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ABSTRACT 
One critical aim of product family design is to offer distinct 
variants that attract a variety of market segments while 
maximizing the number of common parts to reduce 
manufacturing cost. Several indices have been developed for 
measuring the degree of commonality in existing product lines 
to compare product families or assess improvement of a 
redesign. In the product family optimization literature, 
commonality metrics are used to define the multi-objective 
tradeoff between commonality and individual variant 
performance. These metrics for optimization differ from indices 
in the first group: While the optimization metrics provide 
desirable computational properties, they generally lack the 
desirable properties of indices intended to act as appropriate 
proxies for the benefits of commonality, such as reduced 
tooling and supply chain costs. In this paper, we propose a 
method for computing the commonality index introduced by 
Martin and Ishii using the available input data for any product 
family without predefined configuration. The proposed method 
for computing the commonality index, which was originally 
defined for binary formulations (common / not common), is 
relaxed to the continuous space in order to solve the discrete 
problem with a series of continuous relaxations, and the effect 
of relaxation on the metric behavior is investigated. Several 
relaxation formulations are examined, and a new function with 
desirable properties is introduced and compared with prior 
formulations. The new properties of the proposed metric enable 
development of an efficient and robust single-stage gradient-
based optimization of the joint product family platform 
selection and design problem, which is examined in a 
companion paper. 

KEYWORDS: Product Family, Platform Configuration, 
Commonality metric, Gradient-based Optimization, relaxation. 

NOMENCLATURE 
CI: Commonality Index 
fi: Objective function vector for the ith product 
gi: Vector of inequality constraints for the ith product 
hi: Vector of equality constraints for the ith product 

im : Number of components in the ith product 
nkr : Number of kth component in the rth platform 
Sij: Platform configuration index set 
sk,: Number of distinct platforms for producing the kth 
component 
u: Total number of distinct components in the product family 
xi: Design variable vector for the ith product 
α: Relaxation factor 

k
rλ

~ : rth eigenvalue of the kth commonality matrix (including 
zero and nonzero terms) 

k
rλ : rth nonzero eigenvalue of Γk 
ij
pqη : Binary commonality decision variables 
ij

kη′ : Continuous commonality decision variable 
Γ: Commonality objective function for the entire family 
Γk: Commonality matrix for the kth component 
Γkr: rth sub-block of Γk (discrete form) 

krΓ′ : rth sub-block of Γk  (relaxed form) 
 
1. INTRODUCTION 

Designing a product family that offers a broad set of 
variants targeting different market segments and exploits 
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product platforms to reduce the manufacturing cost is a critical 
task for many companies. Increasing the number of common 
components or modules typically has various benefits such as 
reducing development time, system complexity and 
manufacturing cost as well as improving the ability to upgrade 
products. However, increasing the degree of commonality 
within the family can also reduce the ability of individual 
product variants to achieve distinct performance targets. Hence, 
a successful product family should be able to resolve the trade 
off between commonality and differentiation.  

Several indices and metrics have been developed to 
measure the degree of commonality in a product family. These 
studies can be classified into two main categories according to 
their development purpose and application: 1) commonality 
indices for evaluation of existing product lines, and 2) 
commonality metrics for use in product family optimization. 

