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ABSTRACT . . .
Analytical Target Cascading (ATC) is an effective decompo-

sition approach used for engineering design optimizatiabp
lems that have hierarchical structures. With ATC, the ovVera
system is split into subsystems, which are solved sepgratel
coordinated via target/response consistency constrakstpar-
allel computing becomes more common, it is desirable to have
separable subproblems in ATC so that each subproblem can b
solved concurrently to increase computational throughgat
this paper, we first examine existing ATC methods, providing
an alternative to existing nested coordination schemessay u
ing the block coordinate descent method (BCD). Then we ap-
ply diagonal quadratic approximation (DQA) by linearizitige
cross term of the augmented Lagrangian function to cregte se
arable subproblems. Local and global convergence proefs ar
described for this method. To further reduce overall comput
tional cost, we introduce the truncated DQA (TDQA) method
that limits the number of inner loop iterations of DQA. These
two new methods are empirically compared to existing method
using test problems from the literature. Results show tbat-c
putational cost of nested loop methods is reduced by usirg BC
and generally the computational cost of the truncated nastho
TDQA and ALAD, are superior to other nested loop methods
with lower overall computational cost than the best presipu
reported results.

INTRODUCTION, L .
When designing complex systems, generally it is not possi-

ble or desirable to have a single decision-maker in chargdl of
decisions because of the need to manage problem compliexity.
stead, such systems are routinely decomposed hieratghital
subsystems and components, and various design groupsanter

to coordinate tPejr deEisions and achieve a feasjble angison
tent system solution. For each system in such a hierarafggtta

specifications are chosen for the subsystems below sucththat

system can meet targets set by the supersystem above. If tar-
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gets cannot be met, negotiation and rebalancing is negetesar
ensure that the final system solution is consistent and aehie
system goals. Ford Motor Company refers to this process as
target cascading, and the analogous model-based, conopaiat
process for such hierarchical systems has been termedtianaly
cal target cascading (ATC) [7]. In ATC, top level design &gy
are propagated to lower levels, which are optimized to nest t
Gargets. The resulting responses are rebalanced at higleds |
to achieve consistency. The optimal system solution isiobth
through an iterative process until target/response ctamsiy is
achieved globally.

ATC approaches this target-setting and matching process
through formal mathematical decomposition methods, and so
it has similarities to many of the multidisciplinary desigpti-
mization (MDO) methods that have been developed to coordi-
nate complex analysis models from various disciplinesrdyri
optimization, such as collaborative optimization (CO)ncuar-
rent subspace optimization (CSSO), and bi-level intedrayes-
tem synthesis (BLISS). In particular, Allisat al. [1] compare
and contrast ATC and CO. Apart from the difference in initial
motivation, the formulation of ATC also differs in that it de-
fined for an arbitrarily large hierarchy of subsystems, awdhal
convergence proofs ensure that the method will reach amapti
system solution under typical assumptions. More recemibth-
ods for solving non-hierarchical quasiseparable, or diciks
angular, problems with proven convergence properties aksee
emerged [5] [6] [21]. In this paper, we will focus on hieraied
problems in the spirit of ATC; however, as we will discuss,GAT
works by translating a description of a hierarchy of systemd
subsystems linked by target-response interactions inenargl

quasiseparable problémthrough relaxation of target-response
relationships between systems and their subsystems. Tthe me
ods we pose for solving hierarchical ATC systems could aéso b

1A quasiseparable problem is nearly separable except fow éirfking vari-
ables that appear in multiple subsystems, as we will defgarously later.

Copyright (© 2007 by ASME



adopt the notational system of Tosseraghal. [20] for simplic-
1 ity. Consider a system that can be decomposedhhvels and
M elements. The subscriptis used to denote théh element of

Level 1 i G P Xy the system in théh level. fjj is the scalar objective function, and
0ij < 0andhj; = 0 are the inequality and equality constraints, re-
Py r>\ spectively. Local variables of elemgrdre denoted by;j. rjj is
5 3 the response of elemejntalculated by analysis modayj. Gen-
Level 2 erally speaking, this model is an engineering simulatioa set
£ G2 N X, 4 fre Ora s Xos of equations predicting the behavior of the subsystéis the
set of elements at leve] and%j; is the set of children of ele-
r37/ r\sé\ rx mentj. The system in Figure 1 is shown corresponding to this
3 notation.
4 5 6
Level 3 Mathematical Formulation
o GaMasXas| | fao Qoo oo Xos| | Foo G Mo Xss By the assumption of the problem structure, and using the
notation described above, the hierarchical problem bedere
composition, also known as the all-in-od Q) formulation, can
Figure 1. HIERARCHICAL PROBLEM STRUCTURE AND VARIABLE be described as:
ALLOCATION FOR ATC N
- min f(xij,Vjedi,i=1,...,N) = z fij (Xij)
used to approach general quasiseparable systems. ATCéras be i V1€ i=1.N i=1j€%
applied to complex systems such as automotive design [8ji-ar st gij(Xj)<0
tectural design [4], and multidisciplinary product deyaitent T =
[12] [13], and these studies demonstrate scalability of AC hij (Xij) =0
large and computationally onerous case studies. where Xij = [Xij, T 11k Yk € Eij]
In this paper, we summarize existing methods for coordina- _
tion of subsystems in ATC and present two new methods that rij =aij (Xij)
enable parallelization and overcome some of the drawbafcks o Vie&,i=1,...N. (1)

existing methods. We start by providing an overview of ATC in

section 2. In section 3 we describe existing coordinatiothme  Note that the responsg of each elemenitdepends on the re-

ods, and in section 4 we describe two new methods, including a gnonse of ts children which prevents the objective fumctiod

discussion of convergence properties. In section 5 we Cnpa  the constraint sets from being separable. In order to stpire

approaches empirically using test problems from the litzea set of variables governed by each subsystem, target vesiapl

and we discuss results in section 6 and conclude in section 7. are created for each shared variable Anddb'asistency con-
straint

