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ABSTRACT
Analytical Target Cascading (ATC) is an effective decompo-

sition approach used for engineering design optimization prob-
lems that have hierarchical structures. With ATC, the overall
system is split into subsystems, which are solved separately and
coordinated via target/response consistency constraints. As par-
allel computing becomes more common, it is desirable to have
separable subproblems in ATC so that each subproblem can be
solved concurrently to increase computational throughput. In
this paper, we first examine existing ATC methods, providing
an alternative to existing nested coordination schemes by us-
ing the block coordinate descent method (BCD). Then we ap-
ply diagonal quadratic approximation (DQA) by linearizingthe
cross term of the augmented Lagrangian function to create sep-
arable subproblems. Local and global convergence proofs are
described for this method. To further reduce overall computa-
tional cost, we introduce the truncated DQA (TDQA) method
that limits the number of inner loop iterations of DQA. These
two new methods are empirically compared to existing methods
using test problems from the literature. Results show that com-
putational cost of nested loop methods is reduced by using BCD
and generally the computational cost of the truncated methods,
TDQA and ALAD, are superior to other nested loop methods
with lower overall computational cost than the best previously
reported results.

INTRODUCTION
When designing complex systems, generally it is not possi-

ble or desirable to have a single decision-maker in charge ofall
decisions because of the need to manage problem complexity.In-
stead, such systems are routinely decomposed hierarchically into
subsystems and components, and various design groups interact
to coordinate their decisions and achieve a feasible and consis-
tent system solution. For each system in such a hierarchy, target
specifications are chosen for the subsystems below such thatthe
system can meet targets set by the supersystem above. If tar-

gets cannot be met, negotiation and rebalancing is necessary to
ensure that the final system solution is consistent and achieves
system goals. Ford Motor Company refers to this process as
target cascading, and the analogous model-based, computational
process for such hierarchical systems has been termed analyti-
cal target cascading (ATC) [7]. In ATC, top level design targets
are propagated to lower levels, which are optimized to meet the
targets. The resulting responses are rebalanced at higher levels
to achieve consistency. The optimal system solution is obtained
through an iterative process until target/response consistency is
achieved globally.

ATC approaches this target-setting and matching process
through formal mathematical decomposition methods, and so
it has similarities to many of the multidisciplinary designopti-
mization (MDO) methods that have been developed to coordi-
nate complex analysis models from various disciplines during
optimization, such as collaborative optimization (CO), concur-
rent subspace optimization (CSSO), and bi-level integrated sys-
tem synthesis (BLISS). In particular, Allisonet al. [1] compare
and contrast ATC and CO. Apart from the difference in initial
motivation, the formulation of ATC also differs in that it isde-
fined for an arbitrarily large hierarchy of subsystems, and formal
convergence proofs ensure that the method will reach an optimal
system solution under typical assumptions. More recently,meth-
ods for solving non-hierarchical quasiseparable, or dual block-
angular, problems with proven convergence properties havealso
emerged [5] [6] [21]. In this paper, we will focus on hierarchical
problems in the spirit of ATC; however, as we will discuss, ATC
works by translating a description of a hierarchy of systemsand
subsystems linked by target-response interactions into a general
quasiseparable problem1, through relaxation of target-response
relationships between systems and their subsystems. The meth-
ods we pose for solving hierarchical ATC systems could also be

1A quasiseparable problem is nearly separable except for a few linking vari-
ables that appear in multiple subsystems, as we will define rigorously later.
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Figure 1. HIERARCHICAL PROBLEM STRUCTURE AND VARIABLE
ALLOCATION FOR ATC

used to approach general quasiseparable systems. ATC has been
applied to complex systems such as automotive design [8], archi-
tectural design [4], and multidisciplinary product development
[12] [13], and these studies demonstrate scalability of ATCon
large and computationally onerous case studies.

In this paper, we summarize existing methods for coordina-
tion of subsystems in ATC and present two new methods that
enable parallelization and overcome some of the drawbacks of
existing methods. We start by providing an overview of ATC in
section 2. In section 3 we describe existing coordination meth-
ods, and in section 4 we describe two new methods, including a
discussion of convergence properties. In section 5 we compare
approaches empirically using test problems from the literature,
and we discuss results in section 6 and conclude in section 7.

OVERVIEW OF ATC
System Structure

ATC is applicable for problems that have a hierarchical
structure so that the top level design is a supersystem that consists
of a number of systems, each of which may consist of its own
subsystems. For example, an automobile may be composed of
powertrain, body, and chassis, and the powertrain may be com-
posed of engine and transmission, etc. This model is general
enough to account for any number of levels in the hierarchy [16].
The objective function for the overall system can be described
as a sum of the objective functions of its components; Typically
the objective function is entirely at the system level. Moreover,
the subproblems are nearly separable except for a few linking
variables. Figure 1 shows an example. Specifically, a parentand
a child are connected by a response variable, which represents
a child’s response to the design specification that its parent im-
poses. This “response variable” may or may not be a variable
in the original pre-decomposition formulation: It is typically the
output of the subsystem simulator and input to the system simu-
lator and it may be treated as an intermediate calculation ofthe
original formulation. The effects of subsystem response onsys-
tem behavior is what prevents subsystems from being designed
independently.

Notation
Different notations are used in describing and defining ATC,

depending on the application [7] [15] [16] [20]. In this paper, we

adopt the notational system of Tosseramset al. [20] for simplic-
ity. Consider a system that can be decomposed intoN levels and
M elements. The subscriptij is used to denote thejth element of
the system in theith level. fi j is the scalar objective function, and
gi j ≤ 0 andhi j = 0 are the inequality and equality constraints, re-
spectively. Local variables of elementj are denoted byxi j . ri j is
the response of elementj calculated by analysis modelai j . Gen-
erally speaking, this model is an engineering simulation ora set
of equations predicting the behavior of the subsystem.Ei is the
set of elements at leveli, andCi j is the set of children of ele-
ment j. The system in Figure 1 is shown corresponding to this
notation.