The first group proposes commonality indices for 
measuring commonality in existing product lines to compare 
product families or assess improvement of a redesign. Based on 
the company’s focus and perspective, various indices have been 
developed, each representing a proper measurement with 
respect to the related criteria1. Thevenot and Simpson [12], 
compare six of these commonality indices from the literature, 
based on their ease of data collection, repeatability and 
consistency. According to their study, three of these indices are 
concerned only with the number of common parts within the 
family: 1) the Degree of Commonality Index (DCI), introduced 
by Collier [1], defines commonality as the average number of 
common parent items per average distinct component part. 
While this index is easy to compute, its main limitation is the 
lack of fixed boundaries, making comparison difficult; 2) the 
Total Constant Commonality Index (TCCI), proposed by 
Wacker [13], is a modified version of the DCI, in that it is a 
relative index, and as a result, it has fixed boundaries ranging 
from 0 to 1. A TCCI value of zero indicates no shared item 
among the entire family, while a TCCI value of one indicates 
complete commonality. 3) The Commonality Index (CI), 
suggested by Martin and Ishii [6, 7], is a measure of the 
number of unique parts needed to make different varieties. CI 
ranges from zero to one, and a higher value indicates the entire 
family was made using fewer unique parts. Other indices 
consider more specific information about the product line. For 
example, the Product Line Commonality Index (PCI), 
introduced by Kota et al. [5], measures the difference between 
the number of parts in a family that are actually common and 
the number that should be “ideally” common. PCI ranges from 
0 to 100, in which a zero value indicates all non-differentiating 
parts are either not shared or have different size, material, 
manufacturing and assembly processes. The Percent 
Commonality Index (%C), (Siddique et al, [10],), computes 
total commonality as weighted-sum of four terms: 1) The 
                                                           

1 There are a broad range of indices in the first group. We focus on those 
that address commonality due to component sharing. 

percentage of components that are shared among different 
variants in a platform; 2) the percentage of common 
connections among the components; 3) the percentage of 
common assembly sequences; and 4) the percentage of 
common assembly workstations. This metric range is from 0 to 
100, indicating no commonality and complete commonality 
respectively, and measuring commonality within each platform, 
rather than across the entire family. Finally, the Component 
Part Commonality Index (Jiao and Teseng, [3]) considers other 
factors such as production volume, quantity per operation, and 
the cost of component parts. It is an extended version of DCI 
and does not have fixed boundaries.  
In order to compare the aforementioned indices, Thevenot and 
Simpson [12] measured the commonality of eight different 
product families with each index. They concluded DCI, TCCI 
and CI are easiest to compute and are repeatable indices (i.e. 
each has a unique value that can be consistently computed by 
different people). Moreover, all indices showed a consistent 
behavior, meaning that all follow the same trend across 
different product families. Recently, Thevenot and Simpson 
[18] introduced a comprehensive metric for commonality 
(CMC), which can be considered as an extension of PCI [5] in 
that it takes into account other factors such as production 
volume and component costs. This metric captures more 
information about each component to assess the impact of each 
component on the overall level of commonality and diversity in 
the product family. 

In brief, there is no single “true” definition for 
commonality index, and all aforementioned indices measure the 
commonality from different viewpoints. Therefore, selection of 
an index involves consideration of the company focus and 
viewpoint when designing the product family.  

In the second category, commonality metrics are defined 
within the context of optimization. This group proposed 
commonality metrics for defining the tradeoff between 
commonality and the ability to achieve distinct performance 
targets. Nayak et al. [9] proposed a two-stage Variation-Based 
Platform Design Methodology (VBPDM) for optimizing a 
family of ten universal electric motors: In the first stage, a 
compromise decision support problem (DSP) is formulated to 
maximize commonality by minimizing the normalized standard 
deviation of the input design variables while satisfying 
performance constraints. After solving the DSP, if the standard 
deviation of a design variable is small enough relative to its 
mean value, it is selected as a platform variable, while others 
with significant variations are treated as unique variables. After 
identifying the platform variables and their values in the first 
stage, the individual products are optimized in the second stage 
with respect to the non-platform variables satisfying 
performance objectives and constraints. Messac et al. [8] 
introduced the product family penalty function (PFPF) to find 
the optimum set of common and scaling parameters for scaled-
based product families using physical programming techniques. 
According to this approach, commonality is maximized by 
minimizing the percent variation of design variables (i.e. 
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minimizing PFPF) within the product family; therefore, design 
variables with the highest variations are selected as scaling 
variables. They use the family of electric motors for 
demonstrating the proposed approach; however, as mentioned 
in the paper, increasing the number of products would make the 
problem intractable and generate many local optima. Simpson 
and D’Souza [11] proposed a single-stage Genetic Algorithm 
(GA) based approach for optimizing the product platform and 
associated product family simultaneously. They used PFPF 
introduced by Messac et al. for measuring the commonality in 
the family and demonstrated the approach by optimizing a 
family of three general aviation aircraft. 