OVERVIEW OF ATC
System Structure

ATC is applicable for problems that have a hierarchical )
structure so that the top level design is a supersystemdhatsts is added to ensure target/response consistency.
of a number of systems, each of which may consist of its own \we rewrite the problem as:
subsystems. For example, an automobile may be composed of

tij —rij =0 )

powertrain, body, and chassis, and the powertrain may be com

N
posed of engine and transmission, etc. This model is general min z fii (Xij)
enough to account for any number of levels in the hierarcBy [1 K11, XNM izi VA
The objective function for the overall system can be describ —Hea _
as a sum of the objective functions of its components; Tylyica st gij(Xij) <0
the objective function is entirely at the system level. Miver, hij (Xij) =0
the subproblems are nearly separable except for a few fnkin A
variables. Figure 1 shows an example. Specifically, a pamet tij —rij=0
a child are connected by a response variable, which repgsesen where Xij =|[xij LirokVk e i
a child’s response to the design specification that its panen -
poses. This “response variable” may or may not be a variable rij =aij (Xij)
in the original pre-decomposition formulation: It is typlty the Vjed&,i=1,...,N. (3)

output of the subsystem simulator and input to the systera-sim
lator and it may be treated as an intermediate calculatidheof
original formulation. The effects of subsystem responseys

Figure 2 shows the system structure and variable allocatibn
ter introducing the target variables. Note that the prohikead-

tem behavior is what prevents subsystems from being debigne most separable except for the consistency constriaiAtjj = 0.

independently.

Notatif . . - -
Dl?f%rent notations are used in describing and defining ATC,

depending on the application [7] [15] [16] [20]. In this papse

In order to make the constraint sets separable, the consjste
constraint can be relaxed using penalty functions or Lagjean
relaxation. In general, the problem can be relaxed v
sistency constraint relaxation function Alternate methods for
consistency constraint relaxation are discussed in se8tiéor a
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Figure 2. VARIABLE ALLOCATION FOR ATC AFTER INTRODUCING
TARGET COPIES

generalm, the resulting formulation is thelaxed AlO problem

N N
inTEQNM i;jezgi fis (%) +i;jgzgi it = i)
st. QNXQSO
hij (Xij) =0
where  Xjj = [Xij Lk e i)
rij =aij (Xij)

Vjedé&,i=1,....N. (4)

For a generatt, consider only the subset of the decision vari-
ables that are non-constant in subsysjemobtain the general
subproblem corresponding to each element:

min fij (Xij) + 7t —rij) + > Wik Tk

Xij KETij
st gij(Xij) <0
hij (Xij) =0
where  Xjj =[Xij Lk e %)
rij =aij (Xij)

Vjied&,i=1,...,N. (5)
Note that in the above formulation, the variablgsand
ri+1k for k € ij are constants with respect to elemgnfrhe
constraint sets are now separable, and depending on this-cons
tency relaxation functiom, the subproblems may or may not be
separable. If subproblems are separable, they can be salved
parallel. Otherwise, sequential computation of each satiipm
Is required.

It can be shown that by sequentially and iteratively solving
each subproblem as specified in (5) in any cyclic order, cenve
gence is guaranteed. This algorithm is called Ith&ck coor-
dinate descentor BCD, and the convergence result is applica-
ble for any general relaxation consistency functidmecause the
constraint sets are independent. The following theorenmsaim

rizes the convergence result of block coordinate descehthan
proof is given in Proposition 2.7.1 of [2], p. 268.

Theorem 1. Suppose that for all i and j,jfis continuously dif-
ferentiable and the constraint sets are independent, diese
convex. Le”Kin denote the solution of (5) in theh iteration with
tjj = tin andr )k = r‘;ijrll)k for k € 4jj. Furthermore, suppose
thatXxjj is uniquely attained for all iterations. Thejx(j} is the
sequence generated by the block coordinate descent meibd,
every limit point of{X; } is a stationary point.

In the ATC literature, non-separable subproblems are han-
dled in nested loop coordination schemes that are carritid au
bi-level fashion, and the original convergence proof foCAL6]
is based on the nested schemes. However, by the theorem above
the nested schemes are not necessary, and the block cderdina
descent method alone can produce convergence for any seguen
of subproblem solutions.

The inconsistency constraint relaxation functiohas been
implemented in three ways: a quadratic penalty functiof14]

[16], an ordinary Lagrangian function [10], or an augmerited
grangian function [9] [20]. Both the quadratic penalty ang-a
mented Lagrangian approaches do not allow separabilitylof s
problems, and block coordinate descent is required to aehie
convergence, which limits efficiency. The ordinary Lagrang
approach does produce separable subproblems. However, the
method is not robust when duality gaps exist [19]. These meth
ods will be discussed in more detail in the following secsion

PRIOR CONSISTENCY CONSTRAINT RELAXATION
METHODS FOR ATC
The Quadratic Penalty Method
In early ATC literature, a quadratic penalty term was used
as the constraint relaxation function The basic idea in penalty
methods is to eliminate the consistency constraint andattuet
objective function a penalty term that prescribes a high tms
infeasible points. Associated with this term are the pgradi-
rametersv = [w;j, Vi, j] that determine the severity of the penalty
and, as a consequence, the extent to which the resultingieinco
strained problem approximates the original constrainedlpm.
The general quadratic penalty function is defined as:

T (tij — rij) = [|wij o (tij —rij)|[3 (6)

whereo is used to denote the Hadamard product, so that
(A oB);j = A;iBi. With 1o, (4) can be rewritten as:

N N
L IRLAS IR L rij)ll3
st. gij(Yij)SO
hij (Xij) =0
where  Xj; Z[Xij,t(i_,_l)kaG%j]
rij =aij (Xij)

Vje&,i=1,...N. @)

