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ABSTRACT 
Recent research has extended prior efforts to integrate firm-

level objectives into engineering design optimization models by 
further enlarging the scope to investigate the effects of 
regulation on the design decisions of profit-seeking firms in 
competition. In particular, one study examined the effects of 
environmental policy on vehicle design decisions by integrating 
quantitative models of engineering performance, market 
demand, production cost and regulatory penalties in a joint 
optimization framework using game theory to model the effects 
of competition on design and pricing. Model complexity and 
the solution methods used to solve for market equilibria in prior 
research have led to a limitation where the prior approach is too 
computationally intensive to allow extensive parametric studies 
on the effects of policy changes on design. To address this issue, 
we present an alternative game-theoretic approach utilizing 
necessary and sufficient conditions with Nash conditions to find 
market equilibria in an oligopoly of automakers, and we use this 
approach to examine the resulting optimal design responses 
under various regulation scenarios.  
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1. INTRODUCTION 
Automobile manufacturers aim to produce vehicle designs 

that earn market share and maximize their profits. However, a 
product equipped with ‘good’ engineering design does not 

guarantee that it will be successful in the marketplace. 
Consumers have preferences that may not be fully understood 
by vehicle designers and engineers. Market research and 
econometric methods, such as conjoint analysis and discrete 
choice models, provide useful quantitative tools for studying 
consumer preferences and supporting product planning. Most 
applications of these tools do not model engineering tradeoffs in 
product design; however, in recent years, researchers have 
proposed a number of approaches to integrating engineering 
design optimization with these marketing and econometric 
models of market performance to search for the most profitable 
product or product line [1-10]. 

Each of these approaches takes the perspective of an 
individual firm and coordinates market and engineering models 
in an effort to help the firm choose designs that will maximize 
its objectives (typically profit). It is well-established, however, 
that in cases where market externalities exist, an unregulated 
market of profit-seeking firms and rational consumers results in 
suboptimal social outcomes [11]. Regulation is routinely 
invoked to manage these cases, and such regulation has both 
direct and indirect influence on the decisions made by 
designers. In particular, environmental legislation aimed at 
reducing fuel consumption and greenhouse gas (GHG) 
emissions in the automotive industry shifts profit incentives and 
changes the set of designs that emerge as most-profitable in the 
regulated, competitive marketplace [12]. Studies of the effects 
of regulation on the economy are well-represented in the 
economics literature; however, study of the effects of policy on 
detailed engineering design decisions, where engineering 
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variables, constraints and tradeoffs are accounted for in 
mapping the feasible domain of design alternatives, is an open 
research area. 
 

1.1 Environmental Regulation 
Corporate average fuel economy (CAFE) is one major 

environmental regulation influencing vehicle design in the 
United States. CAFE standards were developed at the direction 
of Congress by The National Highway Traffic Safety 
Administration (NHTSA) and the Environmental Protection 
Agency (EPA) in response to the oil crisis of the 1970s [13]. 
CAFE regulation plays an important role in the automobile 
industry: It forces automakers to produce automobile fleets with 
higher fuel efficiency by setting up specific fuel economy 
standards and penalties for violation. The primary purpose of 
the CAFE policy was originally to reduce domestic gasoline 
consumption and decrease US dependency on imported oil [14]. 
More recently, CAFE standards have also been discussed as an 
approach to reduce GHG emissions for environmental 
protection, though some researchers argue that the social cost of 
CAFE policies is too high for this purpose and less efficient 
than fuel taxes or carbon taxes [15]. Numerous studies have 
modeled the economic effects of CAFE standards. For example, 
Kwoka [16] established a simple linear demand model 
considering two vehicle types, small and large cars, to study the 
aggregate total fuel consumption changes under CAFE 
regulation, and Kleit [14] conducted a theoretical analysis with 
quadratic costs; concluding that CAFE standards encourage the 
production of small cars at the firm level, but that the CAFE 
standard is not efficient for energy saving purposes. These 
studies are not concerned with vehicle design, nor do they 
model the design changes that could result under changes in 
policy. Greene and Hopson [17] created a regression model to 
capture the relationship between retail price and fuel economy 
changes, and they used nonlinear programming (NLP) methods 
to maximize the automobile industry-wide fuel economy under 
alternative forms of fuel economy regulations. They concluded 
that a 25% to 30% fuel economy improvement for the time 
period from 2010 to 2015 would be beneficial to consumers. 
However, the maximization method of industry-wide fuel 
economy did not take producers’ competition into account, and 
no vehicle engineering content was considered in the 
mathematical modeling.  
 