All aforementioned studies mention that the variation-
based metric is a good representation for measuring 
commonality in that it considers not only the number of 
common variables but also the degree of similarity among the 
values of the unique variables relative to one another. However, 
we argue that this approach does not capture the qualities that 
companies are looking for when the commonality metric is 
intended as a proxy for estimating cost reduction due to 
commonality. That is, considering commonality cost saving due 
to reduced tooling and supplied chain, manufacturers want to 
know whether they can use the same component design in 
multiple variants, or whether a separate component will need to 
be designed and manufactured for each variant. So, as soon as 
two components differ sufficiently so that the manufacturer has 
to provide a distinct set of tooling for each component, the 
benefit of commonality reduces to zero with respect to cost 
savings, regardless of how similar the dimensions of unique 
parts are2.  

Khire and Messac [4] defined a variation penalty function 
as the sum of the mapped values of the maximum variation of 
each design variable among all products in the family. They 
applied mapping by introducing a variable-segregating 
mapping function (VSMF) for segregating platform variables 
from scaled variables, in which VSMF is a family of 
continuous functions that progressively approximate the 
discontinuous mapping applied in scaled based product families 
(i.e. design variables are defined as platform variables if their 
difference falls below a threshold value and as scaled variables 
otherwise) by using the concept of moving segregation point. 
Although, this new approach enables the optimization 
algorithm to define the platform and non-platform variables 
efficiently within a single stage approach and addresses the 
unrealistic nature of the PFPF, it considers only all-or-none 
component sharing. That is, a component can either be shared 
within the entire family or be distinct among all products but 
cannot be shared among only a subset of the variants. 
Khajavirad et al. [17] applied Martin and Ishii’s Commonality 
Index and proposed a decomposed GA for product family 
optimization using generalized commonality that allows for 
                                                           

2 In general, use of flexible manufacturing systems may increase the range 
of component variation that can be created with the same tooling; however, 
these systems also typically involve increased capital costs, and we do not 
consider these cases here. 

multiple “sub-platforms”; however, the approach is discrete in 
nature and cannot take advantage of efficient gradient-based 
algorithms. Fellini et al. [2] proposed a two stage method that 
relaxes the commonality metric for use with gradient 
algorithms. They defined the commonality metric as the 
summation of all possible pair-wise comparisons within the 
product family, assigning a binary variable to each pair that is 
equal to one if two components are the same and zero 
otherwise. Consequently, the commonality level can be found 
by summation of all commonality variables within the family. 
However, while defining the commonality metric as the 
summation of all possible pairwise comparisons is a better 
approximation of the indices introduced by the first group, we 
argue that it still does not provide a practical measurement 
reflecting the degree of commonality in the family due to its 
“double-counting” property. This shortcoming can be best 
illustrated with an example: Consider the two alternative 
commonality configurations for a single component (module) 
within a family of four variants in Figure 1 (other components 
are not shown). In the first case, there are two distinct designs 
for the component of interest: The first is used in both variants 
1 and 2, and the second is used in both variants 3 and 4. In the 
second case, there are also two distinct designs for the 
component of interest: The first is used in variants 1-3, and the 
second is used in variant 4. In both cases it is necessary to 
purchase two sets of tooling, so the two alternatives may be 
considered equivalent with respect to tooling cost benefits3. 
However, Fellini’s commonality metric gives preference to the 
second case, since there are three common pairs in this set, 
while there are only two pairs in the first set4. Hence, this 
pairwise comparison-based metric prefers the configurations 
grouping more components in the same platform and as a result 
has convergence bias toward product family architectures with 
all-or-none component sharing. 