Proper selection of weighting coefficients heavily impacts

the performance of this method. As; becomes larger, the re-
sulting inconsistency betwed andrjj pairs decreases. Con-
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vergence properties of the quadratic penalty method hage be based on Lagrangian duality theory [2] [17]. Let= [Ajj, Vi, j]
studied thoroughly and can be summarized in the followisg th  be the vector of Lagrangian multipliers. The consistenay-co
orem. straint relaxation function is specified as:

Theorem 2. Assume that the functiong,fgij, and h; for all

i, ] are continuous. Suppose th{aiti‘j-} foralli and j is an exact

global minimizer of (7) for each fixad® and thatwX | . Then TL(tj — rij) = AJj (tij — 1ij) 9)
every limit point of{x“} is a solution of the problem (3).
Its proof is similar to that of Theorem 17.1 of [17], p. 496. With 11, (4) can be rewritten as:

Indeed, by lettingK = {x € 0" : g;j (Xij) <0, hijj(Xij) =0,Vj €
é,i=1,...,N.}, problem (3) can be generalized to the problem N

i A(A)=_min f i (tij —rij)
mxmf(x) Xll“"’XNMiZ\JES ” ;JE(S” ! !
st.c(x)=0,iez, st gij(Xij) <0
xex hij (Xij) =0
Under the assumption that; andh;; for all i, j are continuous where Xij = [Xij, t(i;1k VK € ij]
on", the seiX is closed. Thus, replacing” by X in the proof rij =aij (Xij)
of Theorem 17.1 of [17] yeilds a valid proof for Theorem 2. The _ R
orem 2 is also a special case of Proposition 4.2.1 of [2], fi. 39 Vi€ d,i=1,..,N. (10)

Withlg\Kr [) roblem, we hav
oreac su proble € have. And the dual problem for (10) is:

rr_xun fij (Xij ) + [|wij © (tij —rij)|13
1)

maxA (M) (11)
+ > IWigako (tirak— ik W3 A
ke Gij
st gij(%ij) <0 Under convexity and constraint qualification assumptions,
hii (%) —0 the strong duality theorem holds and there is no duality gep.
ij (Xij) = a result, an iterative process can be carried out by firsirsplv
where Xij = [Xij, t(i11)k VK € ij] (10) with a fixedA, then updating\ via the subgradient method
o e until convergence. Note that this process is based on sptiig
rij =aij (Xij) dual problem (11), with (10) as its nested problem, to obttzén
Vjed&,i=1,...,N. (8) overall solution of (3). This procedure is theoreticallgtjfied
by the following theorems, which are presented in Propmsiti
With this formulation, constraint sets are separable, bhetab- 5.3.2 of [2], p. 514. Again, readers are referred to the text f

jective function is not. Subproblems are solved sequéytial proofs.
throughout the hierarchical chain for fixedas an inner loop.
As noted before, either the nested coordination schemeeor th
bloclk coorchjinate descent methfod”(BCD)Ican be used asi the in-
ner loop. Upon convergence of all inner loops, an outer Isop i .
used to updatev. Figure 8 shows the procedure using nested 'neorem 3 (Strong Duality Theorem). — Assume  that iff
and BCD schemes. Prior approaches to updeége either set-  and gij are convex, andy; is linear for vVj € &,i=1,...,N.
ting the penalty weights through trial and error, or initialg Suppose thafx : t —r = 0, g(X) < 0, h(X) = 0} is non-empty.
them to a small value and then increasing their value by atine Assume that the optimal value of problem (3) is finite. Then
update method, i.e., multiplying the current weights by a-co  there is no duality gap and there exists at least one Lagrange
stant. However, the trial and error approach can be diffioult multiplier.
large-scale problems. Michalek al. [14] observed that while
any positivew can ensure convergence to a consistent solution
for problems that have attainable targets, no finiteill lead to
perfect consistency for problems with unattainable targehey Theorem 4. Assume that the Strong Duality Theorem is satis-
proposed an efficient weight update method (WUM) for finding fied for problem (3). IA* is the optimal solution to problem (11),
values ofw that achieve solutions within user-specified inconsis- and ifx* = [xj; Vi, j] solves problem (10) with=A*, thenx* also
tency tolerances. It is demonstrated that WUM achievegbett  go|ves problem (3).
performance than a constamt
In practice, large penalty weights can cause ill-conditign

[2]. Moreover, the quadratic term prevents each subproblem
from being separable, preventing the use of parallel comgut For each subsystem, consider a fidegl Also note that
The Ordi . Method sincetjj andr 1)k are constants with respect to elemgrthe

e Ordinary Lagrangian Metho ot T . imi iec-

" An alternative choice for the const relaxatio termsa;jtij and)\(|+l)kr<|+l)k can be eliminated from the objec

f
Ttis an ordenary agrangian function 1{)7 n'I‘h|s meth nd l(lgﬂ is tive function, resulting in the following subproblem:

4 Copyright (© 2007 by ASME



r‘%ijn fij (Xij) -H\i-ljT (—rij) + Z )\IiJrl)kt(iJrl)k

keGi
st. gij(Xij) <0
hij (Xij) =0
where  Xjj =[x;j Lk e %)
rij =aij (Xij)
Vjed,i=1,..N. (12)

In this method, each subproblem is separable and can be
solved in parallel, with fixed Lagrange multipliers. Stagiwith
arbitrary Lagrange multiplier estimates, we updatesing the
subgradient method, defined as the following:

ARFL = Ntk — %) (13)
The superscripk denotes the number of iteration, ands

a scalar representing the step size. The subgradient method

proven to converge, under assumptions shown in the follgwin

theorem [10].

Theorem 5. If the feasible set of the solution of (10) is bounded
and a sequence of step sifesatisfies the conditions:

1 TK—>OaSK—>0°
ZK 1T =

then either the iterative process of the subgradient metaodi-
nates finitely ak = k* with A(A<") = A(A*), or else an infinite

sequence of iterates is generated such M@A" ) — A(A*) as
K — oo,

Figure 8 shows the OL procedure. By the theorems above,
it is necessary that the strong duality condition holds oheotto
obtain global convergence. This is the main drawback of this
method since duality gaps may exist [19], which can caude-ins
bility and limit application of the method for practical foilems.