Mathematical Formulation
By the assumption of the problem structure, and using the

notation described above, the hierarchical problem beforede-
composition, also known as the all-in-one (AIO) formulation, can
be described as:

min
xi j ,∀ j∈Ei , i=1,...,N

f (xi j , ∀ j ∈ Ei , i=1, ...,N) =
N

∑
i=1

∑
j∈Ei

fi j (xi j )

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j ,r(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (1)

Note that the responseri j of each elementj depends on the re-
sponse of its children which prevents the objective function and
the constraint sets from being separable. In order to separate the
set of variables governed by each subsystem, target variablesti j
are created for each shared variable. And theconsistency con-
straint:

ti j − ri j = 0 (2)

is added to ensure target/response consistency.

We rewrite the problem as:

min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )

s.t. gi j (xi j )≤0
hi j (xi j )=0
ti j − ri j =0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i=1, ...,N. (3)

Figure 2 shows the system structure and variable allocations af-
ter introducing the target variables. Note that the problemis al-
most separable except for the consistency constraintti j −ri j = 0.
In order to make the constraint sets separable, the consistency
constraint can be relaxed using penalty functions or Lagrangian
relaxation. In general, the problem can be relaxed via acon-
sistency constraint relaxation functionπ. Alternate methods for
consistency constraint relaxation are discussed in section 3. For a
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Figure 2. VARIABLE ALLOCATION FOR ATC AFTER INTRODUCING
TARGET COPIES

generalπ, the resulting formulation is therelaxed AIO problem:

min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

π(ti j − ri j )

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (4)

For a generalπ, consider only the subset of the decision vari-
ables that are non-constant in subsystemj to obtain the general
subproblem corresponding to each element:

min
xi j

fi j (xi j )+π(ti j − ri j )+ ∑
k∈Ci j

π(t(i+1)k− r(i+1)k)

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (5)

Note that in the above formulation, the variablesti j and
r(i+1)k for k ∈ Ci j are constants with respect to elementj. The
constraint sets are now separable, and depending on the consis-
tency relaxation functionπ, the subproblems may or may not be
separable. If subproblems are separable, they can be solvedin
parallel. Otherwise, sequential computation of each subproblem
is required.

It can be shown that by sequentially and iteratively solving
each subproblem as specified in (5) in any cyclic order, conver-
gence is guaranteed. This algorithm is called theblock coor-
dinate descent, or BCD, and the convergence result is applica-
ble for any general relaxation consistency functionπ because the
constraint sets are independent. The following theorem summa-

rizes the convergence result of block coordinate descent and the
proof is given in Proposition 2.7.1 of [2], p. 268.

Theorem 1. Suppose that for all i and j, fi j is continuously dif-
ferentiable and the constraint sets are independent, closed and
convex. Letxκ

i j denote the solution of (5) in theκth iteration with

ti j = tκ
i j andr(i+1)k = rκ−1

(i+1)k for k ∈ Ci j . Furthermore, suppose
that xκ

i j is uniquely attained for all iterations. Then{xκ
i j } is the

sequence generated by the block coordinate descent method,and
every limit point of{xκ

i j } is a stationary point.

In the ATC literature, non-separable subproblems are han-
dled in nested loop coordination schemes that are carried out in a
bi-level fashion, and the original convergence proof for ATC [16]
is based on the nested schemes. However, by the theorem above,
the nested schemes are not necessary, and the block coordinate
descent method alone can produce convergence for any sequence
of subproblem solutions.

The inconsistency constraint relaxation functionπ has been
implemented in three ways: a quadratic penalty function [7][14]
[16], an ordinary Lagrangian function [10], or an augmentedLa-
grangian function [9] [20]. Both the quadratic penalty and aug-
mented Lagrangian approaches do not allow separability of sub-
problems, and block coordinate descent is required to achieve
convergence, which limits efficiency. The ordinary Lagrangian
approach does produce separable subproblems. However, the
method is not robust when duality gaps exist [19]. These meth-
ods will be discussed in more detail in the following sections.

PRIOR CONSISTENCY CONSTRAINT RELAXATION
METHODS FOR ATC
The Quadratic Penalty Method

In early ATC literature, a quadratic penalty term was used
as the constraint relaxation functionπ. The basic idea in penalty
methods is to eliminate the consistency constraint and add to the
objective function a penalty term that prescribes a high cost to
infeasible points. Associated with this term are the penalty pa-
rametersw = [wi j , ∀i, j] that determine the severity of the penalty
and, as a consequence, the extent to which the resulting uncon-
strained problem approximates the original constrained problem.

The general quadratic penalty function is defined as:

πQ(ti j − ri j ) = ||wi j ◦ (ti j − ri j )||
2
2 (6)

where◦ is used to denote the Hadamard product, so that
(A◦B)i = AiBi . With πQ, (4) can be rewritten as:

min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

||wi j ◦ (ti j − ri j )||
2
2

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (7)

Proper selection of weighting coefficients heavily impacts
the performance of this method. Aswi j becomes larger, the re-
sulting inconsistency betweenti j andri j pairs decreases. Con-
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vergence properties of the quadratic penalty method have been
studied thoroughly and can be summarized in the following the-
orem.

Theorem 2. Assume that the functions fi j , gi j , and hi j for all
i, j are continuous. Suppose that{xκ

i j } for all i and j is an exact
global minimizer of (7) for each fixedwκ and thatwκ ↑ ∞. Then
every limit point of{xκ} is a solution of the problem (3).

Its proof is similar to that of Theorem 17.1 of [17], p. 496.
Indeed, by lettingX = {x∈ ℜn : gi j (xi j ) ≤ 0, hi j (xi j ) = 0,∀ j ∈
Ei , i = 1, ...,N.}, problem (3) can be generalized to the problem

min
x

f (x)

s.t. ci(x) = 0, i ∈ E ,

x∈ X

Under the assumption thatgi j andhi j for all i, j are continuous
on ℜn, the setX is closed. Thus, replacingℜn by X in the proof
of Theorem 17.1 of [17] yeilds a valid proof for Theorem 2. The-
orem 2 is also a special case of Proposition 4.2.1 of [2], p. 391
with λκ = 0 for all κ.