In brief, while the commonality indices introduced in the 
first group appear more realistic in measuring the degree of 
commonality within an existing family according to various 
perspectives, they have not generally been applied in the 
optimization context because they require detailed product 
family structure and platform configuration descriptions prior 
to computing their value, which is usually not available during 
the optimization process.  
 

                                                           
3 If more information is known about the production volume of each 

variant and the life of the tooling, a more accurate prediction can be made; 
however, commonality metrics are generally applied at a higher level of 
abstraction so that they do not require excessive data to compute. 

4  If anything, the first alternative would probably be preferred over the 
second because the sharing appears to be more balanced (again, this depends on 
production volume). 
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Figure 1. The Double Counting Defect (pi: ith product, 

η: Fellini’s commonality metric) 
 
In this study, we propose a method for computing the 

commonality index (CI) introduced by Martin and Ishii [6, 7] 
using the input data available for any product family without a 
predefined configuration. Next, the proposed method for 
computing CI is relaxed to the continuous space to expand 
suitability for use in gradient-based approaches, and the effect 
of relaxation on the metric behavior is investigated. As will be 
shown in the following sections, CI is a function of component 
pairwise comparisons, which are treated as binary variables 
(common / not common) in the discrete formulation. When 
working in a continuous space, these variables should be 
approximated by a continuous and differentiable function with 
desirable characteristics. We explore existing approaches, 
introduce a new function having the desired properties, and 
compare the new function with prior approaches. The new 
properties of the proposed metric enable development of an 
efficient and robust single-stage gradient-based optimization of 
the joint product family platform selection and design problem, 
which is examined in a companion paper [14]. 

 
2. PROPOSED METHODOLOGY 

A product family is defined as a group of related products 
derived from a number of shared components produced in the 
same platform. Hence, the basic formulation for optimizing a 
single product can be extended for optimizing a family of 
products by considering shared components as equality 
constraints. Nelson et al. [16] proposed the following 
formulation for optimizing a family of n products with a 
predefined (a priori) platform configuration: 
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In which Sij is a set of index pairs indicating shared 
component between products i and j. Hence, the platform 
configuration is defined by a distinct set of individual pairs and 
imposed by the last equality constraint in Eq.(1). However, in 
order to find the optimal platform configuration and 
corresponding set of products simultaneously, the commonality 
metric and decision variables should be added to the original 
formulation to resolve the trade off between the commonality 
and performance objectives. Fellini et al.[2] modified Eq.(1) to 
optimize the joint problem by including the commonality 
metric in the objective and introducing binary decision 
variables to find the optimal platform configuration: 
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The set  Sij in Eq.(2) contains index pairs of components in 

products i and j that are candidates of sharing. Binary 
commonality decision variables ij

pqη  are set to one if xi
p and  xi

q 

are shared and zero otherwise. As Fellini mentioned, the last 
equality constraint in Eq.(2) ensures that the commonality 
variables are consistent with the values of the design variables. 
However, the formulation permits cases where two design 
variables are equal and the commonality variable is zero. While 
the formulation will be consistent at optimal solutions, it is not 
consistent for all feasible solutions. Hence, in order to ensure 
consistency for all feasible points, the following constraint5 can 
be added to Eq.(2): 
 

0)2 >−+ j
q

i
p

ij
pq xx(η     (3) 

 
2.1 THE COMMONALITY INDEX 

In Eq.(2), )( ij
pqηΓ  measures commonality within the entire 

family and is a function of the binary decision variables ij
pqη . 

Defining the proper form for Γ depends on the company’s 
perspective when designing a product family. In this study, we 
consider the commonality benefit due to tooling cost savings 
and adopt the commonality index (CI) introduced by Martin 
and Ishii [6, 7], which is a measure of unique parts: For a 
product family with a given platform configuration, the 
commonality level can be calculated as: 
 

                                                           
5 This constraint can be relaxed to avoid the strict inequality by 

introducing a tolerance for commonality deviation, but we need not pursue such 
a formulation here.  



