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ABSTRACT 

A core challenge in product family optimization is to 

develop a single-stage approach that can optimally select the set 

of variables to be shared in the platform(s) while simultaneously 

designing the platform(s) and variants within an algorithm that 

is efficient and scalable. However, solving the joint product 

family platform selection and design problem involves 

significant complexity and computational cost, so most prior 

methods have narrowed the scope by treating the platform as 

fixed or have relied on stochastic algorithms or heuristic two-

stage approaches that may sacrifice optimality. In this paper, we 

propose a single-stage approach for optimizing the joint 

problem using gradient-based methods. The combinatorial 

platform-selection variables are relaxed to the continuous space 

by applying the commonality index and consistency relaxation 

function introduced in a companion paper. In order to improve 

scalability properties, we exploit the structure of the product 

family problem and decompose the joint product family 

optimization problem into a two-level optimization problem 

using analytical target cascading so that the system-level 

problem determines the optimal platform configuration while 

each subsystem optimizes a single product in the family. Finally, 

we demonstrate the approach through optimization of a family 

of ten bathroom scales; Results indicate encouraging success 

with scalability and computational expense. 

 

KEYWORDS: Product Family, Single-Stage Approach, 

Platform Selection, Scalability, Decomposition. 

NOMENCLATURE 

CI: Commonality Index 

f
i
: Objective function vector for the i

th
 product 

h
i
: Vector of equality constraints for the i

th
 product 

g
i
: Vector of inequality constraints for the i

th
 product 

Sij: Platform configuration index set 

sk,: Number of distinct platforms for producing the k
th

 

component 

u: Total number of distinct components in the product family 

x
i
: Design variable vector for the i

th
 product 

α: Relaxation factor 
ij

pqη : Binary commonality decision variables 

k

rλ
~

: r
th

 eigenvalue of the k
th

 commonality matrix (including zero 

and nonzero terms) 
k

rλ : r
th

 nonzero eigenvalue of Γk 

Γ: Commonality objective function for the entire family 

Γk: Commonality matrix for the k
th

 component 

 

1. INTRODUCTION 

A product family can be defined as a group of related 

products derived from a number of shared components 

produced in the same platform. One main challenge in 

designing a successful product family is to exploit commonality 

for decreasing manufacturing cost without sacrificing the 

required distinctiveness for attracting a variety of market 

segments. While increasing the number of common modules 

among variants in the product family generally reduces cost, it 
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also leads to some loss in the ability to achieve individual 

performance targets. Hence, resolving the tradeoff between 

commonality and the ability to achieve distinct performance 

targets has been the focus of many studies during the past 

decade.  

Simpson et al. [1] reviews and compares forty approaches 

addressing the product family optimization problem. According 

to this classification, some methods limit scope in order to 

reduce complexity by assuming that design variables defining 

product platforms are known a priori and are not treated as 

variables in the optimization process (Allada and Jiang [2]; 

Blackenfelt [3], D’souza and Simpson [4], Dai and Scott [5], 

Farrell and Simpson [6], Fellini et al. [7],;Gonzales-Zugasti et 

al. [10], [11], Hernandez et al. [12], Kokkolaras et al. [13], 

Kumar et al. [14], Li and Azarm [15], Messac et al. [16], 

Nelson et al. [17], Ortega et al. [18], Seepersad et al. [19], [20], 

Simpson et al.[21], [22], Willcox and Wakayama [23]). 

However, other approaches optimize for the platform selection 

and product family design simultaneously; that is, platforms are 

specified a posteriori (Akundi et al. [24], Cetin and Saitou [25], 

de Weck et al. [26], Fellini et al., [27], [28], Fujita and Yoshida 

[29], Gonzales-Zugasti and Otto [30], Hernandez et al. [31], 

[32], Messac et al. [33], Nayak et al.[34], Rai and Allada [35], 

Hassan et al. [36], Simpson and D’souza [37], Fujita et al. [38], 

Khire and Messac [39], Khajavirad et al. [40]). Fujita [41] 

provides a related classification by defining three classes of 

product family optimization problems: In class-I problems, 

product attributes are optimized under a fixed platform 

assumption (i.e. the platform is known a priori); class-II deals 

with finding the optimal platform using predefined product 

attributes; and finally, in class-III, the product attributes and 

platform are optimized simultaneously. In general, only the 

class-III a posteriori approaches can claim to guarantee 

optimality with respect to the joint problem in general, since 

platform selection and variable optimization are not 

independent, and it would be difficult or impossible in most 

cases to know the optimal platform without first knowing 

something about the design variable values at the solution.  
 