1.2 Game Theory in Product Design 
Since policy can influence the cost of producing different 

designs, the effect is to give firms incentive to change the set of 
designs they offer, and competitive reaction in design and 
pricing can be a critical component in determining the resulting 
designs. One well-established framework for modeling 
competitive behavior is game theory. Game theory has been 
applied extensively for studying competition between firms in 
the field of microeconomics [18]. However, most economic 
applications involve models that are constructed to be as simple 
as possible (e.g.: linear demand, quadratic cost) in order to 

study equilibria analytically and reach qualitative conclusions, 
rather than incorporating data-driven econometric models of 
consumer choice with physics-driven engineering performance 
constraints in a computational approach. 

There exist a few applications of game theory in the 
engineering product design literature. For example, Lewis and 
Mistree [19] modeled the design interactions in a 
multidisciplinary aircraft design problem as a sequential game, 
where the players are members of a design team using CAD 
tools to create an optimal design. These studies generally focus 
on interactions of designers and design teams, rather than of 
profit seeking firms in competition. In the marketing literature, 
some researchers have used game theory to find optimal 
product positioning1 at market equilibrium. For example, Choi 
and Desarbo [20] applied branch and bound to solve the 
nonlinear integer programming problem of optimal product 
positioning and employed the sequential iterative method2 to 
find Nash equilibria in an oligopolistic automobile tire market. 
Choi and Desarbo concluded that the forward and reversed 
orders of sequential iteration reached different Nash equilibrium 
solutions, which imply existence of multiple equilibria in their 
model. Green and Krieger [21] also implemented the sequential 
iterative approach to find the Nash equilibrium in an 
oligopolistic cellular phone market comprising of three firms, 
and they compare results under scenarios of equal and unequal 
costs. Finally, Besanko et al. [22] demonstrate that using game 
theory to model price endogeneity can improve estimates of 
price coefficients when fitting a demand model to revealed 
preference data in the marketplace. These prior marketing 
approaches tend to neglect the importance of engineering 
tradeoffs in the design. Michalek et al. [7] review critical 
differences between product attributes used in marketing studies 
and product design variables used in engineering optimization, 
and Krishnan and Ulrich [23] highlight the need for methods 
that can integrate the two. 

One recent approach integrating models of engineering and 
market performance examines the effects of environmental 
policy on vehicle design in the context of game theory [12,24]. 
The study invokes game theory to examine profitable designs 
under oligopolistic competition at market equilibrium: The 
Nash equilibrium in this non-cooperative game is solved using 
nonlinear programming methods with the sequential iterative 
approach. It turns out that the approach suffers from two 
important limitations: First, it is too computationally intensive 
to allow extensive parametric studies on the effects of policy 
changes, and second, the approach failed to discover the 
existence of multiple local equilibria in the study. In this paper, 

                                                           
1 Here the term positioning is used to highlight the fact that the models 

do not incorporate engineering detail, but rather use only target marketing 
attributes observed by the customer to describe the products.  

2 In the sequential iterative method, each producer selects its optimal 
designs given the fixed decisions of competitors, and this process is iterated 
across producers until equilibrium is reached such that no design change for 
any single producer can generate higher individual profit. Such a point is called 
a Nash equilibrium. 
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we develop an alternative computational approach to locating 
equilibria in the model by searching directly for points that 
satisfy Nash necessary and sufficient conditions [18], and we 
use the approach to execute parametric studies and examine 
trends. 