 5 Copyright © 2007 by ASME 

∑
=

−

−
−= n

i
ii

i

mm

mu

1

max

max1CI      (4) 

 
where u is the total number of distinct components, mi 
represents the number of components used in variant i, and n 
shows the number of variants in the family. CI ranges from 0 to 
1, and a higher value indicates fewer unique parts6. It should be 
noted that in computing the CI value from Eq.(4) it is assumed 
that the product family structure is given. Hence, in order to 
apply it within an optimization context (i.e. Eq.(2)), it should 
be reformulated as a function of the binary decision variables. 
Let us reconsider the commonality representation in Eq.(2). For 
the kth component in the product family, the commonality 
matrix Γk, is defined as follow: 
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As can be found from Eq.(5), Γk is always a symmetric 

matrix with all diagonal elements equal to 1. In Eq.(5), it is 
assumed that all variants include the kth component, which may 
or may not be shared with other variants in the family. 
However, for the general case some variants may not include 
all components. In this case, the corresponding commonality 
binary variable in Eq.(5) is set to zero. Imposing the transitivity 
constraints on commonality decision variables to ensure a 
consistent matrix (e.g. if 11  1 132312 =→== ηηη , ), the set of 
platforms for component i is well-defined, and Eq.(5) can be 
rearranged to the following block diagonal format: 
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where is nkr the number of kth components produced in the rth 
platform, and [ ]

krkr nn ×1 represents a 
krkr nn ×  matrix with all 

elements equal to 1. Furthermore, number of these sub-matrices 
                                                           

6 In order to estimate the tooling cost savings more precisely, CI should be 
reformulated to include cost coefficients representing the cost saving amount 
due to sharing the corresponding components. However, since this extension 
has no effect on deriving the appropriate formula for CI, which is the focus of 
this paper, all cost coefficients are assumed to be equal for simplicity. 

sk, also called “blocks”, is equal to the number of distinct 
platforms for producing component k: 
 

mnn
m

k

s

r
kr

k

×=∑∑
= =1 1

     (7) 

 
As we know from linear algebra [15], eigenvalues of a 

block diagonal matrix are simply those of its blocks. In the case 
of Eq.(6), the rth block is: 
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In order to find the eigenvalues of Eq.(8), we should 

consider two basics from linear algebra: For any given matrix, 
the number of non-zero eigenvalues is equal to the number of 
linearly-independent columns or rows, and their summation is 
equal to the matrix trace. As a result, Eq.(8) has one non-zero 
eigenvalue equal to nkr. Hence, Eq.(6) has sk non-zero 
eigenvalues λk, each equal to the number of components 
present in the corresponding platform: 
 

kkr
k
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For a family consisting of n products each with m 

components and no commonality, we have mn×  distinct 
components; however, by using platforms and sharing 
components among different products, the total number of 
distinct components can be written as: 
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Therefore, substituting Eq.(7), Eq.(9) and Eq.(10) into 

Eq.(4), CI can be reformulated as follows: 
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Therefore, using the above formula, CI can be defined as a 

function of the commonality decision variables nkr, i.e. the form 
that can be computed in the optimization procedure.  

The derived formula for CI finds the total commonality 
level as a function of binary commonality variables. However, 
in practice, it is not convenient to solve Eq.(2) in the mixed-
integer format. Hence, one alternative way is to omit the 
independent commonality decision variables and define them 
according to the individual product design variables as 
following: 
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By approximating Eq.(12) with a continuous function, the 

total commonality level will be relaxed to the continuous space, 
and gradient-based methods can be applied for finding the 
optimal product family. Hence, in the following sections, 
Eq.(11) will be revised and extended to the continuous space. 
Next, the proper functional form for approximating Eq.(12) 
will be investigated. 
 