1.1 Prior Approaches for Solving the Joint Problem 

Simpson et al. [1] classify approaches for solving the joint 

a posteriori platform selection and design problem based on the 

number of stages used for finding the optimal solution: Single-

stage approaches optimize both platform variable selection and 

the design of the family of products simultaneously (Akundi et 

al. [24]; Cetin and Saitou [25], Fujita et al. [38], Fujita and  

Yoshida [29], Gonzales-Zugasti and Otto [30], Hassan et al. 

[36], Simpson and D’souza [37], Khire and Messac [39], 

Khajavirad et al. [40]), whereas two or multi-stage algorithms 

select the platform within the first stage and fix the selection 

while optimizing the product family design in the second stage 

(de Weck et al. [26], Hernandez et al. [31], [32], Messac et al.,  

[33], Nayak et al. [34], Fellini et al. [27], [28], Rai and 

Allada[35]). There is some tradeoff between single and two-

stage approaches: Optimizing the platform and corresponding 

design variables in two separate stages may lead to sub-optimal 

solutions. However, single stage approaches tend to have higher 

computational cost, which can make these algorithms 

impractical when large numbers of products are considered. To 

sum up, a main challenge in product family optimization is to 

design a single-stage approach that solves the joint problem and 

remains efficient and scalable while dealing with large 

problems.  

Most prior single-stage approaches use genetic algorithms 

(GAs) for solving the joint-problem (Simpson and D’souza 

[37], Hessan et al. [36], Akundi et al. [24], Gonzales-Zugasti 

and Otto [30], Cetin and Saitou [25], Khajavirad et al. [40]). 

However, applying stochastic methods like GAs to the joint 

problem involves significant computational cost and limited 

scalability for dealing with large problems. Khajavirad et al. 

[40] proposed an innovative decomposition method that 

significantly improves scalability of the GA approach; however, 

the reliance of these approaches on GAs limits the ability to 

ensure local or global optimality and requires significant time in 

problem-specific algorithm design and parameter tuning.  

Therefore, an alternative method that is able to take 

advantage of the properties of established gradient-based 

algorithms in solving the joint problem would be beneficial. 

However, the platform-selection phase involves discrete 

variables, leading to a mixed integer nonlinear programming 

(MINLP) formulation, which is challenging to solve directly. 

Two prior approaches have relaxed the MINLP formulation to 

the continuous domain using a sequence of approximation 

functions so that nonlinear programming (NLP) techniques can 

be used: Fellini et al [27] proposed an approach for module-

based platforms with generalized commonality and Khire and 

Messac [39] proposed an approach for scale-based platforms 

with all-or-none commonality. We discuss each of these 

approaches in turn. 

The approach of Fellini et al. [27] involves an 

approximation of the binary commonality variables using a 

continuous, differentiable function and defined tolerances for 

categorizing the shared and distinct variables after optimization 

in the relaxed space. Although the approach initially searches in 

the relaxed joint space, it is not a single-stage approach for 

solving the joint problem: In the first stage, the problem is 

formulated for maximizing commonality, and the performance 

objectives are treated as constraints on minimum acceptable 

deviation. The second stage designates variables as common or 

distinct based on results from the first stage and holds this 

designation fixed during variant optimization. Hence, the first 

step results in finding a feasible platform set, which is not 

necessarily a unique solution, and that set is optimized for 

maximum performance in the second stage. This approach has 

been demonstrated to be efficient for optimizing the product 

family using gradient-based methods; however, the two-stage 

approach may lead to sub-optimal solutions. Furthermore, 

increasing the number of products in the family increases the 

number of feasible platform alternatives considerably. In this 

case, even if the first stage can find all feasible platforms, they 
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must all be optimized in the second stage in order to ensure the 

jointly optimal solution, which makes this method 

computationally inefficient for a large number of products.  