The Augmented Lagrangian Method

An improved method, the augmented Lagrangian method
(AL) applied to ATC formulations by Tosserarasal. [20] com-
bines both the quadratic penalty term and the Lagrangiam, ter
which overcomes some drawbacks of both QP and OL. The La-
grangian term is used to avoid ill-conditioning. The quaidra
term also reduces duality gaps. The augmented Lagrangian fu
tion is defined as the following:

T (tij — rij) = Al (tij —rij) + [wij o (tij —rij)|5 (14)

With 1ta., the general problem is:

AN) = m|n fij (Xi i (tij —rij)
..... XNM 21]6260 IJ IJ ZJE@ IJ
+wij o (ti —rij)|13]
st gij(Xij) <0
hij (%ij) =0
where  Xij = [Xij, t(i11)k VK € Eij]
rij =aij (Xij)
Vie&,i=1,..,N. (15)
The dual problem for (15) is:
m}\axf\()\) (16)

The following theorem is the basic convergence result of the
augmented Lagrangian function. This theorem is a speatidiz
of Proposition 4.2.1 of [2], p. 391. let = {x € 0" : gjj (Xij) <
0, hij(Xij) =0,Vj € & ,i =1,...,N.}. Under the assumption that
gi; andh;j for all i, j are continuous ofl", the setX is closed.
Thus, problem (3) satisfies all assumptions of Propositi@ril4
of [2]. Readers are referred to the text for the proof.

Theorem 6. Assume that the objective and constraint functions
of problem (3) are continuous. Fat=0,1,..., let X be the
global minimum of the problem\(A) with w*, whereA¥ is
bounded0 < w¥ < wk+D for all kK, andwX — co. Then every
limit point of the sequencgx”} is a global minimum of problem

3).
For each subproblem, we have:

min fij (Xij )+ A (—rij) + [ [wij o (tij — rij)[13

Xij
+ >

ke€ij

+1 kbi+1)k

W2k (Ceak — T irn)l13]
gij (Xij) <0
hij (%ij) =0
where  Xij = [Xij, t(i11)k VK € Eij]
rij =aij (Xij)
Vje&,i=1,..N.

st

(17)

Duality theory also applies to the augmented Lagrangian
formulation so we can use the same procedure as OL. How-
ever, the subproblems as shown in (17) are not separable due
to the quadratic penalty term. As a result, instead of sglwilh
subproblems in parallel as in OL, either the nested cootidina

scheme or }he lock cocf_rdmate desFent ethod js Hed out
as an inner loop for the AL relaxation formulation, similart

QP approach. In order to achieve convergence, we updatathe L
grange multipliers so they approach to the optimal valude T
augmented Lagrangian function allows the usmethod of mul-
tipliers. The scheme for selecting new termfrom loop iterate
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K to (k 4 1) is given by the following formul& els and vice versa, so it is possible to first solve all odedlele-
ments in parallel, then all even-level elements, for a fixachber
(K1) « Kk of iterations. The Lagrange multipliers are then updatedgus
A =N+ 2w ow o (L —rj) (18) the method of multipliers.” The penalty weight can also be up-
dated. Contrary to QP or AL, a large penalty weight may have
Convergence properties of the method of multipliers agplie  negative effect on convergence, but a small penalty weigtyt m
to problem (3) are presented as the following theorem. Thefpr ~ result in unbounded subproblems [3]. In [20], Tosseramsal
of this theorem is presented in [11]. keep a constant. Furthermore, the inner loop is solved for only
o ) one iteration to minimize computational effort. This meathe
Theorem 7. Assume that the objective function of problem (3) demonstrated to be effective on all example problems with su

is continuously differentiable, and the set X defined as ¥ ¢ perior computational properties compared to QP and AL. ét ha
O":gij(Xij) <0, hijj(Xjj) =0,Vj € &,i=1,..,N.} is closed been proven to converge under the assumption that the pnable

convex. Let convex, the feasibility sets are nonempty, and the comstsats

are bounded [3]. In practice, however, ALAD shows good nu-

faL(X, A, w) merical convergence behavior for non-convex problems ds we

N N [21]. Figure 8 shgws the ALADbprr?cedtzjre. This method is

_ (3 Tt o . 12 promising since it demonstrates both good convergencesprop
i;jezz;; fj (X")+i;jé[A'J (8 = ri) =+ [[wij o (ti = ij )| [2] ties and low computational cost through the truncated itomas

and partial parallelization [20].

wherexX = [X11,...,Xnm] @andA = [A11, ..., Anm]. LetX® be a min-
imum of problem (15), and suppose tHat} is bounded, and Summary
{wK} satisfies: Except for the ordinary Lagrangian approach, all otherrprio
methods for consistency constraint relaxation prevemy fusr-
0 <wK < Wk, wk — oo allel computation of subproblems. The ALAD method requires
’ sequer&tial comphutgtion of odd levels ?nd even Ievelsf, alclatlj th
- - QP and AL method require sequential computation of all lev-
A)?Ksurg\tlav;[hai}(a suKbseque)r\{*oé_l}ﬁ converges 1o a vec]Eoc* %?d els. As parallel and distributed computing power becomeemo
{A+ 2w o (1 — ') —A". Therx" is a minimum of problem 5515 "t is desirable to have fully separable subproslem
(3) andA” is a generalized Lagrange multiplier correspondingto  that each subproblem can be solved concurrently, and compu-
the constraintsj; —rij = O0atx=X"forall j € &,i=1,...,N. tational throughput can be improved. Since the ordinary La-