 

2. MODEL FRAMEWORK 
This study follows the automobile optimization design 

scheme established by Michalek et al. [12]. The overview of the 
modeling framework for a single producer is shown in Figure 2, 
integrating models of vehicle performance, market demand, 
vehicle cost, regulation cost and profit. The optimization 
algorithm controls decision variables of vehicle design and 
pricing, and producer profit is used as the objective function. 

 

2.1 Vehicle Performance Model 
The vehicle performance data are obtained using the 

vehicle simulator ADVISOR [25], which was originally 
developed by U.S. Department of Energy's National Renewable 
Energy Laboratory (NREL) and later commercialized by AVL 
[26]. The simulator can predict fuel economy z1 and 0-60 mph 
acceleration time z2 under a specified driving cycle as a function 
of engine power x1

P and final gear drive ratio x2. The engine 
power is used to extrapolate engine maps of existing engines for 
small increases or decreases in size, so engine power is 
represented by the base engine power bM and engine design 
scale x1: 

1

P

1 xbx M=  (1) 

A specific spark ignition (gasoline) engine module SI102 in 
ADVISOR is selected for this research. The base power output 
bM of SI102 engine is 102 kW and the engine scaling variable x1 
is allowed to vary between 0.75 and 1.50, the range described 
as acceptable for reasonable predictions in ADVISOR. The 
range of final drive ratio x2 is constrained between 0.4 and 1.3. 
The performance responses of a mid-size passenger car carrying 
variants of the SI102 base engine are shown in Figure 3. 

2.2 Market Demand Model 
The demand model used in this paper is based on the 

multinomial logit model and the data from a discrete choice 
survey conducted by Boyd and Mellman [27]3. The standard 
multinomial logit model assumes that the utility a consumer 
gains from a particular product is partly observed and partly 
unobserved, and that the unobserved random term is assumed to 
follow the independent and identically-distributed (iid) extreme 
value distribution [28]. Under these assumptions, the 
probability of a consumer choosing one product out of a set of 
alternatives reduces to the well-known explicit form: 

∑
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where Pj is the probability of product j being chosen by the 
consumer, vj is the observable utility of product j, and J is the 
set of product alternatives in the choice situation. The 
observable component of utility is assumed to be a function of 
the observed characteristics: in this case vehicle price, fuel 
economy and acceleration time [12,27]: 
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where the three attributes for vehicle j are the price pj, the fuel 
economy in miles per gallon (mpg) z1j, and the 0-to-60 mph 
acceleration time z2j. The coefficients were found4 by fitting the 
choice model to data on past consumer choices: β1 = –2.86x10-4, 
β2 = –0.339 and β3 = 0.375. The price is scaled by a scaling 
parameter sp: 

pjpj xsp =  (4) 

where sp=10,000 and xpj is the scaled price variable of product j. 
Since the fuel economy and acceleration time are both functions 
of engine power and final drive ratio, the utility of product j can 
be expressed as the function of xpj, x1j and x2j: 

                                                           
3 Because of the age of the data in this study, and because of the broader 

scope of vehicle classes, interpretation of numerical results using this data 
should be made with caution. 

4  This aggregate logit model assumes a single “average” set of 
coefficients over the consumer population, and it is not able to model consumer 
heterogeneity, implying that design solutions will be identical for all producers. 
More advanced models can be used to relax this limitation [28]. 

 
Figure 2: Modeling Framework Diagram 

 
Figure 3: Vehicle performance simulation results 

of SI102 engine 
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Demand qj for product j is taken as market share Pj times 
market size S, and S is assumed fixed at (11/7)×106 [12]5. 
 