Khire and Messac [39] applied the selection integrated 

optimization method (SIO), which integrates the platform 

selection and variant design optimization phases by using a 

variable segregating mapping function (VSMF). VSMF is 

defined as a family of continuous functions that progressively 

approximate the discontinuous mapping used to segregate 

platform variables from scaled design variables in scale-based 

product families. Hence, the joint product family optimization 

problem was formulated as a series of continuous optimization 

problems so that the final solution defines the platform and non-

platform design variables based on a predefined threshold value 

for each design variable. The proposed method was illustrated 

in the design of the electric motor product family and proved to 

be robust for optimizing the joint problem for scale-based 

product families in a single stage approach. However, the 

method does not address module-based platforms, and platform 

selection is limited to the all-or-none sharing possibility. 
 

1.2 Commonality Metrics 

Khajavirad and Michalek [42] argue that prior metrics for 

measuring the degree of commonality in the product family 

optimization literature do not properly address the producer’s 

purpose for designing product families. Some metrics penalize 

increased variance among variables [24], [33], [36], [37], [39],, 

whereas it is often a binary “common or not common” decision 

that determines the ability to share use of tooling and 

equipment, thus increasing economies of scale and reducing 

cost. Some methods restrict commonality to all-or-none, 

eliminating the possibility of component sharing among a subset 

of the variants [24], [33], [36], [37], [39], and other metrics 

double-count commonality [27]. To address these issues 

Khajavirad and Michalek [42] proposed a new method for 

computing the Commonality Index (CI), introduced by Martin 

and Ishii [43], using information available during the 

optimization process, and they relaxed the discrete formulation, 

verifying the validity of the proposed metric in the continuous 

space and comparing properties to prior metrics. The resulting 

continuous CI metric, along with the proposed consistency 

relaxation function, is adopted here for optimizing the joint 

problem using NLP techniques.  
 

1.3 Scalability and Decomposition 

Although using gradient-based methods decreases 

computational cost considerably, a gradient-based algorithm 

may still encounter scalability limitations when dealing with 

large number of products. One systematic way to handle large-

scale optimization problems with special structures is to 

decompose the original problem hierarchically into a number of 

smaller sub-systems that are optimized separately and 

coordinated to arrive at the overall system optimum. While a 

variety of decomposition methods have been studied in the 

literature for decomposing complex systems, analytical target 

cascading (ATC) was developed specifically for solving a 

hierarchy of interacting systems and subsystems, and prior 

research has applied the framework to product line and product 

family optimization (Kokkolaras et al. [13], Michalek et al. 

[44]). Convergence proofs are available for ATC, and ATC 

avoids the numerical problems of some alternative 

decomposition methods (Kim et al. [45], Michelena et al. [46], 

Tosserams et al.[47], Li et al. [48]). Hence, ATC has been 

widely used for optimizing engineering design problems with 

hierarchical structures (Kim et al. [8], [9] and [49], Kokolaras 

et al. [13], Papalambros [50], Choudhary et al.[51], Allison et 

al. [52], Michalek et al. [44], [53]). In particular, Kokolaras et 

al. [13] extended the target cascading methodology for optimal 

product development to the design of product families with 

predefined platform architecture. According to their framework, 

the top level problem addresses family attributes while lower 

levels (i.e. product levels) address the attributes associated with 

particular components to satisfy individual product 

requirements. Component sharing is represented by introducing 

elements with multiple parents. They applied ATC for designing 

a product family with two vehicles by decomposing it into a 

four-level vehicle design problem. However, this method is only 

applicable to product families with fixed (a priori) platform 

configurations. Michalek et al. [44] applied ATC to design 

product lines using market data to predict demand and revenue 

and manufacturing models to predict cost. This approach went 

further to quantify cost and revenue benefits of product line 

decisions; however, the approach did not address commonality 

among products in the line. 
 

1.4 Proposed Approach 

In this paper, we propose a single-stage approach for 

solving the joint platform-selection and design problem for 

module-based product families using gradient-based methods. 