: ; i h has convergence difficulties, and oter a
There are other ways of updatidgwhen using the aug- ~ drangtan approac ! \ )
mented Lagrangian method. For example, the subgradient up-Proaches prevent separability, we are motivated to expitee-

date scheme is used in [9]. In AL, the penalty weighis also hate approaches.
updated. A linear scheme with constant s¢afer updatingw is

used in [20]: PROPOSED CONSISTENCY CONSTRAINT RELAX-

(1) ; ATION METHODS FOR ATC
w =pwp>1 (19) The Diagonal Quadratic Approximation Method
In order for the subproblems of the augmented Lagrangian
Because the quadratic term prevents subproblems from be-approach to be separable, we apply the diagonal quadratic ap
ing separable, the nested coordination scheme or BCD is usedproximation (DQA) originally proposed in [18], where it ised
in the inner loop for finding the optimal solution with resp&z to solve block-angular structure problems. Proofs on cenve
fixed A andw. The outer loop applies (18) and (19) for updating gence and convergence rate are available for this methdd [18
the Lagrange multipliers and penalty weights. In implerirent There are other variations of solving similar problems gsip-
the AL method, the update a¥ can also be separate from the proximation techniques, for example, the method discugsed
update ofA. w can be updated only if the improvement of the [19]. o _ _
currentiteration is not large enough [21]. Figure 8 shovwesito- In the original paper, DQA is used to solve problems in the
cedure using nested and BCD schemes. Although the augmentedollowing form:
Lagrangian approach shows stable convergence propenties a
3uper|ior performance corlnpared to QP, the ihnner Ir?op cac||h1sti| L
uce large computational cost. Moreover, throughput isdoe : _ "’
to non-separability of subproblems. min(f (x) = izl fi(Xi)] (20)

The Augmented Lagrangian with Alternating Direction - Aixi —b (21)
Method of Multipliers i; o

To reduce computational cost of the augmented Lagrangian S
approach, Tosseramst al. [20] applied the augmented Xi€X,1=12..L (22)
Lagrangian with alternating direction method of multipsie )
(ALAD). The key observation is that all elements in the odd le wheref is convex, andKy, Xy, ..., X, are nonempty closed

els of the hierarchy only depend on the elements in the even le  convex sets. Our ATC formulation as in (3) falls into thisrfor
for convex problems. First, the objective function is sejpée

S with respect to individual subproblems. Second, the coersty
constraint function is in the form (21). Third, the ineqtyknd

2Note that the penalty weights are squared in the definitiomwifipliers in ; ;
this case because they are squared in the definition of thrafiapenalty term. equality constraintg andh, now fully separable, form sel. In

6 Copyright (© 2007 by ASME



DQA, alinear approximation is applied on the cross téjrrj;
included in the quadratic penalty terity; —rij||3 in (15).

[Itij —rij|5 = |[tij otij +rijorij —2(tjori)[la  (23)

Using the Taylor expansion for multiple variable scalardun
tions up to the first order, a linearization at the pafptri; gives

tjj orjj %tin OI’in —H‘in o (tj]
K .. K -
=rjjotij +tjorij

—tin)—i—tin o (rjj —I’in)

—tin orin (24)

Combining (23) and (24), we have:

I1tiy —rij 13
=|tjj otij +rij orij
=||[t:(J Otrj +rijorij
[|[tij o tij +r}‘j orﬁ
||2(tK orf )
= [t —rij 5+ |Iti

—2(rfjotij +tijorij —
=2t oripllla+
= 2(tijor)l[1+
tKotK IJoI’in||1

—rij||2+Constant

t Orlj)||1

(25)

By substituting (25) into (15) whert andrj are solutions
obtained from the previous iterations and are constant eith
spect to the problem of the current iteration, we have ddrikie
overall problem after applying DQA. Note that we have ondiitte
the constant term since the solution of the objective fumowvill
not be affected by a constant.

min fij (Xij) (tij —ri
xNMZZ ij (Xij) ,222 ij (tij = Tij)

JES& JES
+|wij o (t — rij)l 13
+||wij o (tij = rf§)[13]
st gij(Xij) <0
hij (xij) =0
where Xij = [Xij, t(i;1k VK € Gij]
rij =aij (Xij)

Vje&,i=1,..,N. (26)

And for each subproblem:

fg_i_nfij(Yij)Jr?\ﬁ(—fij)Jr||WijO(tu rij)|3
ij

2

keGi

+1 kt i+1)k

Wik irnk— 03]

st gij(Xij) <0
hij (Xij) =0
where Xij = [Xij, t(i;1k VK € ij]
rij =aij (Xij)

Vie&,i=1,..N. (27)

The DQA approach consists of an inner loop and an outer
loop. The inner loop is used to improve linearization whiie t

outer loop is used to implement the method of multipliers. We
concurrently update the penalty weight using the linearatgd

method, similar to the AL approach. The general DQA algonith
consists of the following steps.

1. initialize X, A, andw, and sek = 0, wherek denotes the
number of outer loop iteration.

2. givenx¥, the final solution of the previou& — 1)st outer
loop iteration upon inner loop convergence,set0, where
sis the inner loop iteration, a9 = x¢, wherex+1s
is the solution of thesth inner loop iteration and the current
outer loop iteration.

3. for each element, solve fa@j; in (27) in parallel, and obtain
oK+1, S+l
Xij

4. if ma>(||tK+l7S+1 _ tK+1,S||’ ||rK+1,s+1 _ rK+l7S||) < Ginner,
where ginner is the inner loop consistency deviation toler-
ance, sek**! = x¥*15t1 and go to step 5. Otherwise, set
xKF+Lstl _ gr+ls —[-(XK+1.S+1 _ XK+1,S)' wheret is the step
size, ses=s+1, and go to step 3.

5. |f ma)(||tK+l - tK||, ||rK+1 - rK||) S couter, Whereoouter |S
the outer loop consistency deviation tolerance, then stop,
and set the optimal solutioxi* to bex**1; otherwise, set
K = K+ 1, and update the Lagrange multipliers using the
method of multipliers by settiny**% = A< 4-w* o (t€ —r¥),
w1 = BwX and go to step 2.

This procedure is shown in Figure 8. Note that the consis-
tency deviation tolerance for both the inner loogner and the
outer loopogyter Should be significantly smaller than the step
sizeTt to prevent premature convergence.