2.3 Vehicle Cost Model 
In this study, the vehicle cost is taken to be composed of an 

investment cost for manufacturing equipment cI, paid once per 
vehicle design, and a variable cost per vehicle produced, which  
is comprised of two major cost items: the engine cost cE and the 
manufacturing cost cB to make all other parts of the vehicle. The 
cost terms c

I and c
B are taken to be $550M and $7,500 

respectively, and the spark-ignite engine cost is given by the 
following formulation [12]: 

)exp((x) 154

E
xbc Mββ=  (6) 

where β4=670.51 and β5=0.0063. It can be seen that cost is an 
exponential function of the engine power bMx1. The variable 
cost can be expressed as: 

EBV
ccc += )exp( 1M54

B
xbc ββ+=  (7) 

 

2.4 Regulation Cost Model 
Two policies are considered in the regulation cost model. 

The first policy is CAFE, which penalizes producers whose 
average fleet fuel economy is below the CAFE standard. The 
second policy is a hypothetical carbon dioxide (CO2) emission 
tax, which taxes the producer for the estimated externality cost 
of the lifetime CO2 emissions produced from a vehicle. The 
formulations of these two policies are described in the 
following sections. 
 
2.4.1 Corporate Average Fuel Economy (CAFE) 

The current CAFE standard is 27.5 mpg for passenger cars 
and 21.6 mpg for light duty trucks (under 8,500 lb gross vehicle 
rating) [13]. The standard for passenger cars has not been 
changed since 1985. In this study, we assume each producer 
manufactures passenger cars only. The average fleet fuel 

economy 
AVG

1kz of producer k is calculated by the harmonic 

mean6 [13]: 
1

AVG

1

1k k
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where the numerator is total production of the fleet and the 
denominator is the sum of the production quantity of each 

                                                           
5 No data were available on consumers who chose not to purchase, so the 

model contains no “outside good,” implying that total demand is constant (the 
logit model determines only market share among competitors). Such a model is 
inappropriate for a monopolist case, and results must in interpreted with care in 
the oligopoly case. 

6 Note that the arithmetic mean was incorrectly used in the reference 
study [12]; however CAFE standards specify use of the harmonic mean [13]. 

model divided by the individual fuel economy. Then the total 
CAFE regulation cost for producer k is calculated by the 
following equation: 
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where ρ is the penalty per vehicle per mpg under the standard 
fuel economy zCAFE

7. The current CAFE penalty is $5.50 per 0.1 
mpg ($55 per mpg). 
  
2.4.2 Carbon Dioxide Emission Tax 
A regulation scenario of CO2 emission taxation has been 
presented in prior research [12]. The formation of CO2 tax cost 
is: 

∑
∈

=
kJj j
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 (10) 

where v is the dollar (externality) valuation of a ton of CO2, d is 
total mileage traveled in the vehicle lifetime, and α is CO2 
emission per gallon of gasoline. The defined values are 
d=150,000 miles, α = 9.94x10-3 per gallon and v is varied from 
$2 to $22 per ton, based on valuation estimates [29]. 
 

2.5 Profit Model 
The profit of each producer k is calculated as revenue less 

costs due to investment cI, variable cost cV, and regulation ck
R: 

V I R( )
k

k j j j k

j J

q p c c c
∈

 
Π = − − −  

 
∑  (11) 

The overview of the modeling framework integrated with 
optimization algorithm is shown in Figure 1. 

 
3. SOLUTION METHODOLOGY 

In this paper, the producers in the market are competing 
with their product prices and vehicle designs for attracting 
demand from consumers. Following the prior research [12], we 
model this situation as a static non-cooperative game with 
perfect information and only pure strategies - meaning no 
random decision-making is involved [30]. 