For each subproblem, we have:

min
xi j

fi j (xi j )+ ||wi j ◦ (ti j − ri j )||
2
2

+ ∑
k∈Ci j

||w(i+1)k◦ (t(i+1)k− r(i+1)k)||
2
2

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (8)

With this formulation, constraint sets are separable, but the ob-
jective function is not. Subproblems are solved sequentially
throughout the hierarchical chain for fixedw as an inner loop.
As noted before, either the nested coordination scheme or the
block coordinate descent method (BCD) can be used as the in-
ner loop. Upon convergence of all inner loops, an outer loop is
used to updatew. Figure 8 shows the procedure using nested
and BCD schemes. Prior approaches to updatew are either set-
ting the penalty weights through trial and error, or initializing
them to a small value and then increasing their value by a linear
update method, i.e., multiplying the current weights by a con-
stant. However, the trial and error approach can be difficultfor
large-scale problems. Michaleket al. [14] observed that while
any positivew can ensure convergence to a consistent solution
for problems that have attainable targets, no finitew will lead to
perfect consistency for problems with unattainable targets. They
proposed an efficient weight update method (WUM) for finding
values ofw that achieve solutions within user-specified inconsis-
tency tolerances. It is demonstrated that WUM achieves better
performance than a constantw.

In practice, large penalty weights can cause ill-conditioning
[2]. Moreover, the quadratic term prevents each subproblem
from being separable, preventing the use of parallel computing.

The Ordinary Lagrangian Method
An alternative choice for the constraint relaxation function

π is an ordinary Lagrangian function [10]. This method (OL) is

based on Lagrangian duality theory [2] [17]. Letλ = [λi j , ∀i, j]
be the vector of Lagrangian multipliers. The consistency con-
straint relaxation function is specified as:

πL(ti j − ri j ) = λT
i j (ti j − ri j ) (9)

With πL, (4) can be rewritten as:

Λ(λ) = min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

λT
i j (ti j − ri j )

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (10)

And the dual problem for (10) is:

max
λ

Λ(λ) (11)

Under convexity and constraint qualification assumptions,
the strong duality theorem holds and there is no duality gap.As
a result, an iterative process can be carried out by first solving
(10) with a fixedλ, then updatingλ via the subgradient method
until convergence. Note that this process is based on solving the
dual problem (11), with (10) as its nested problem, to obtainthe
overall solution of (3). This procedure is theoretically justified
by the following theorems, which are presented in Proposition
5.3.2 of [2], p. 514. Again, readers are referred to the text for
proofs.

Theorem 3 (Strong Duality Theorem). Assume that fi j
and gi j are convex, andhi j is linear for ∀ j ∈ Ei, i = 1, ...,N.
Suppose that{x : t− r = 0, g(x) < 0, h(x) = 0} is non-empty.
Assume that the optimal value of problem (3) is finite. Then
there is no duality gap and there exists at least one Lagrange
multiplier.

Theorem 4. Assume that the Strong Duality Theorem is satis-
fied for problem (3). Ifλ∗ is the optimal solution to problem (11),
and ifx∗ = [x∗i j ∀i, j] solves problem (10) withλ=λ∗, thenx∗ also
solves problem (3).

For each subsystem, consider a fixedλi j . Also note that
sinceti j andr(i+1)k are constants with respect to elementj, the
termsλi j ti j andλT

(i+1)kr(i+1)k can be eliminated from the objec-
tive function, resulting in the following subproblem:
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min
xi j

fi j (xi j )+λT
i j (−ri j )+ ∑

k∈Ci j

λT
(i+1)kt(i+1)k

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (12)

In this method, each subproblem is separable and can be
solved in parallel, with fixed Lagrange multipliers. Starting with
arbitrary Lagrange multiplier estimates, we updateλ using the
subgradient method, defined as the following:

λκ+1 = λκ + τκ(tκ − rκ) (13)

The superscriptκ denotes the number of iteration, andτ is
a scalar representing the step size. The subgradient methodis
proven to converge, under assumptions shown in the following
theorem [10].

Theorem 5. If the feasible set of the solution of (10) is bounded
and a sequence of step sizeτκ satisfies the conditions:

1. τκ → 0 asκ → ∞
2. ∑∞

κ=1τκ = ∞

then either the iterative process of the subgradient methodtermi-
nates finitely atκ = κ∗ with Λ(λκ∗) = Λ(λ∗), or else an infinite
sequence of iterates is generated such thatΛ(λκ∗) → Λ(λ∗) as
κ → ∞.

Figure 8 shows the OL procedure. By the theorems above,
it is necessary that the strong duality condition holds in order to
obtain global convergence. This is the main drawback of this
method since duality gaps may exist [19], which can cause insta-
bility and limit application of the method for practical problems.

The Augmented Lagrangian Method
An improved method, the augmented Lagrangian method

(AL) applied to ATC formulations by Tosseramset al. [20] com-
bines both the quadratic penalty term and the Lagrangian term,
which overcomes some drawbacks of both QP and OL. The La-
grangian term is used to avoid ill-conditioning. The quadratic
term also reduces duality gaps. The augmented Lagrangian func-
tion is defined as the following:

πAL(ti j − ri j ) = λT
i j (ti j − ri j )+ ||wi j ◦ (ti j − ri j )||

2
2 (14)

With πAL, the general problem is:

Λ̂(λ) = min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

[λT
i j (ti j − ri j )

+ ||wi j ◦ (ti j − ri j )||
2
2]

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (15)

The dual problem for (15) is:

max
λ

Λ̂(λ) (16)

The following theorem is the basic convergence result of the
augmented Lagrangian function. This theorem is a specialization
of Proposition 4.2.1 of [2], p. 391. letX = {x∈ ℜn : gi j (xi j ) ≤
0, hi j (xi j ) = 0,∀ j ∈ Ei , i = 1, ...,N.}. Under the assumption that
gi j andhi j for all i, j are continuous onℜn, the setX is closed.
Thus, problem (3) satisfies all assumptions of Proposition 4.2.1
of [2]. Readers are referred to the text for the proof.