Convergence is proven for the above algorithm \@ither =
0, as stated in [18]. For practical purposes, however, wavall
Oinner t0 be small but non-zero.

Theorem 8. Suppose that the constraint sets are bounded,
oinner = 0, and the step sizee (0, 1) is significantly small. The
following statements hold:

1. Foralli, limg e (tXSt1 —t55) = 0, limg o (1St —rk:s) =
2. Each limit point of the sequend&“°}g ; is a solution of
AN9).
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The proof of the theorem is based on the estimation of the
difference between the approximation and the augmented La-
grangian function. This estimation shows that a progresken
former also introduces progress in the later. The steprgitays
an important role in the DQA method. Since linearizationri/o
accurate in a neighborhood of the point at which the lin@icon
takes place, we use a small step size to obtain a good ap@exim
tion. As noted in [18] the step sizeis related to the number of
linking variables. Proof of the above theorem requires &mal
T for problems with a larger number of linking variables. How-
ever, empirical results indicate that a step size close tmbcing
convergence to all example problems presented in this paper

Local convergence is also discussed in [18], and this prop-
erty of DQA is based on the quadratic growth condition of the
augmented Lagrangian function, defined as the following:

Definition 1 (Quadratic growth condition). let

N

I;J; fij (Xij

and X* be the solution of (15), wheme = [X11,...,.Xnm]. The
augmented Lagrangian function is said to satisfy the quécira
growth condition if there existg> 0 such that for every,

faL =

N
J+3 3 IN b i)+l o (s i) 3]
i=2je&

faL(X) — faL(X") > ¥R —X7||5.

Under the quadratic growth rate of the augmented La-
grangian function, the rate of convergence for DQA is linear
However, other factors, such as a large number of linking var
ables can slow down the progress [18]. As a variation, it &po
ble to linearize at the mid-point of the solution from the\poais

. . K K K K . . . . . .
iteration(*%=, £4). We obtain similar results as linearization

at end points in all of our test examples.

The Truncated Diagonal Quadratic Approximation

Method

As will be discussed in the next section, DQA performs well
on test problems in terms of throughput, but the overall cemp
tational cost is still high. From the experiments, we haumfb
out that much of the computational effort is spent on the iinne
linearization loop. We have also observed that usually the i
ner loop progresses slowly and introduces a high cost tdhreac
the desirable inner loop convergence tolerance. Howevssnw
the Lagrange multipliers are not optimal, high accuracyhef t
subproblem solutions is not necessary, and the compughgdn
fort is wasted. It is more desirable to quickly update the La-
grange multiplier to move towards its optimal value. This ba
achieved by limiting the total number of inner loop iterasan
DQA by treating it as a user-specified parameter in a way that i
similar to the ALAD approach, which reduces the computation
cost for solving the inner loop. Since some inner loop caltoh
is omitted in DQA, this method is called the truncated diagon
quadratic approximation method, or TDQA. The outer loop of
TDQA implements the method of multipliers. Similar to ALAD,
the penalty weight is held fixed.

In order to minimize overall cost, only one iteration of com-
putation is carried out in the inner loop. The TDQA algoritlem
given as the following:

1. initialize X°, A, andw, and se = 0, wherek denotes the
number of loop iterations.

2. for each element, solve fa@j; in (27) in parallel, and obtain

R =X + 1(XET — XS ) wheret is the step size

3. if max(|[t“+1 —tX||,||r**1 —r¥||) < o, whereg is the outer
loop consistency deviation tolerance, then stop, and set th
optimal solutionX* to beX**%: otherwise, sek = k + 1,
update the Lagrange multipliers using the method of multi-
pliers by setting\**1 = A + w¥ o (tK — r¥), w(k+1) = BwX,
and go to step 2.

This procedure is shown in Figure 8. The outer loop
tolerance should be significantly smaller than the step size
to prevent premature convergence. Furthermore, we calliraiso
earize at the mid-point of the solution obtained from thevjmes
iteration. Again, empirical results show similar perfomuoa as
linearization at end points.

Empirical results show promising results of the TDQA
method. The intuition is that TDQA can be considered as an
approximation of the ALAD method. As long as the approxima-
tion is accurate, solution of TDQA at each iteration is cltse
that of the ALAD method, and convergence follows by the con-
vergence property of the ALAD method. We can also impose a
strategy for increasing the total number of inner loop tieres
when the improvement of the actual function is not large gmou

In the extreme.case wheﬂ.we allow the Jimit of the number of in-
ner loop Iterations to achieve infinity, the method beco t

DQA method, and convergence can be obtained. A proof of con-
vergence for finite inner loop truncation is left for futurenk.

DQA and TDQA with the Trust Region Technique

From the discussion above, it is possible to have a lineariza
tion at the current point that is a poor approximation to thg-a
mented Lagrangian function. A small step sizean ensure ac-
curacy of the approximation. However, if the step size is too
small, convergence will be slow. As a result, some trial amdre
is required for finding a good value of the step size for pcatti
applications.

An alternative approach for finding a good step size is to
use a trust region. To determine whether the current linaari
tion is accurate, we estimate the rafiof the actual reduction
(the reduction of the original augmented Lagrangian fumjtto
the predicted reduction (the reduction of the diagonal gatéd
approximation of the augmented Lagrangian function) betwe

current solutior»?i“frl and previous solutioﬁ}‘j. If pis close to

one, the linearization is accurate. On the other hand, wezne
the ratiop is far from one, it indicates that the step size for the
current solution is too big, the linearization is not ac¢erand it

is desirable to use a smaller step size. The algorithm of DA a
TDQA can be modified according to this method in the following
way. Instead of using a predetermined step size, we cadcthlat
reduction ratig after each iteration. b >y, whereyis the ratio
threshold, accept the solution. Otherwise, shrink the sitapby
half. The recommended value pis 0.25 in the standard trust
region method. This procedure can also be carried outiketat

RESULTS AND COMPARISONS i
For the purpose of a clear comparison among all ATC meth-

ods, we use the four examples discussed in [20], in the same
order. Readers are referred to [20] for a more in depth dssons

on the structures and properties of each problem. To malee sur
that the comparison is fair, we use the same condition oniterm
nating the update of the Lagrange multipliers for all methas
shown in the following:
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Figure 3. EXAMPLE PROBLEM STRUCTURES

ma(| [t — 2|, [|r — " ¥]) < Gouter (28)
~ This is different from [20], where the termination conditio
is:

ma(|| (t — ) — (t*" = r*1)[|) < Gouter (29)

We use a new criterion since (29) might result in premature
convergence.