From the Nash equilibrium definition in a non-cooperative 
game, assuming that there are K producers (players) in the 
market and each producer k has his individual strategy (price 

and product design set) xk with payoff function (profit) Πk, the 
set of strategies are in Nash equilibrium when each producer k 
cannot obtain better profit Πk by choosing any new design other 

than the equilibrium design xk. The mathematical expression is: 

1 1( , , , ) ( , , , )

,

k k K k k K

kk

′Π ≥ Π

′∀

x x x x x x

x

… … … …
 (12) 

for all feasible xk’. A direct approach to find the equilibrium 
solution for the game is optimize the decision variables of each 
producer sequentially and iteratively while holding all other 
producers constant at each iteration. The process is continued 

                                                           
7 CAFE credits are ignored for the study. 
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until no producer can increase its profit by changing the 
decisions under its control (product design and price). The 
process flowchart of this approach is shown in Figure 5. 

The sequential algorithm is straightforward, but it can be 
computationally costly to find the Nash equilibrium, especially 
when the number of producers is large and each sub-
optimization task is complex and each sub-optimization must be 
solved globally. The method is also not guaranteed to converge 
in general. Instead of solving the optimization of each producer 
repeatedly, an alternative optimization scheme is proposed here 
to find solutions that satisfy the first-order necessary condition 
(FOC) and second-order sufficient condition (SOC) for Nash 
equilibrium, as shown in Figure 6. If the problem has no 
constraint, the FOC can be expressed in a mathematical form 
as: 

       Find X such that 0; ,k

ik

i k
x

∂Π
= ∀

∂
 

            where
1X [x x x ]

k K
= � �   

(13) 

where Пk is the profit of producer k, xik is the i-th variable 

(including price and design variables) of producer k, xk is the 

variable vector of product k and X is variable vector of all K 

producers. When constraints h(xk)=0 and g(xk)<0 are included 
in model, the Lagrangian function L for each producer k is 
given by: 

       ( ) ( )T T

k k k k k k
L = Π − −λ h x µ g x  (14) 

where λk and µk are the vectors of Lagrange multipliers for the 
equality and inequality constraints, respectively. Therefore, the 
first-order necessary KKT conditions for a Nash equilibrium in 
a general constrained formulation can be expressed in 
Lagrangian form as the system of equations (and inequality 
relations): 

( ) ( )

( )

( ) ( )

0; ;

; ;

k k k k

T T

k k k k k k

T

k k k

k k

L

k

∇ = ∇ Π − ∇ − ∇ =

= ≥

= ≤ ∀

x x x x
λ h x µ g x 0

µ g x µ 0

h x 0 g x 0

 

(15) 

 The second-order sufficiency condition (SOC) for local 
optimality of each producer is verified after a FOC solution is 
obtained. The Hessian matrix of each producer’s profit function 
with respect to the variables under its control is:  

2 2 2
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where I is the number of design variables. Note that the Hessian 
matrix for each producer k is not the Hessian matrix of the 
complete optimization scheme. Since the Nash equilibrium is a 
point such that the profit of each producer is maximized given 
the fixed decisions of other producers, a solution to the first 
order necessary conditions where each producer’s Hessian 

matrix Hk is negative definite on the subspace tangent to the 
producer’s active constraints will imply that the point is locally 
optimal for each producer, and the SOC solution is a local 
equilibrium point8. The last step in the algorithm is to verify 
that the SOC solution is a (global) Nash equilibrium. With all 
other producers’ solutions fixed, a single producer should not be 

                                                           
8 Specifically: each producer cannot improve profit given the decisions 

of other producers for (small) changes in design variable. This condition is not 
yet sufficient for a Nash equilibrium. 
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Figure 6: Flowchart of Lagrangian FOC algorithm 
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able to generate higher profit by changing its design variables 
with global solver. If the test is failed, that means the SOC 
solution is just a local optimum but not a truly global Nash 
equilibrium. If an SOC solution passes the global verification 
for each producer, equilibrium is confirmed. 