2.2 RELAXATION OF THE COMMONALITY INDEX 

It should be noted that in deriving Eq.(11) using the 
discrete format, k

rλ  are integer values as well (since they show 
the number of components in each platform). Hence, by 
restricting k

rλ  to be the non-zero eigenvalues of the component 
commonality matrices, the negative terms are omitted from 
Eq.(11). However, by relaxing CI to the continuous space, this 
assumption is no longer valid and Eq.(11) should be modified 
as follows: 
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In which k

rλ
~  represents the rth eigenvalue of the kth 

commonality matrix (including zero and nonzero terms). This 
generalization reduces to Eq.(11) for the discrete case. Eq.(13) 
introduces a discontinuity in the derivative of CI, however it is 
possible to eliminate the discontinuity through introduction of a 
slack variable, and our empirical examples suggest that such 
reformulation is unnecessary because gradient-based 
algorithms perform well with the form of Eq.(13).  

In order to investigate the effect of relaxation on the total 
commonality value given by Eq.(13), three basic cases will be 
considered:  
1. Consider an arbitrary platform within the product 
family with n′  components. Using the discrete definition for 
the commonality metric, the block matrix associated with this 
platform is as follow: 
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As we mentioned before, Eq.(14) has one nonzero 

eigenvalue: kr
k
r n=λ , showing the number of shared 

components in that platform and as a result its commonality 
level. Now, without loss of generality, we perturb the 

th
krn component, assuming it differs from other components by δ 

( 10 ≤≤ δ ). Therefore, the new sub-matrix will become: 
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As can be seen from Eq.(15), there are only two linearly 
independent rows (or columns) in the matrix, which is equal to 
the number of nonzero eigenvalues and their sum is equal to 
the matrix trace. Furthermore, the summation of all possible a 
set of eigenvalues multiplication is equal to the ith sum of the a-
rowed diagonal minors of the matrix (Jacobson 1974, p. 109). 
Hence:  
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As can be found from Eq.(17), when δ=0, we have: 

krn=′1λ and 02 =′λ  (the original case); while for δ=1, we have 

11 −=′ krnλ  and 12 =′λ  (which shows nkr-1 shared components 
and 1 distinct component). For 0<δ<1, the commonality level 
for the corresponding platform (i.e. 11 −′λ ) is sketched in Figure 
2 (since 2λ′  is always less than 1 for 0<δ<1, it has no effect on 
the platform commonality level, Eq.(13)). 

 

 
Figure 2. Commonality level change for the case 1 

 
2. Now consider the same platform with nkr shared 
components, and add an arbitrary component which is initially 
distinct from this platform. The sub-matrix associated with this 
augmented platform in discrete format is as follow: 
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Eq.(18) has two non-zero eigenvalues 

in=1λ  and 12 =λ . 
Now relaxing the distinct variable to the continuous space, it 
becomes common to the platform components by the value of γ 
( 10 ≤≤ γ ). Therefore, the new sub-matrix will become: 
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Using the same concepts as the first case, we have the 
following relations for the eigenvalues of Eq.(19): 
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As can be found from Eq.(21), when γ=0, we have: 

krn=′1λ and 12 =′λ  (the original case); while for γ=1, we have 

11 +=′ krnλ  and 02 =′λ  (which shows nkr+1 shared components 
and no distinct component). For 0<γ<1, i.e. the continuous case 
the commonality level for the corresponding platform 
(i.e. 11 −′λ ) is sketched in Figure 3. 

 

 
Figure 3. Commonality level change for case 2 

 
3. As a final case, consider two platforms with 1+′n and 
n′ components respectively. In this configuration, we are 
interested to observe how the commonality level changes as the 
kth component in the first platform differs from the other 

members and become common with the second platform 
components simultaneously. The sub-matrix representing the 
aforementioned platforms has the following form for the 
discrete representation: 
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The above matrix has two non-zero eigenvalues equal to 
1+′n and n′ , indicating the number of components in the first 

and second platforms respectively; hence the total commonality 
level is equal to 12 −′n . Without loss of generality, by relaxing 
the thn )( 1+′  component in the first platform, the commonality 
matrix will have the following form: 
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in which α ( 10 ≤≤α ) is the relaxation factor. It should be 
noted that in general, families with multiple platforms, have 
different factors for each individual platform. In this study, we 
used the same factor for both platforms for simplifying the 
analytical equations. However, the conclusions can be extended 
to the general form. Using the same theories from linear 
algebra as the previous cases, the following relations for the 
eigenvalues will be obtained: 
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( ) 01212212 2223 =−′−′−−−′′+′+′−′→ )()()( ααλααλλ nnnn  (25) 
 