Theorem 6. Assume that the objective and constraint functions
of problem (3) are continuous. Forκ = 0,1, ..., let xκ be the
global minimum of the problem̂Λ(λκ) with wκ, where λκ is
bounded,0 < wκ < w(κ+1) for all κ, andwκ → ∞. Then every
limit point of the sequence{xκ} is a global minimum of problem
(3).

For each subproblem, we have:

min
xi j

fi j (xi j )+λT
i j (−ri j )+ ||wi j ◦ (ti j − ri j )||

2
2

+ ∑
k∈Ci j

[λT
(i+1)kt(i+1)k

+ ||w(i+1)k◦ (t(i+1)k− r(i+1)k)||
2
2]

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (17)

Duality theory also applies to the augmented Lagrangian
formulation so we can use the same procedure as OL. How-
ever, the subproblems as shown in (17) are not separable due
to the quadratic penalty term. As a result, instead of solving all
subproblems in parallel as in OL, either the nested coordination
scheme or the block coordinate descent method is carried out
as an inner loop for the AL relaxation formulation, similar to the
QP approach. In order to achieve convergence, we update the La-
grange multipliers so they approach to the optimal values. The
augmented Lagrangian function allows the use ofmethod of mul-
tipliers. The scheme for selecting new termsλ from loop iterate
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κ to (κ +1) is given by the following formula2:

λ(κ+1) = λκ +2wκ ◦wκ ◦ (tκ
i j − rκ

i j ) (18)

Convergence properties of the method of multipliers applied
to problem (3) are presented as the following theorem. The proof
of this theorem is presented in [11].

Theorem 7. Assume that the objective function of problem (3)
is continuously differentiable, and the set X defined as X= {x∈
ℜn : gi j (xi j ) ≤ 0, hi j (xi j ) = 0,∀ j ∈ Ei , i = 1, ...,N.} is closed
convex. Let

fAL(x,λ,w)

=
N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

[λT
i j (ti j − ri j )+ ||wi j ◦ (ti j − ri j )||

2
2]

wherex = [x11, ...,xNM] andλ = [λ11, ...,λNM]. Letxκ be a min-
imum of problem (15), and suppose that{λκ} is bounded, and
{wκ} satisfies:

0 < wκ < wκ+1 ∀κ, wκ → ∞

Assume that a subsequence{xκ}K converges to a vectorx∗ and
{λκ +2wκ ◦ (tκ −rκ)}K → λ∗. Thenx∗ is a minimum of problem
(3) andλ∗ is a generalized Lagrange multiplier corresponding to
the constraintsti j − ri j = 0 at x = x∗ for all j ∈ Ei , i = 1, ...,N.

There are other ways of updatingλ when using the aug-
mented Lagrangian method. For example, the subgradient up-
date scheme is used in [9]. In AL, the penalty weightw is also
updated. A linear scheme with constant scaleβ for updatingw is
used in [20]:

w(κ+1) = βwκ,β ≥ 1 (19)

Because the quadratic term prevents subproblems from be-
ing separable, the nested coordination scheme or BCD is used
in the inner loop for finding the optimal solution with respect to
fixed λ andw. The outer loop applies (18) and (19) for updating
the Lagrange multipliers and penalty weights. In implementing
the AL method, the update ofw can also be separate from the
update ofλ. w can be updated only if the improvement of the
current iteration is not large enough [21]. Figure 8 shows the pro-
cedure using nested and BCD schemes. Although the augmented
Lagrangian approach shows stable convergence properties and a
superior performance compared to QP, the inner loop can still in-
duce large computational cost. Moreover, throughput is lowdue
to non-separability of subproblems.

The Augmented Lagrangian with Alternating Direction
Method of Multipliers

To reduce computational cost of the augmented Lagrangian
approach, Tosseramset al. [20] applied the augmented
Lagrangian with alternating direction method of multipliers
(ALAD). The key observation is that all elements in the odd lev-
els of the hierarchy only depend on the elements in the even lev-

2Note that the penalty weights are squared in the definition ofmultipliers in
this case because they are squared in the definition of the quadratic penalty term.

els and vice versa, so it is possible to first solve all odd-level ele-
ments in parallel, then all even-level elements, for a fixed number
of iterations. The Lagrange multipliers are then updated using
the method of multipliers. The penalty weight can also be up-
dated. Contrary to QP or AL, a large penalty weight may have
negative effect on convergence, but a small penalty weight may
result in unbounded subproblems [3]. In [20], Tosseramset. al
keep a constantw. Furthermore, the inner loop is solved for only
one iteration to minimize computational effort. This method is
demonstrated to be effective on all example problems with su-
perior computational properties compared to QP and AL. It has
been proven to converge under the assumption that the problem is
convex, the feasibility sets are nonempty, and the constraint sets
are bounded [3]. In practice, however, ALAD shows good nu-
merical convergence behavior for non-convex problems as well
[21]. Figure 8 shows the ALAD procedure. This method is
promising since it demonstrates both good convergence proper-
ties and low computational cost through the truncated innerloops
and partial parallelization [20].

Summary
Except for the ordinary Lagrangian approach, all other prior

methods for consistency constraint relaxation prevent fully par-
allel computation of subproblems. The ALAD method requires
sequential computation of odd levels and even levels, and the
QP and AL method require sequential computation of all lev-
els. As parallel and distributed computing power becomes more
popular, it is desirable to have fully separable subproblems so
that each subproblem can be solved concurrently, and compu-
tational throughput can be improved. Since the ordinary La-
grangian approach has convergence difficulties, and other ap-
proaches prevent separability, we are motivated to explorealter-
nate approaches.

PROPOSED CONSISTENCY CONSTRAINT RELAX-
ATION METHODS FOR ATC
The Diagonal Quadratic Approximation Method

In order for the subproblems of the augmented Lagrangian
approach to be separable, we apply the diagonal quadratic ap-
proximation (DQA) originally proposed in [18], where it is used
to solve block-angular structure problems. Proofs on conver-
gence and convergence rate are available for this method [18].
There are other variations of solving similar problems using ap-
proximation techniques, for example, the method discussedin
[19].