The combinatorial platform variable selection is relaxed to the 

continuous space using the commonality index extension 

introduced by Khajavirad and Michalek [42]. Next, in order to 

make the algorithm scalable, the original all-in-one formulation 

is decomposed into a two-level optimization problem using 

ATC so that the system level optimization problem finds the 

optimal platform configuration while each sub-system deals 

only with optimization of a single variant in the family. Finally, 

a case study involving the design of a family of bathroom scales 

from the literature is presented and optimized using the 

proposed approach. 

 

2. PROPOSED METHODOLOGY 

The proposed methodology is developed by first deriving 

the original all-in-one formulation and then decomposing the 

formulation using ATC. 
 

2.1 All-In-One Formulation 

The joint product family platform selection and design 

problem can be considered as an extension of single product 

design optimization by including a commonality metric as an 
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additional objective (along with the individual performance 

objectives of each variant) and imposing consistency constraints 

between the platform-selection and design variables. Fellini et 

al. [27] proposed the following formulation for optimizing a 

product family with n products
1
: 
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where the set Sij contains index pairs of components in products 

i and j that are candidates for sharing, and η
ij

pq is the 

commonality decision variable, which remains consistent with 

its corresponding design variables by imposing the last equality 

constraint in Eq.(1). Khajavirad and Michalek [42], argued that 

defining the commonality metric as the sum of the commonality 

decision variables leads to a “double counting” defect, which 

causes a convergence bias toward product family architectures 

with all-or-none component sharing. They addressed this 

problem by reformulating the commonality index (CI) 

introduced by Martin and Ishii [43], as a function of the 

commonality decision variables, so that it can be applied as the 

commonality metric within an optimization context. They also 

noted that the consistency constraint in Eq(1) does not ensure 

that the commonality decision variable will equal one at feasible 

points where the corresponding design variables are equal, and 

they defined the commonality variables as a function of the 

corresponding design variables instead of treating them as 

variables, thus converting a MINLP formulation into a NLP 

formulation with a discontinuous commonality function. Finally, 

to simplify notation the problem is restricted
2
 such that 

components are indexed k = {1,2,...,m} and the set of candidate 

components Sij consists only of all sets where i=j. Additionally, 

we no longer assume, as in Eq(1), that each component has a 

single associated variable. Instead, we explicitly define a vector 

of variables xk for each component (or module) k and enforce 

that all dimensions of the component must be shared before the 

component can be considered common. Applying these 

modifications to Eq.(1), the optimization problem for a family 

of n products, each with m components, can be reformulated as 

follow: 

                                                           
1 While there are a number of different formulations for the product 

family optimization problem, the authors found Fellini’s formulation a proper 

form for representing the joint platform selection and design problem as a 

MINLP problem. 
2 The restriction does not eliminate the possibility that some variants may 

not include all modules, since a variant that does not include a particular 

module can be represented by enforcing η=0. However, the restriction does 

disallow cases where one variant carries two instances of a module. Extension 

to include this case is relatively straightforward. 
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where Γk represents the commonality matrix for the k
th

 

component in the family. CI is the commonality index 

introduced by Martin and Ishii [43] as a measure of unique 

parts: For a product family with a given platform configuration, 

the commonality level can be calculated as: 

∑
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     (3) 

where u is the total number of distinct components, mi 

represents the number of components used in variant i, and n 

shows the number of variants in the family. Khajavirad and 

Michalek [42] reformulated Eq. (3) so that it can be calculated 

given the available data during the optimization process
3
: 

1 1
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λ
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=
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where λλλλ
k
 is the vector of non-zero eigenvalues of Γk and sk is 

the number of blocks in Γk. In order to solve Eq.(2) using 

gradient-based methods, both commonality metric and 

commonality decision variable definitions must be relaxed to 

the continuous space. Khajavirad and Michalek [42] showed 

that Eq.(4) can be relaxed to the continuous space using the 

following modification: 

1 1
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ksm
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=
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where k

rλ
~

 represents the r
th

 eigenvalue of the k
th

 commonality 

matrix
4
. Commonality variables η can be relaxed to the 

continuous space using various representations. Fellini et al. 