This approach is significantly faster than the sequential 
optimization method since it handles all producers’ variables at 
once without running through multiple iterations of sub-
optimization loops. The flowchart of this approach is shown in 
Figure 4. Furthermore, if multiple equilibria exist in the model, 
the algorithm is sufficiently efficient to enable a multistart loop 
using an array of different starting points to find all equilibria. 
 

4. RESULTS AND DISCUSSIONS 
According to analysis results in the prior research [12], all 

producers in the oligopolistic market make the same design 
decisions at equilibrium to produce a single product instead of a 
product line for pursuing their own maximum profit. This is a 
direct result of the use of an aggregate logit model to predict 
demand; however, the relative simplicity of the model and 
relative ease of analyzing results make this assumption 
desirable for initial studies to develop improved understandings 
of the system before heterogeneity is introduced. The 
conclusion indicates that the spark-ignition (gasoline fuel) 
engine always creates more profit than the compression-ignition 
(diesel fuel) engine. Further, the maximum number of producers 
to yield positive profit (ten) is found in the prior study. 
Therefore, the oligopoly model in this paper contains ten 
producers, each making a mid-size passenger vehicle with the 
SI102 engine module. In the following sections, the Nash 
equilibria under different regulation scenarios are found using 
the direct first-order optimality algorithm described in Section 
3. The sequential quadratic programming (SQP) code in the 
Matlab Optimization Toolbox [31] is used as the nonlinear 
programming solver. Since the solution of the gradient-based 
optimization method is dependent on the starting point, multiple 
starting points on a grid with interval 0.1 in the normalized 
design variable range are tested in order to discover all the 
possible equilibrium solutions in the market. 

 

4.1 Scenario of No Regulation 
The first scenario assumes all producers make their engine 

design decisions under no environmental regulation. There are 
seven SOC solutions found, as shown in Table 1. For each SOC 
solution, the variables of all ten producers converge to an 
identical design with equal market share (10%) and profit 
($60.5M)10. By using global optimization solver11, only the 

                                                           
10 Because of using the aggregate demand model, each producer makes 

the same design decision to reach maximum (identical) profit at market 
equilibrium. The resulting market share of each producer is also equal when no 
outside goods in the utility is considered [12]. When preference heterogeneity 
is considered (e.g. mixed logit model), the design, price, market share and 
maximum profit of each producer will generally be different at market 
equilibrium [32]. 

fourth solution satisfies the Nash criterion, which is the same 
solution obtained by using iterative optimization method [12]. 
The Lagrangian FOC/SOC algorithm provides a more efficient 
tool to search equilibrium solution in decision domain, 
especially for a complex system with nonlinear engineering 
constraints. 
 

Table 1: SOC solutions under no regulation scenario 

 
Eng. 
scale 

FD 
ratio  

Price  
Gas 
mile. 

Acc. 
time  

Observ. 
utility 

Variable 
cost 

Profit 

# x1 x2 p z1 z2 v cV Π 
1 1.14 1.10 12776 22.1 8.22 -2.45 8891 60.5M 
2 1.18 1.10 12817 21.6 8.09 -2.45 8932 60.5M 
3 1.25 1.11 12884 20.8 7.80 -2.43 8999 60.5M 
4 1.25 1.29 12886 20.2 7.46 -2.34 9001 60.5M 

5 1.28 1.01 12912 20.6 7.63 -2.39 9027 60.5M 
6 1.32 1.29 12955 19.5 7.27 -2.35 9070 60.5M 
7 1.43 1.27 13063 18.5 6.98 -2.35 9178 60.5M 

The #4 solution is the Nash equilibrium. 