In the original paper, DQA is used to solve problems in the
following form:

min
x

[ f (x) =
L

∑
i=1

fi(xi)] (20)

L

∑
i=1

Aixi = b (21)

xi ∈ Xi , i = 1,2, ...,L (22)

where f is convex, andX1, X2, ..., XL are nonempty closed
convex sets. Our ATC formulation as in (3) falls into this form
for convex problems. First, the objective function is separable
with respect to individual subproblems. Second, the consistency
constraint function is in the form (21). Third, the inequality and
equality constraintsg andh, now fully separable, form setsXi . In
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DQA, a linear approximation is applied on the cross termti j ◦ri j

included in the quadratic penalty term||tij − rij||
2
2 in (15).

||ti j − ri j ||
2
2 = ||ti j ◦ ti j + ri j ◦ ri j −2(ti j ◦ ri j )||1 (23)

Using the Taylor expansion for multiple variable scalar func-
tions up to the first order, a linearization at the pointtκ

i j , rκ
i j gives

ti j ◦ ri j
∼= tκ

i j ◦ rκ
i j + rκ

i j ◦ (ti j − tκ
i j )+ tκ

i j ◦ (ri j − rκ
i j )

=rκ
i j ◦ ti j + tκ

i j ◦ ri j − tκ
i j ◦ rκ

i j (24)

Combining (23) and (24), we have:

||ti j − ri j ||
2
2

∼= ||ti j ◦ ti j + ri j ◦ ri j −2(rκ
i j ◦ ti j + tκ

i j ◦ ri j − tκ
i j ◦ rκ

i j )||1

= ||[tκ
i j ◦ tκ

i j + ri j ◦ ri j −2(tκ
i j ◦ ri j )]||1 +

||[ti j ◦ ti j + rκ
i j ◦ rκ

i j −2(ti j ◦ rκ
i j )]||1 +

||2(tκ
i j ◦ rκ

i j )− tκ
i j ◦ tκ

i j − rκ
i j ◦ rκ

i j ||1

= ||tκ
i j − ri j ||

2
2 + ||ti j − rκ

i j ||
2
2 +Constant (25)

By substituting (25) into (15) wheretκ
i j andrκ

i j are solutions
obtained from the previous iterations and are constant withre-
spect to the problem of the current iteration, we have derived the
overall problem after applying DQA. Note that we have omitted
the constant term since the solution of the objective function will
not be affected by a constant.

min
x11,...,xNM

N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

[λT
i j (ti j − ri j )

+ ||wi j ◦ (tκ
i j − ri j )||

2
2

+ ||wi j ◦ (ti j − rκ
i j )||

2
2]

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (26)

And for each subproblem:

min
xi j

fi j (xi j )+λT
i j (−ri j )+ ||wi j ◦ (tκ

i j − ri j )||
2
2

+ ∑
k∈Ci j

[λT
(i+1)kt(i+1)k

+ ||w(i+1)k◦ (t(i+1)k− rκ
(i+1)k)||

2
2]

s.t. gi j (xi j )≤0
hi j (xi j )=0

where xi j =[xi j , t(i+1)k∀k∈ Ci j ]

ri j =ai j (xi j )

∀ j ∈ Ei , i =1, ...,N. (27)

The DQA approach consists of an inner loop and an outer
loop. The inner loop is used to improve linearization while the
outer loop is used to implement the method of multipliers. We
concurrently update the penalty weight using the linear update
method, similar to the AL approach. The general DQA algorithm
consists of the following steps.

1. initialize x, λ, andw, and setκ = 0, whereκ denotes the
number of outer loop iteration.

2. givenxκ, the final solution of the previous(κ− 1)st outer
loop iteration upon inner loop convergence, sets= 0, where
s is the inner loop iteration, andxκ+1,0 = xκ, wherexκ+1,s

is the solution of thesth inner loop iteration and the current
outer loop iteration.

3. for each element, solve forxi j in (27) in parallel, and obtain
xκ+1,s+1

i j .
4. if max(||tκ+1,s+1 − tκ+1,s||, ||rκ+1,s+1 − rκ+1,s||) ≤ σinner,

whereσinner is the inner loop consistency deviation toler-
ance, setxκ+1 = xκ+1,s+1, and go to step 5. Otherwise, set
xκ+1,s+1 = xκ+1,s+ τ(xκ+1,s+1−xκ+1,s), whereτ is the step
size, sets= s+1, and go to step 3.

5. if max(||tκ+1 − tκ||, ||rκ+1 − rκ||) ≤ σouter, whereσouter is
the outer loop consistency deviation tolerance, then stop,
and set the optimal solutionx∗ to be xκ+1; otherwise, set
κ = κ + 1, and update the Lagrange multipliers using the
method of multipliers by settingλκ+1 = λκ +wκ ◦ (tκ − rκ),
w(κ+1) = βwκ, and go to step 2.

This procedure is shown in Figure 8. Note that the consis-
tency deviation tolerance for both the inner loopσinner and the
outer loopσouter should be significantly smaller than the step
sizeτ to prevent premature convergence.

Convergence is proven for the above algorithm withσinner =
0, as stated in [18]. For practical purposes, however, we allow
σinner to be small but non-zero.

Theorem 8. Suppose that the constraint sets are bounded,
σinner = 0, and the step sizeτ ∈ (0,1) is significantly small. The
following statements hold:

1. For all i,j, lims→∞(tκ,s+1− tκ,s) = 0, lims→∞(rκ,s+1−rκ,s) =
0

2. Each limit point of the sequence{xκ,s}∞
s=0 is a solution of

Λ̂(λκ).
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The proof of the theorem is based on the estimation of the
difference between the approximation and the augmented La-
grangian function. This estimation shows that a progress inthe
former also introduces progress in the later. The step sizeτ plays
an important role in the DQA method. Since linearization is only
accurate in a neighborhood of the point at which the linearization
takes place, we use a small step size to obtain a good approxima-
tion. As noted in [18] the step sizeτ is related to the number of
linking variables. Proof of the above theorem requires smaller
τ for problems with a larger number of linking variables. How-
ever, empirical results indicate that a step size close to 1 can bring
convergence to all example problems presented in this paper.