[27] proposed the following approximating function: 
1

2

1
i j

ij k k

k

x x
η

α

−
  −
 ′ = +  
   

    (6) 

                                                           
3 In this case, we assume that the benefit of component sharing is equal 

across components. If the cost savings associated with each commonality 

alternative are known, they can be included in a straightforward way. 
4
 Using the max function for relaxing the discrete definition, introduces a 

discontinuity in the derivative of CI, which can be eliminated by applying a 

slack variable. However, our empirical examples indicate the gradient-based 

algorithms perform well with the formulation in Eq(5).  
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where α is a value between 0 and 1 that controls the degree to 

which the curve approximates the discontinuous step function 

that would describe the discrete nature of commonality: As the 

α value decreases, the function tends toward that of the discrete 

formulation. Hence, the discrete optimization problem can be 

replaced by a series of continuous problems in which α 

decreases iteratively until variables that are designated as 

common fall within an acceptable deviation tolerance. 

However, Khajavirad and Michalek [42] showed that the 

Hubbert function has better properties for optimization, 

including improved curve behavior with decreasing α, 

derivative continuity, and concavity: 

( )
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i
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Therefore, using the above modifications and generalizing 

to multiple variables per component, the NLP formulation for 

the joint product family platform-selection and design problem 

is as follows: 
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Hence, by defining α0 and c, Eq.(8) will be optimized 

iteratively until the difference between the common variables 

fall within the acceptable tolerance. It should be noted that in 

Eq.(8) we used a linear scheme for decreasing the α value. 

However, in general, different methods, such as an exponential 

reduction scheme, can be applied depending on the form of the 

approximating function. Moreover, appropriate values for c 

depend on the optimization problem and should be tuned 

properly for each case (it should be noted that there is an 

optimum choice for c in any particular problem: Smaller values 

may cause convergence problems and larger values may induce 

increased computational effort without any effect on the final 

solution). 

It should be noted that Eq.(8) is a multi-objective 

optimization problem with 
1

1
n
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p

=
+∑ , ni ,...,1=  objective 

functions, where pi is the number of objective functions for the 

i
th

 product. In practice we are interested to determine the Pareto 

frontier of the commonality value versus total performance loss, 

i.e. the tradeoff between increasing the commonality and 

loosing variant performance. Hence, all performance objectives 

can be grouped into one objective defined as the (normalized 

and possibly weighted) sum of all performance deviations from 

their corresponding targets. Using this aggregated performance 

function, the number of objectives in Eq.(8) reduces to two. 

Moreover, in the discrete definition of commonality variables, 

for a product family with n products, each with m components, 

CI can attain the following values: 
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Hence, the Pareto frontier representing the tradeoff 

between performance loss and commonality can be found by 

minimizing the performance loss and the commonality deviation 

with respect to each level given by Eq.(9). Specifically, the 

multi objective optimization problem is converted to a series of 

1 + m(n-1) single objective optimization problems, each finding 

the optimal platform and individual product design variables for 

a fixed commonality level. Applying the above modifications, 

Eq.(8) can be reformulated as follows: 
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iT  represents the vector of the performance targets for the i
th

 

product, and l
r
 shows the commonality target value for  nm–r 

distinct components. The w
i
 terms are weighting coefficients 

that define the relative importance of achieving each 

performance objective. 
 

2.2 Decomposed Formulation 

According to the ATC framework, the original all-in-one 

problem with a hierarchical structure is decomposed into a top 

level supersystem and a hierarchy sub-systems. The overall 

system objective function is the sum of all of the objective 

functions presented in each sub-problem, and subproblems are 

defined so that they are nearly separable expect for a few 

variables called linking variables
5
. The top-element, which 

                                                           
5 In the ATC literature, the term “linking variable” is sometimes used to 

refer only to variables shared between subsystems at the same level of the 

hierarchy; however, in the general decomposition literature, the term is used to 
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represents the overall system, propagates deign targets to the 

subsystems below. Each subproblem is optimized separately to 

meet its targets as closely as possible. Then lower level systems 

pass up responses, which are rebalanced at higher levels 

iteratively until consistency is achieved.  