In this paper, three quantities are used to evaluate perfor-
mance. The solution error, the total number of function esal
tions, and the overall computational throughput. Solugmorg
of methodC is defined as the following, the same as [20]:

XATC| |°o

&= —

wherex* is the actual optimal solution and\T¢ is the solution
found by ATC. The magnitude of the solution error is congadll
by the convergence tolerance. The tighter the toleraneentire
accurate the solution. The total number of function evadunat
also defined in [20], is used to measure the overall communali
cost, and is reported by the subproblem solver, in this dasa;
lab NPSol. Computational throughput is defined as the number
of tasks that can be performed for a given time period. Since
each problem is considered a task, for simplicity we userthe i
verse of throughput, or latency in CPU seconds, to compare th
speed for solving each problem of each method. In other words
latency measures the total CPU time required to solve theabtive
problem, taking into account parallelization.

The structures of the four examples are shown in Figure
3. We compare the performance of each method in the follow-
ing two ways: function evaluations vs solution error and eom

putational latency vs solution erfor The methods being com-

SGenerally speaking, three convergence criteria are widasdyl in the imple-
mentation of optimization methods: gradient of the Lagrandunction is close
to 0, objective function value stops changing, and solutioimt stops changing.
We are using the third method here, and for practical pugga@semall non-zero
convergence tolerance is given to determine when the salstops changing.

“We did not use the number of redesigns(i.e., the number @fstieach sub-
problem must be solved) as a metric since it can be misleadingsome it-
erations the subproblem may take many function evaluatiorsolve, while in
many of the later iterations it will be very fast since thertitg point is close

pared are the quadratic penalty method with nested codroina
scheme and WUM (QP), the quadratic penalty method with BCD
and WUM (QP-BCD), the augmented Lagrangian method with
nested coordination scheme (AL), the augmented Lagrangian
method with BCD (AL-BCD), ALAD, DQA, and TDQA. The
value of 3 for updating penalty weights is set to 2.0 for AL and
DQA, and 1.0 for ALAD and TDQAw Step size for DQA is 0.9

for all problems. For TDQA, we invoke the trust region once to
ensure the accuracy of the linearization, and the initigp size

is set to 0.7. Note that OL is not included since it encounters
convergence omﬁcultles for the last three pro%l%ms. Eeﬂskeare

carried out on the same machine with the same applications so
comparison is faif.

Example 1

The first example is a two-level decomposition of the ge-
ometric programming problem. It has a unique solutin=
[2.15,2.06,1.32,0.76,1.07,1.00,1.47] with all constraints ac-
tive.

min f=f1—|—f2=2§+Z§

st. q=(52+7)z5?-1<0
02=(Z+7%)7°-1<0
hi=(Z+2,°+%)z?-1=0
hy=(Z+%+7%)z,°-1=0

21,2,..,27>0 (30)

Figure 4 shows results for each method for this example.
Notice that since this is a two-level problem, QP and QP-BCD
are identical, as are AL and AL-BCD. Itis clear that the tratec!
methods ALAD and TDQA perform better than all the nested
loop methods in terms of both function evaluations and katen
TDQA outperforms ALAD. DQA requires more function evalu-
ations than AL but has a lower latency due to parallelizat@R
does not perform as well as the other methods.

Example 2

The second example problem is a three-level decomposition
of a posynomial geometric programming problem. Its unigue s
lution isz* = [2.84,3.09,2.36,0.76,0.87,2.81,0.94,0.97,0.87,
0.80,1.30,0.84,1.76,1.55 with all constraints active.

min f=f1—|—f2=221+2%

2 g

st. q1=(52+7)z%?-1<0
92=(Z+2°)%°~1<0
0=(Z+2)z;2-1<0
91=(2°+ 4oz —1<0

to the solution. Thus, the redesigns metric does not seere emtaccurate or
easy-to-interpret metric of computational cost.

5Application: Matlab Version 7.0 with Tomlab NPSol Solvernstn 5.3; OS:
SUSE Linux; Processor: Intel(R) Xeon(TM); CPU: 2.80GHzs@\l for the test
results we used the time required to complete the longestingrsubproblem
in each iteration to measure the effect of imperfect loadr@hg. We did not
explicitly capture the communication overhead of multg@ssors, but this aspect
will be very small in the examples compared to the computaiioe required at
each iteration.
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Figure 4. EXAMPLE 1 COMPUTATION COST AND THROUGH VS SO- Figure 5. EXAMPLE 2 COMPUTATIONAL COST AND THROUGHPUT
LUTION ACCURACY VS SOLUTION ACCURACY
:( 2+ ZIZZ)ZIS;Z ~1<0 A andw is unnecessary.
<
=(Z1+ZB)7i — 1 0 Example 4
:(22+z4 +z.§ -1=0 The fourth example is a structured optimization problem
- (zf; 2%4—22 based on the analytical mass allocation problem. It hasgueni
=&+ solutionz* = [0.0346 0.03490.0294 0.0046 0.002§.
=(z§+29 +zlo+z%1>25 =0
=(B1+Zp+ A3+ 44)%° —1=0 min : m+§mr.
21,20,...,214 > 0 (31) d1,d2.0r 1,0r 2 i; =1 N
Figure 5 shows the results of example 2. In this example, st. 01i=0pi—0<0,i=123
the advantage of BCD is clear since QP-BCD and AL-BCD out- U2j=0,j—0<0,j=12
perform QP and AL, respectively. Moreover AL outperforms QP B _F<0i—
and QP-BCD. DQA outperforms AL and AL-BCD in computa- ®Bi=Ri-R<0,i1=123
tional latency due to parallelization. Similar to exampletie u=hH-f <0