Local convergence is also discussed in [18], and this prop-
erty of DQA is based on the quadratic growth condition of the
augmented Lagrangian function, defined as the following:

Definition 1 (Quadratic growth condition). let

fAL =
N

∑
i=1

∑
j∈Ei

fi j (xi j )+
N

∑
i=2

∑
j∈Ei

[λT
i j (ti j −ri j )+ ||wi j ◦(ti j −ri j )||

2
2],

and x∗ be the solution of (15), wherex = [x11, ...,xNM]. The
augmented Lagrangian function is said to satisfy the quadratic
growth condition if there existsγ > 0 such that for everyx,

fAL(x)− fAL(x∗) ≥ γ||x−x∗||22.

Under the quadratic growth rate of the augmented La-
grangian function, the rate of convergence for DQA is linear.
However, other factors, such as a large number of linking vari-
ables can slow down the progress [18]. As a variation, it is possi-
ble to linearize at the mid-point of the solution from the previous
iteration( tκ+rκ

2 , tκ+rκ

2 ). We obtain similar results as linearization
at end points in all of our test examples.

The Truncated Diagonal Quadratic Approximation
Method

As will be discussed in the next section, DQA performs well
on test problems in terms of throughput, but the overall compu-
tational cost is still high. From the experiments, we have found
out that much of the computational effort is spent on the inner
linearization loop. We have also observed that usually the in-
ner loop progresses slowly and introduces a high cost to reach
the desirable inner loop convergence tolerance. However, when
the Lagrange multipliers are not optimal, high accuracy of the
subproblem solutions is not necessary, and the computational ef-
fort is wasted. It is more desirable to quickly update the La-
grange multiplier to move towards its optimal value. This can be
achieved by limiting the total number of inner loop iterations in
DQA by treating it as a user-specified parameter in a way that is
similar to the ALAD approach, which reduces the computational
cost for solving the inner loop. Since some inner loop calculation
is omitted in DQA, this method is called the truncated diagonal
quadratic approximation method, or TDQA. The outer loop of
TDQA implements the method of multipliers. Similar to ALAD,
the penalty weight is held fixed.

In order to minimize overall cost, only one iteration of com-
putation is carried out in the inner loop. The TDQA algorithmis
given as the following:

1. initialize x0, λ, andw, and setκ = 0, whereκ denotes the
number of loop iterations.

2. for each element, solve forxi j in (27) in parallel, and obtain
xκ+1

i j = xκ
i j + τ(xκ+1

i j −xκ
i j ) whereτ is the step size

3. if max(||tκ+1− tκ||, ||rκ+1− rκ||) ≤ σ, whereσ is the outer
loop consistency deviation tolerance, then stop, and set the
optimal solutionx∗ to be xκ+1; otherwise, setκ = κ + 1,
update the Lagrange multipliers using the method of multi-
pliers by settingλκ+1 = λκ + wκ ◦ (tκ − rκ), w(κ+1) = βwκ,
and go to step 2.

This procedure is shown in Figure 8. The outer loop
toleranceσ should be significantly smaller than the step sizeτ
to prevent premature convergence. Furthermore, we can alsolin-
earize at the mid-point of the solution obtained from the previous
iteration. Again, empirical results show similar performance as
linearization at end points.

Empirical results show promising results of the TDQA
method. The intuition is that TDQA can be considered as an
approximation of the ALAD method. As long as the approxima-
tion is accurate, solution of TDQA at each iteration is closeto
that of the ALAD method, and convergence follows by the con-
vergence property of the ALAD method. We can also impose a
strategy for increasing the total number of inner loop iterations
when the improvement of the actual function is not large enough.
In the extreme case when we allow the limit of the number of in-
ner loop iterations to achieve infinity, the method becomes the
DQA method, and convergence can be obtained. A proof of con-
vergence for finite inner loop truncation is left for future work.

DQA and TDQA with the Trust Region Technique
From the discussion above, it is possible to have a lineariza-

tion at the current point that is a poor approximation to the aug-
mented Lagrangian function. A small step sizeτ can ensure ac-
curacy of the approximation. However, if the step size is too
small, convergence will be slow. As a result, some trial and error
is required for finding a good value of the step size for practical
applications.

An alternative approach for finding a good step size is to
use a trust region. To determine whether the current lineariza-
tion is accurate, we estimate the ratioρ of the actual reduction
(the reduction of the original augmented Lagrangian function) to
the predicted reduction (the reduction of the diagonal quadratic
approximation of the augmented Lagrangian function) between
current solutionxκ+1

i j and previous solutionxκ
i j . If ρ is close to

one, the linearization is accurate. On the other hand, whenever
the ratioρ is far from one, it indicates that the step size for the
current solution is too big, the linearization is not accurate, and it
is desirable to use a smaller step size. The algorithm of DQA and
TDQA can be modified according to this method in the following
way. Instead of using a predetermined step size, we calculate the
reduction ratioρ after each iteration. Ifρ≥ γ, whereγ is the ratio
threshold, accept the solution. Otherwise, shrink the stepsize by
half. The recommended value ofγ is 0.25 in the standard trust
region method. This procedure can also be carried out iteratively.

RESULTS AND COMPARISONS
For the purpose of a clear comparison among all ATC meth-

ods, we use the four examples discussed in [20], in the same
order. Readers are referred to [20] for a more in depth discussion
on the structures and properties of each problem. To make sure
that the comparison is fair, we use the same condition on termi-
nating the update of the Lagrange multipliers for all methods, as
shown in the following:
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Figure 3. EXAMPLE PROBLEM STRUCTURES

max(||tκ − tκ−1||, ||rκ − rκ−1||) ≤ σouter (28)

This is different from [20], where the termination condition
is:

max(||(tκ − rκ)− (tκ−1 − rκ−1)||) ≤ σouter (29)

We use a new criterion since (29) might result in premature
convergence3.

