fig. 7, and Table 1 summarises methods and
results.

The proposed methods overcome many of the concerns with
prior approaches to ATC, such as convergence difficulties, ill-
conditioning, and computational cost associated with the coordi-
nation strategies. DQA and TDQA enable parallelization of all
subsystems in the ATC hierarchy, which can improve computa-
tional throughput when parallel processing is available. Given the
theoretical benefits and promising empirical results of the DQA
and TDQA approaches to ATC, we hope to see these methods
utilized in future ATC studies and applications. Additionally, be-
cause DQA and TDQA do not require the assumption of hierar-

Table 1 Summary of methods
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chical structures, extension to nonhierarchical structures has the
potential to extend applicability to a wider range of systems opti-
mization problems.

Acknowledgment
The authors wish to thank Simon Tosserams for sharing his

code and both Simon Tosserams and Larry Biegler for their help-
ful feedback. This work was supported in part by the Pennsylvania
Infrastructure Technology Alliance, a partnership of Carnegie
Mellon, Lehigh University, and the Commonwealth of Pennsylva-
nia’s Department of Community and Economic Development
�DCED�, and by a SFU President’s Research Grant and NSERC
Discovery Grant.

References
�1� Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jiang, T., 2003, “Target

Cascading in Optimal System Design,” ASME J. Mech. Des., 125�3�, pp.
474–480.

�2� Allison, J., Kokkolaras, M., Zawaislak, M., and Papalambros, P., 2005, “On
the Use of Analytical Target Cascading and Collaborative Optimization for
Complex System Design,” Proceedings of 6th World Congress on Structural
and Multidisciplinary Optimization, Rio de Janerio, Brazil.

�3� DeMiguel, A., and Murray, W., 2006, “A Local Convergence Analysis of
Bilevel Decomposition Algorithms,” Optim. Eng., 7, pp. 99–133.

�4� Haftka, R. T., and Watson, L. T., 2005, “Multidisciplinary Design Optimiza-
tion With Quasiseparable Subsystems,” Optim. Eng., 6�1�, pp. 9–20.

�5� Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2007, “An Augmented La-
grangian Decomposition Method for Quasi-Separable Problems in MDO,”
Struct. Multidiscip. Optim., 34, pp. 211–227.

�6� Kim, H. M., Kokkolaras, M., Louca, L. S., Delagrammatikas, G. J., Michelena,
N. F., Filipi, Z. S., Papalambros, P. Y., Stein, J. L., and Assanis, D. N., 2002,
“Target Cascading in Vehicle Redesign: A Class VI Truck Study,” Int. J. Veh.
Des., 29�3�, pp. 199–225.

�7� Choudhary, R., Malkawi, A., and Paplambros, P. Y., 2005, “Analytic Target
Cascading in Simulation-Based Building Design,” Autom. Constr., 14�4�, pp.
551–568.

�8� Michalek, J. J., Ceryan, O., Papalambros, P. Y., and Koren, Y., 2006, “Balanc-
ing Marketing and Manufacturing Objectives in Product Line Design,” ASME
J. Mech. Des., 128�6�, pp. 1196–1204.

�9� Michalek, J. J., Feinberg, F. M., and Papalambros, P. Y., 2005, “Linking Mar-
keting and Engineering Product Design Decisions via Analytical Target Cas-
cading,” Journal of Product Innovation Management, 22, pp. 42–62.

�10� Michelena, N., Park, H., and Papalambros, P. Y., 2003, “Convergence Proper-
ties of Analytical Target Cascading,” AIAA J., 41�5�, pp. 897–905.

�11� Michalek, J. J., and Papalambros, P. Y., 2005, “Weights, Norms, and Notation
in Analytical Target Cascding,” ASME J. Mech. Des., 127�3�, pp. 499–501.

�12� Tosserams, S., Etman, L. F. P., and Rooda, J. E., 2006, “An Augmented La-
grangian Relaxation for Analytical Target Cascading Using the Alternating
Directions Method of Multipliers,” Struct. Multidiscip. Optim., 31�3�, pp.
176–189.

�13� Bertsekas, D. P., 2003, Nonlinear Programming, 2nd ed., Athena Scientific,
Belmont, MA.

�14� Michalek, J. J., and Papalambros, P. Y., 2005, “An Efficient Weighting Update
Method to Achieve Acceptable Inconsistency Deviation in Analytical Target,
Cascading,” J. Qual. Maint. Eng., 127�3�, pp. 206–214.

�15� Lassiter, J. B., Wiecek, M. M., and Andrighetti, K. R., 2005, “Lagrangian
Coordination and Analytical Target Cascading: Solving ATC-Decomposed
Problems With Lagrangian Duality,” Optim. Eng., 6�3� pp. 361–381.

�16� Kim, H. M., Chen, W., and Wiecek, M. M., 2006, “Lagrangian Coordination
for Enhancing the Convergence of Analytical Target Cascading,” AIAA J.,
44�10�, pp. 2197–2207.

�17� Stephanopoulos, G., and Westerberg, A. W., 1975, “The Use of Hestenes’
Method of Multipliers to Resolve Dual Gaps in Engineering System Optimi-
zation,” J. Optim. Theory Appl., 15�3�, pp. 285–309.

�18� Nocedal, J., and Wright, S. J., 1999, Numerical Optimization, Springer Series
in Operations Research, Springer, New York.

�19� Bertesekas, D. P., and Tsitsiklis, J. N., 1989, Parallel and Distributed Compu-
tation, Prentice-Hall, Englewood Cliffs, NJ.

�20� Ruszcynski, A., 1995, “On Convergence of an Augmented Lagrangian Decom-
position Method for Space Convex Optimization,” Math. Op. Res., 20�3�, pp.
634–656.

Journal of Mechanical Design MAY 2008, Vol. 130 / 051402-11