 
4.2 Scenario of CAFE Policy Alternatives 

There are two parameters, standard mpg zCAFE and unit 
penalty ρ, in CAFE regulation. We studied three fixed CAFE 
mpg standards of 27.5 mpg (the current CAFE standard for 
passenger cars), 20 mpg (low standard) and 35 mpg (high 
standard) with applying a range of penalty parameter scenarios 
from $0 to $110 per vehicle per mpg (twice the current CAFE 
penalty $55 for violation). The resulting utilities and fuel 
economy at equilibrium for each penalty parameter are plotted 
in Figure 5 and Figure 6. With the 27.5 mpg standard, a clear 
trend of decreasing consumer utility with increasing penalty is 
observed while the gas mileage in vehicle deign is improved. At 
the low CAFE mpg standard of 20 mpg, producers’ vehicle 
designs meet the criterion easily and have no incentive to 
improve fuel economy. The decrease in observable utility 
response is primarily due to producers passing the regulatory 
cost on to consumers12. At the high CAFE mpg standard of 35 
mpg, which is beyond producers’ design capability in the 
engineering model, the results at market equilibrium show that 
producers maintain their design and transfer CAFE cost into 
price, as consumer utility drops. 

 
4.3 Scenario of CO2 Emission Tax Changes 

The utility and gas mileage responses to CO2 emission 
taxes are shown in Figure 7 and Figure 8 respectively. The 
utility plot shows a linearly decreasing trend over the increasing 
CO2 valuation levels. The gas mileage is not improved 
significantly with the increasing CO2 valuation parameter until 
$14/ton is reached. However, the highest CO2 tax still does not 
result in vehicles with fuel economy better than 22 mpg. 

                                                                                                       
11 We use multistart as the global optimization algorithm to verify Nash 

conditions for each producer. 
12 Because there is no outside good in our model, the total demand for 

vehicles is constant, and only market share is affected by changing vehicle 
price and attributes. As such, the model predicts that all regulatory cost is 
passed on to consumers, although this is not generally observed in practice, 
where consumers have the ability to switch to other modes of transportation. 
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Compared to responses of CAFE regulation in Figure 5 and 
Figure 6, the CO2 emission tax has inferior performance on fuel 
economy improvement per unit of lost utility to the consumer. 
 

4.4 The Fuel Economy / Utility Tradeoff 
The tradeoff in the problem is interlaced with several 

variables. When we consider the engineering aspects, a tradeoff 
exists between two engineering attributes, gas mileage and 
acceleration time. For economic aspects, another tradeoff is 
formed in the profit function Eq. (11), where higher price 
results in lower market share when producers try to maximize 
their profits. We are particularly interested in the tradeoff 
between gas mileage and observable utility because increased 
fuel economy represents a social preference while utility 
represents individual consumer preferences. Higher fuel 
economy increases the observable utility, while the resulting 
slower acceleration causes utility decreased. When the CAFE 
penalty pressure is increased, the producers have to change their 
designs and prices to pursue maximum profit under non-
cooperative competition. It should be noted that this tradeoff 
does not represent a revenue-neutral comparison. In particular, 
the dominant reason for decreasing utility with increasing 
regulation penalty in our model is due to the passing of 
regulatory costs to consumers, without accounting for how the 
increased government revenue is used. As such, the tradeoff 
curves should be interpreted with care.  

The tradeoff between fuel economy and consumer utility in 
a market is expected from the observation of the utility and fuel 
economy responses under different regulation scenarios. Figure 

9 presents the Nash equilibria resulting under different levels of 
CAFE regulation and CO2 emission tax. The CAFE fuel 
economy zCAFE is fixed at 27.5 mpg and the penalty parameter ρ 
is changed from $0 to $110. The valuation parameter v for CO2 
emissions is varied between $0 and $22 per ton. Considering 
the trade-off between fuel economy and utility, the CAFE 
standard appears to be a better tool than CO2 tax for controlling 
fuel economy in the automobile market, ignoring government 
revenue generated. However, when the CAFE penalty is low 
($0-$40), the fuel economy improvement is not significant, 
which suggests a minimum penalty parameter is required to 
maintain the CAFE performance. 