Therefore, the total commonality level can be found from 
the following relation: 
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As can be found from Eq.(26) for both α=0 and α=1 the 
commonality level is 12 −′n  (i.e. the cases in which the 
component belongs to either first platform or the second one). 
The metric behavior in the continuous space is sketched in 
Figure 4. Note that because commonality is being maximized, 
the non-concavity of this function suggests local maxima. 
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Figure 4. Commonality level change for case 3 

 
The previous three cases can be considered as the basic 

cases in platform variable selection during optimization in a 
relaxed continuous space. That is, any change in the product 
family architecture during the optimization process can be 
regarded as a combination of these three cases: A distinct 
component becomes common with an existing platform; a 
platform component deviates from other members and finally 
become a distinct component; a platform variable deviates from 
other members and become common with another platform 
simultaneously. It should be noted that, since the system is 
nonlinear (as can be seen from the eigenvalue equations), the 
superposition principle cannot be applied for a general case. 
However, the analytical results for these simplified cases along 
with the numerical justifications for general product families, 
indicates the validity of the proposed metric for the continuous 
space. 
 
2.3 CONSISTENCY CONSTRAINTS FOR COMMONALITY 
VARIABLES AND DESIGN VARIABLES 

After defining a commonality index that remains valid in 
the continuous space, it is necessary to approximate Eq.(12) by 
a continuous function. As Fellini et al. mentioned, Eq.(12) 
should be approximated by a function that satisfies two 
requirements: Its range should be [0, 1] with correct values at 
end points, and it should be continuously differentiable. Using 
these two criteria, he defined the continuous commonality 
metric as: 
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where α is a value between 0 and 1 that controls the degree to 
which the curve approximates the discontinuous step function 
in Eq.(12) that would describe the discrete nature of 
commonality: As the α value decreases, the optimal solution of 
the resulting continuous problem tends toward that of the 
discrete formulation. However, if α is close to zero, Eq.(27) 
becomes ill-conditioned, which leads to numerical errors and 

convergence difficulties. Therefore, the approach is to 
approximate the discrete formulation by a sequence of 
continuous optimization problems in which α value is 
decreased iteratively until variables that are designated as 
common fall within an acceptable deviation tolerance. 
However, the convergence properties of the iterative approach 
depend strongly on the form the approximating function. That 
is; the function should be selected so that its first derivative 
with respect to α becomes zero for the acceptable deviation 
tolerance for α value that the optimization algorithm can handle 
without numerical errors. We will consider this issue in detail 
later.  

In addition, since Eq.(13) depends on the approximating 
function, it is desirable to select the function so that CI 
becomes continuous and differentiable. In this study, we 
propose two alternatives to Fellini’s relaxation formula; in 
order to find the most well-suited form for Eq.(3), the 
alternatives will be compared with respect to the 
aforementioned criteria. 

One possible candidate that has been used frequently in 
probabilistic models for pairwise comparison is the logistic 
curve. It can be applied as a commonality metric with some 
slight changes to the standard form, which we call “half logistic 
curve” for distinction: 
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Another alternative for approximating Eq.(12) is the 

Hubbert curve, which is the derivative of the logistic function: 
 

( )21

4
α

α

η
/

/

k

k

x

x
ij

k
e

e
Δ−

Δ−

+
=′      (29) 

 
First, these three functions will be compared according to 

their properties with respect to α. Eqs. (27)-(29). Their first 
derivatives ( )αη ∂′∂ /  are sketched as a function of α for a fixed 
tolerance ( xΔ =0.01) in Figures 5 and 6 respectively. 
 