truncated methods are superior to all nested loop methoadd. A

TDQA outperforms DQA in terms of both function evaluations h=fi—fiy1—fri=0,i=12

and latency. where m= TZTdisz, i=1,23
Example 3 M= I[dsj Lp,j=1,2

The third example is a slight variation of the second one, 4
changing only the objective function so the targets arérettae. P 32L(F—Fi1) 1923
The objective function is now = f1 + f, = (z7 — 2.9)% 4 (2 — bi T[di3 ’ o
3.1)2. Inthis example, only; = 2.9 andz, = 3.1 are unique. The 64L3(F — Fii1)
other variables can have different values as long as allt@ints fi——— T 123
are satjsfied. _ _ _ _ 3nEd?

This example is a special case. As discussed in [20], the AF.
Lagrange multipliers were originally set to zero, which peps Oni= 1L i 12

. > a,] 2 J 9

to be the optimal value for this problem. As a result, the pute mdy;
loops of all nested loop methods are theoretically unnecgss AF: AL
However, due to numerical errors, the outer loops are update frj= I+l j=12
several times in practice. T TEd i

Similar to example 2, QP-BCD and AL-BCD outperform — 270ka/m?
QP and AL, respectively. However, sinkés at its optimal value p= 9/
originally, the advantage of the Lagrangian term cannotlibe o E=70GPa
served, and the QP methods outperform the AL methods in this F1=21000N (32)
example. For the truncated methods ALAD and TDQA, which
outperform all nested loop methods, ALAD outperforms TDQA The results of example 4 shown in Figure 7 are very similar

in terms of both function evaluations and latency. Theseltes  to those in example 2. QP-BCD and AL-BCD outperform QP
are shown in Figure 6. The total computational cost, andéiie v and AL, respectively. the AL methods outperforms the QP meth
ation among methods, is small for this problem because uqgdat  ods. DQA outperforms AL: It has a larger number of function
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Figure 6. EXAMPLE 3 COMPUTATIONAL COST AND THROUGHPUT
VS SOLUTION ACCURACY

evaluations than AL-BCD, but it has the smallest latency ragno
all nested loop methods. The truncated methods are superior
all nested loop methods. And TDQA outperforms ALAD.

DISCUSSION _ -
The biggest advantage of both DQA and TDQA is their abil-
ity to separate subproblems for parallel computation. phigp-
erty is highly desirable, especially in large-scale proigeSince
each subproblem is separable, nested loops are avoided- Mor
over, since each problem can be solved in parallel, throuigkp
greatly increased. Although we only present DQA and TDQA
in the context of hierarchical ATC problems, these methaas ¢

| —— QP —A—QP-BCD -5~ AL —— AL-BCD —EB— ALAD
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Figure 7. EXAMPLE 4 COMPUTATION COST AND THROUGH VS SO-
LUTION ACCURACY

are greatly improved. BCD is also theoretically justifien gen-
eral, DQA has lower computational cost than most nested loop
methods and it has the highest throughput due to parallieiiza
TDQA has the least total cost and best throughput of all nmatho
in all the test examples except for example 3, for which ALAD
has achieved the best performance. In this degenerateugase,
dates of the penalty weights and Lagrange multipliers anecn
essary, and the total computational time is much smaller tine
other non-degenerate cases, making distinctions legsatrifs

a result, we believe that TDQA is more preferable when paral-
lel processing is available. DQA has proofs for local andglo
convergence, and proofs for TDQA are left for future workeTh
flow charts for the algorithms of all methods is shown in Fegur

be used in a wide variety of decomposition methods. DQA was 8 and a table summarizing methods and results can be found in

first proposed in [18] as a method solving general block-&rgu

structured problems, and TDQA can be applied to any problems

to which DQA can be applied. For example, in [21] an aug-
mented Lagrangian approach is used in solving non-hiei@aktch

dual-block angular problems, and DQA and TDQA can also be
used for solving these problems. This is also an advantage of

DQA and TDQA over ALAD. DQA and TDQA do not require
problems to be hierarchical, while ALAD requires identifioa
of independent levels in hierarchical problems. It is expéc
that DQA and TDQA will perform similarly in non-hierarchica
decomposition schemes as in ATC.

One limitation of DQA and TDQA is that theoretically these

methods achieve good performance only when the number of

linking variables are small, as in the case of quasisepagabb-
lems. Further investigation is needed to determine thefiope
mance in practice on problems that have large number ofki
variables after decomposition. Future research is alsdetkte
to investigate the global and local convergence propeofi¢gise
TDQA method.

CONCLUSION . -
In this paper, we have summarized the existing meth-

ods, compared the block coordinate descent method to nested

schemes, and presented the diagonal quadratic approgimati

method and the truncated diagonal quadratic approximation

method used in handling consistency constraint relaxation
ATC. The DQA method is supported by theoretical justifica-
tion. Fundamental results show that by using BCD insteatief t
nested coordination scheme, computational cost and thpuig

11

The proposed methods overcome many of the concerns with
prior approaches to ATC, such as convergence difficulties, i
conditioning, and computational cost associated with torai-
nation strategies. DQA and TDQA enable parallelizationlbf a
subsystems in the ATC hierarchy, which can improve computa-
tional throughput when parallel processing is availabléeve®
the theoretical benefits and promising empirical resultshef
DQA and TDQA approaches to ATC, we hope to see these meth-
ods utilized in future ATC studies and applications. Adutiglly,
because DQA and TDQA do not require the assumption of hier-
archical structures, extension to nonhierarchical sanest has
the potential to extend applicability to a wider range ofteyss
optimization problems.
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