To summarize, the results from this integrated model 
suggest that 1) increasing regulatory penalties will generally 
result in increased fuel economy and decreased utility to the 
consumer as a tradeoff, 2) CAFE regulation has the best 
performance when a proper fuel economy standard and penalty 
are applied, and 3) compared to a CO2 tax, the CAFE regulation 
would generally be expected to achieve higher fuel economy at 
lower cost in reduced consumer utility on average. Ignoring 
government revenue generated, it is also interesting to note that 
the model predicts that even doubling the CAFE penalty will 
not provide enough incentive for automakers to attain the 27.5 
mpg standard. In practice, we observe that foreign automakers 
routinely violate the standard – deciding that it is more 
profitable to pay the associated penalties [33]; however, U.S. 
automakers, reluctant to be seen as lawbreakers, have treated 
the standard as a binding constraint [14]. Modeling the 
additional (political) cost of CAFE constraint violation would 
be necessary to predict the behavior of these firms. Despite the 
homogenous product assumption in the current model, our study 
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Figure 6: Fuel economy responses to CAFE 

regulation 
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Figure 8: Fuel economy responses to CO2 tax 
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provides the fundamental knowledge for more complicated 
problems with multiple differential products in future 
development.  
 

5. CONCLUSIONS 
This paper presents a multi-stage approach to finding 

market equilibrium in an integrated model of engineering 
design, marketing demand and environmental policy. The 
algorithm first searches the solution satisfying the KKT first-
order necessary conditions (FOC) of the Lagrangian function. 
The FOC solution is then verified by the second-order condition 
(SOC) to ensure a local equilibrium has been reached. Each 
point satisfying FOC and SOC is then checked for Nash 
conditions with a global solver. This method is more efficient 
than a sequential iterative approach and it is able to find 
multiple equilibria, if they exist. Following prior research, a 
vehicle design problem in an oligopolistic automobile market 
under two environmental policies has been revisited as a 
methodological demonstration. According to the utility and the 
fuel economy responses of market equilibria under Corporate 
Average Fuel Economy (CAFE) and carbon dioxide (CO2) 
emission taxes, the results show that increased regulatory 
penalties cause increased gas mileage at the expense of 
decreased consumer utility primarily due to regulation costs 
being passed on to the consumer. The tradeoff between utility 
and fuel economy resulted in trends that indicate CAFE may be 
a more efficient tool than CO2 taxes for achieving fuel economy 
improvement; however, further research is needed to account 
for government revenue generated and make revenue-neutral 
comparisons. Furthermore, the effectiveness of CAFE policy is 
driven by the proper combination of fuel economy standard and 
penalty decisions, whereas either excessively low or high 
standards result in no significant improvement in vehicle gas 
mileage. 
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NOMENCLATURE 
c

B
 = Base manufacturing cost per vehicle 

cj
E
 = Engine cost for design j 

c
I
 = Investment cost 

cj
R = Total regulation cost of producer k 

cj
V = Variable cost of design j 

d = Average vehicle lifetime mileage  

g = Inequality constraint vector 
gik = Inequality constraint for variable i and producer k 

h = Equality constraint vector 
hik = Equality constraint for variable i and producer k 

Hk = Hessian matrix of producer k 

i = Variable index 
j = Product (vehicle design) index 
J = Set of all vehicle designs 
k = Producer index 
K = Total number of producers in the market 
L = Lagrangian augment function 
pj = Price of product j 
qj = Demand for design j 
vj = Observed utility of product j 
v = Valuation of CO2 per ton 

xk = Design variable vector of producer k 

X = Design variable vector of all producers 
xik = Design variable i for producer k 

z = Product characteristic vector 
z1j = Fuel economy of design j 
AVG

1kz  = Average fleet fuel economy of producer k 

z2j = Acceleration time (0-60 mph) of design j 
zCAFE = CAFE fuel economy limit 
α = CO2 emission per gallon of gasoline 
ρ = CAFE penalty parameter 

λ = Lagrangian multiplier vector for equality 
constraints 

µ = Lagrangian multiplier vector for inequality 
constraints 
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