In this paper, three quantities are used to evaluate perfor-
mance. The solution error, the total number of function evalua-
tions, and the overall computational throughput. Solutionerrorξ
of methodC is defined as the following, the same as [20]:

ξ = ||x∗−xATC||∞

wherex∗ is the actual optimal solution andxATC is the solution
found by ATC. The magnitude of the solution error is controlled
by the convergence tolerance. The tighter the tolerance, the more
accurate the solution. The total number of function evaluations,
also defined in [20], is used to measure the overall computational
cost, and is reported by the subproblem solver, in this case,Tom-
lab NPSol. Computational throughput is defined as the number
of tasks that can be performed for a given time period. Since
each problem is considered a task, for simplicity we use the in-
verse of throughput, or latency in CPU seconds, to compare the
speed for solving each problem of each method. In other words,
latency measures the total CPU time required to solve the overall
problem, taking into account parallelization.

The structures of the four examples are shown in Figure
3. We compare the performance of each method in the follow-
ing two ways: function evaluations vs solution error and com-
putational latency vs solution error4. The methods being com-

3Generally speaking, three convergence criteria are widelyused in the imple-
mentation of optimization methods: gradient of the Lagrangian function is close
to 0, objective function value stops changing, and solutionpoint stops changing.
We are using the third method here, and for practical purposes, a small non-zero
convergence tolerance is given to determine when the solution stops changing.

4We did not use the number of redesigns(i.e., the number of times each sub-
problem must be solved) as a metric since it can be misleading. In some it-
erations the subproblem may take many function evaluationsto solve, while in
many of the later iterations it will be very fast since the starting point is close

pared are the quadratic penalty method with nested coordination
scheme and WUM (QP), the quadratic penalty method with BCD
and WUM (QP-BCD), the augmented Lagrangian method with
nested coordination scheme (AL), the augmented Lagrangian
method with BCD (AL-BCD), ALAD, DQA, and TDQA. The
value ofβ for updating penalty weights is set to 2.0 for AL and
DQA, and 1.0 for ALAD and TDQA.w Step size for DQA is 0.9
for all problems. For TDQA, we invoke the trust region once to
ensure the accuracy of the linearization, and the initial step size
is set to 0.7. Note that OL is not included since it encounters
convergence difficulties for the last three problems. All tests are
carried out on the same machine with the same applications so
comparison is fair.5

Example 1
The first example is a two-level decomposition of the ge-

ometric programming problem. It has a unique solutionz∗ =
[2.15,2.06,1.32,0.76,1.07,1.00,1.47] with all constraints ac-
tive.

min
z1,...,z7

f = f1 + f2 = z2
1 +z2

2

s.t. g1=(z−2
3 +z2

4)z
−2
5 −1≤ 0

g2=(z2
5 +z−2

6 )z−2
7 −1≤ 0

h1=(z2
3 +z−2

4 +z2
5)z

−2
1 −1 = 0

h2=(z2
5 +z2

6+z2
7)z

−2
2 −1 = 0

z1,z2, ...,z7 ≥ 0 (30)

Figure 4 shows results for each method for this example.
Notice that since this is a two-level problem, QP and QP-BCD
are identical, as are AL and AL-BCD. It is clear that the truncated
methods ALAD and TDQA perform better than all the nested
loop methods in terms of both function evaluations and latency.
TDQA outperforms ALAD. DQA requires more function evalu-
ations than AL but has a lower latency due to parallelization. QP
does not perform as well as the other methods.

Example 2
The second example problem is a three-level decomposition

of a posynomial geometric programming problem. Its unique so-
lution is z∗ = [2.84,3.09,2.36,0.76,0.87,2.81,0.94,0.97,0.87,
0.80,1.30,0.84,1.76,1.55] with all constraints active.

min
z1,...,z14

f = f1 + f2 = z2
1 +z2

2

s.t. g1=(z−2
3 +z2

4)z
−2
5 −1≤ 0

g2=(z2
5 +z−2

6 )z−2
7 −1≤ 0

g3=(z2
8 +z2

9)z
−2
11 −1≤ 0

g4=(z−2
8 +z2

10)z
−2
11 −1≤ 0

to the solution. Thus, the redesigns metric does not seem to be an accurate or
easy-to-interpret metric of computational cost.

5Application: Matlab Version 7.0 with Tomlab NPSol Solver Version 5.3; OS:
SUSE Linux; Processor: Intel(R) Xeon(TM); CPU: 2.80GHz. Also, for the test
results we used the time required to complete the longest running subproblem
in each iteration to measure the effect of imperfect load balancing. We did not
explicitly capture the communication overhead of multiprocessors, but this aspect
will be very small in the examples compared to the computation time required at
each iteration.
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Figure 4. EXAMPLE 1 COMPUTATION COST AND THROUGH VS SO-
LUTION ACCURACY

g5=(z2
11+z−2

12 )z−2
13 −1≤ 0

g6=(z2
11+z2

12)z
−2
14 −1≤ 0

h1=(z2
3 +z−2

4 +z2
5)z

−2
1 −1 = 0

h2=(z2
5 +z2

6 +z2
7)z

−2
2 −1 = 0

h3=(z2
8 +z−2

9 +z−2
10 +z2

11)z
−2
3 −1 = 0

h4=(z2
11+z2

12+z2
13+z2

14)z
−2
6 −1 = 0

z1,z2, ...,z14 ≥ 0 (31)

Figure 5 shows the results of example 2. In this example,
the advantage of BCD is clear since QP-BCD and AL-BCD out-
perform QP and AL, respectively. Moreover AL outperforms QP
and QP-BCD. DQA outperforms AL and AL-BCD in computa-
tional latency due to parallelization. Similar to example 1, the
truncated methods are superior to all nested loop methods. And
TDQA outperforms DQA in terms of both function evaluations
and latency.

Example 3
The third example is a slight variation of the second one,

changing only the objective function so the targets are attainable.
The objective function is nowf = f1 + f2 = (z1−2.9)2 +(z2−
3.1)2. In this example, onlyz1 = 2.9 andz2 = 3.1 are unique. The
other variables can have different values as long as all constraints
are satisfied.