 
Figure 5. Proposed approximating functions with respect to 

α. 
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Figure 6. First derivative of the proposed approximating 

functions with respect to α 
 
Figures 5 and 6 are sketched for 00500.0005 .≤≤α . As can 

be found from these figures, for both the Half Logistic and 
Hubbert curves, the first derivative approaches zero 
for 0010.≤α . That is, staring from a larger α and decreasing its 
value during the iterative procedure, the optimization algorithm 
will be expected to converge for 0.001α ≈  which can be 
applied in the optimization algorithm without numerical errors. 
However, for Fellini’s proposed function, the curve doesn’t 
approach a constant value even for 00050 .≤α , which leads to 
convergence problems during the optimization process. On the 
basis of this comparison, the Half Logistic and Hubbert curves 
should be preferred over Fellini’s curve. 

Next, in order to investigate the effect of the 
approximating function on CI characteristics, all proposed 
functions are plugged in Eq.(11). Here, for simplicity and better 
visualization, we considered two platforms, each with ten 
components. We are interested to sketch the commonality 
change for a sequence of decreasing α values as a distinct 
component becomes common with the first platform, then 
deviates from it and becomes common with the second 
platform, and finally deviates from the second one and 
becomes distinct again. Results are shown in Figures 7-9 for 
Half Logistic, Hubbert and Fellini’s curves respectively with x2 
= 1, x3 = 2, x1 as the variable on the x-axis and commonality 
change on the y-axis. As can be seen from these figures, all 
functions approach the discrete definition as α becomes small 
(in each case, the “inner” curves that are more sharp at x=1 and 
x=2 represent cases of smaller α, while the “outer” broader 
curves represent cases with larger α).  

Figure 7 shows that in the case of the Half Logistic curve, 
CI is not differentiable with respect to Δx at the two extreme 
points which may cause numerical difficulties for optimization. 

However, for both the Hubbert and Fellini’s curves, CI has 
a continuous derivative with respect to Δx and is concave in the 
neighborhood of the local optima. Hence, with respect to the 
criteria of differentiability and convexity, Fellini’s curve and 
Hubbert curves are superior to the Half Logistic curve.  

 

 
Figure 7. Continuous CI using the Half Logistic curve 

 

 
Figure 8. Continuous CI using Hubbert curve 

 
In brief, according to the two aforementioned criteria, the 

Hubbert curve shows the best characteristics, since it converges 
to the discrete solution as we decrease α within a number of 
finite steps and results to a differentiable commonality index.  
 

 
Figure 9. Continuous CI using Fellini’s curve 
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3. CONCLUSIONS 
In this study, we proposed a method for computing the 

commonality index introduced by Martin and Ishii for use in 
optimization and argued for its improved properties over prior 
metrics applied in optimization literature. The discrete 
definition of the commonality index was then relaxed to the 
continuous space, and properties of the index were examined 
using base cases. Results show that the proposed metric 
remains valid in the continuous space, enabling relaxation of 
the MINLP formulation into a continuous domain which 
enables use of gradient based approaches as the optimization 
method. Since, the proposed metric is a function of pairwise 
comparisons among all possible sets of products present in the 
family, the function applied for approximating the discrete 
definition has a considerable effect on the optimization 
performance. Hence, two important criteria for selecting the 
approximating function were described, and two proposed 
alternatives were compared with the prior method. The Hubbert 
curve showed to be the only alternative possessing both desired 
characteristics among the available options. Therefore, 
computing CI using the proposed method along with the 
Hubbert curve as the approximating function can enable new 
approaches to solve the product family optimization problem. 
One such approach using a single-stage gradient-based 
optimization algorithm with the index and relaxations 
developed in this paper to solve the joint platform 
configuration and product family design problem is presented 
in a companion paper [14]. 
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