This example is a special case. As discussed in [20], the
Lagrange multipliers were originally set to zero, which happens
to be the optimal value for this problem. As a result, the outer
loops of all nested loop methods are theoretically unnecessary.
However, due to numerical errors, the outer loops are updated
several times in practice.

Similar to example 2, QP-BCD and AL-BCD outperform
QP and AL, respectively. However, sinceλ is at its optimal value
originally, the advantage of the Lagrangian term cannot be ob-
served, and the QP methods outperform the AL methods in this
example. For the truncated methods ALAD and TDQA, which
outperform all nested loop methods, ALAD outperforms TDQA
in terms of both function evaluations and latency. These results
are shown in Figure 6. The total computational cost, and the vari-
ation among methods, is small for this problem because updating
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Figure 5. EXAMPLE 2 COMPUTATIONAL COST AND THROUGHPUT
VS SOLUTION ACCURACY

λ andw is unnecessary.

Example 4
The fourth example is a structured optimization problem

based on the analytical mass allocation problem. It has a unique
solutionz∗ = [0.0346,0.0349,0.0294,0.0046,0.0028].

min
d1,d2,dr,1,dr,2

3

∑
i=1

mi +
2

∑
j=1

mr, j

s.t. g1,i =σb,i −σ ≤ 0, i = 1,2,3
g2, j =σa, j −σ ≤ 0, j = 1,2

g3,i =Ft,i −Ft ≤ 0, i = 1,2,3

g4= f1− f1 ≤ 0
h1= fi − fi+1− fr,i = 0, i = 1,2

where mi =
π
4

d2
i Lρ, i = 1,2,3

mr, j =
π
4

d2
r, jLρ, j = 1,2

σb,i =
32L(Fi −Fi+1)

πd3
i

, i = 1,2,3

fi =
64L3(Fi −Fi+1)

3πEd4
i

, i = 1,2,3

σa, j =
4Fj+1

πd2
r j

, j = 1,2

fr, j =
4Fj+1L

πEd2
r j

, j = 1,2

ρ=2700kg/m3

E=70GPa
F1=1000N (32)

The results of example 4 shown in Figure 7 are very similar
to those in example 2. QP-BCD and AL-BCD outperform QP
and AL, respectively. the AL methods outperforms the QP meth-
ods. DQA outperforms AL: It has a larger number of function
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Figure 6. EXAMPLE 3 COMPUTATIONAL COST AND THROUGHPUT
VS SOLUTION ACCURACY

evaluations than AL-BCD, but it has the smallest latency among
all nested loop methods. The truncated methods are superiorto
all nested loop methods. And TDQA outperforms ALAD.

DISCUSSION
The biggest advantage of both DQA and TDQA is their abil-

ity to separate subproblems for parallel computation. Thisprop-
erty is highly desirable, especially in large-scale problems: Since
each subproblem is separable, nested loops are avoided. More-
over, since each problem can be solved in parallel, throughput is
greatly increased. Although we only present DQA and TDQA
in the context of hierarchical ATC problems, these methods can
be used in a wide variety of decomposition methods. DQA was
first proposed in [18] as a method solving general block-angular
structured problems, and TDQA can be applied to any problems
to which DQA can be applied. For example, in [21] an aug-
mented Lagrangian approach is used in solving non-hierarchical
dual-block angular problems, and DQA and TDQA can also be
used for solving these problems. This is also an advantage of
DQA and TDQA over ALAD. DQA and TDQA do not require
problems to be hierarchical, while ALAD requires identification
of independent levels in hierarchical problems. It is expected
that DQA and TDQA will perform similarly in non-hierarchical
decomposition schemes as in ATC.

One limitation of DQA and TDQA is that theoretically these
methods achieve good performance only when the number of
linking variables are small, as in the case of quasiseparable prob-
lems. Further investigation is needed to determine their perfor-
mance in practice on problems that have large number of linking
variables after decomposition. Future research is also needed
to investigate the global and local convergence propertiesof the
TDQA method.

CONCLUSION
In this paper, we have summarized the existing meth-

ods, compared the block coordinate descent method to nested
schemes, and presented the diagonal quadratic approximation
method and the truncated diagonal quadratic approximation
method used in handling consistency constraint relaxationin
ATC. The DQA method is supported by theoretical justifica-
tion. Fundamental results show that by using BCD instead of the
nested coordination scheme, computational cost and throughput
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Figure 7. EXAMPLE 4 COMPUTATION COST AND THROUGH VS SO-
LUTION ACCURACY

are greatly improved. BCD is also theoretically justified. In gen-
eral, DQA has lower computational cost than most nested loop
methods and it has the highest throughput due to parallelization.
TDQA has the least total cost and best throughput of all methods
in all the test examples except for example 3, for which ALAD
has achieved the best performance. In this degenerate case,up-
dates of the penalty weights and Lagrange multipliers are unnec-
essary, and the total computational time is much smaller than the
other non-degenerate cases, making distinctions less critical. As
a result, we believe that TDQA is more preferable when paral-
lel processing is available. DQA has proofs for local and global
convergence, and proofs for TDQA are left for future work. The
flow charts for the algorithms of all methods is shown in Figure
8 and a table summarizing methods and results can be found in
[11].

The proposed methods overcome many of the concerns with
prior approaches to ATC, such as convergence difficulties, ill-
conditioning, and computational cost associated with the coordi-
nation strategies. DQA and TDQA enable parallelization of all
subsystems in the ATC hierarchy, which can improve computa-
tional throughput when parallel processing is available. Given
the theoretical benefits and promising empirical results ofthe
DQA and TDQA approaches to ATC, we hope to see these meth-
ods utilized in future ATC studies and applications. Additionally,
because DQA and TDQA do not require the assumption of hier-
archical structures, extension to nonhierarchical structures has
the potential to extend applicability to a wider range of systems
optimization problems.
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Figure 8. FLOW CHARTS OF METHODS
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