As can be seen in Eq.(10), the commonality deviation 

portion of the objective function is the only non-separable part 

in the all-in-one formulation. If commonality is not considered, 

each product could be optimized independently. Hence, using 

ATC, the joint product family platform-selection and design 

problem can be decomposed to a two-level optimization 

problem: The system level optimization problem finds the 

optimal platform configuration while each subsystem only deals 

with optimizing a single product in the family (Figure 1). 

 

 
Figure 1. ATC framework for optimizing the joint product 

family problem 

 

The resulting system level problem is an unconstrained 

NLP problem, which finds the optimal platform and distinct 

design variables for a given number of shared components 

defined by the target value and with minimum deviation from 

the responses passed up from product level sub-problems:  

                                                                                                       
refer to variables shared between any two subsystems. Here we use the more 

general definition. 
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in which π is the inconsistency constraint relaxation function, 

which forces the response copies to match the targets. y
i
 

represents the response vector (i.e. the product design variables) 

passed up from the i
th

 sub problem. 

The optimization problem for the i
th

 subsystem, which 

optimizes the i
th

 individual product has the following 

formulation: 

i

iiiii

iw

y

xyyfT

    respect towith 

 )-()(            Minimize
2

2
π+−  (12) 

subject to          ( )                         

                          ( )   

i i

i i

≤

=

g y 0

h y 0
 

In which y
i
 is the vector of local variables representing the 

design variables for the corresponding product, and x
i
 is the 

target vector cascaded down from the system level subproblem.  

A variety of approaches have been used to decompose and 

coordinate consistency among subsystems, including quadratic 

penalty functions (Kim et al. [45], Michelena et al. [46], 

Michalek and Papalambros [54]), ordinary Lagrangian 

relaxation (Lassiter et al. [55]), and augmented Lagrangian 

relaxation (Tosserams et al. [47], Kim et al. [45], Li et al. [48]). 

A recent comparison study by Li et al. [48] concluded that the 

truncated approaches of the augmented Lagrangian alternating 

direction (ALAD) method of multipliers (Tosserams et al. [47],  

[56]) and the diagonal quadratic approximation (DQA) 

approach (Li et al. [48]) have the best computational 

efficiencyby orders of magnitude in empirical examples, and we 

adopt the ALAD method in this study. According to this 

method, the consistency constraint relaxation function π(y
i
 – 

xm
i
) is the augmented Lagrangian function λ

T
(y

i
 – xm

i
) + w

T
(y

i
 – 

xm
i
)

2
, where the values of λ are determined using the method of 

multiplers. In the ALAD approach, each sub-problem is solved 

only once before updating λ via the method of multipliers, 

instead of solving the iterative inner loop coordination scheme 

to optimality for each fixed value of λ, as required by the 

standard augmented Lagrangian method. The penalty weight 

may be held constant or only be updated when no improvement 

in objective function is observed. 

The optimization algorithm for solving the decomposed 

product family problem is sketched in Figure 2. As can be 
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observed from this figure, in the inner loop, for a fixed α and 

commonality value, the ATC formulation is solved using ALAD 

method: Langrange multipliers λ are updated according to the 

method of multipliers and w
i
 is only updated if no improvement 

in its corresponding objective function was observed. This 

process continues until the value of the inconsistency constraint 

in all subproblems falls below the maximum allowable 

deviation defined by the designer. In the middle loop, α 

decreases iteratively until the deviation of the commonality 

metric from its target value and the relative difference among 

the shared components falls below user specified tolerances. 

Next, after, finding the optimal platform configuration and 

individual products for a constant commonality value, l
r
 is 

incremented, and this procedure continues until the optimum 

product families for the entire range of commonality levels are 

found.  

 
Figure 2. Decomposition algorithm for optimizing the joint 

product family problem 

 

3. CASE STUDY: BATHROOM SCALE DESIGN 

We now apply the proposed approach for optimizing the 

joint product family problem to the design of a family of 

standard household dial-read out and digital bathroom scales 

from the literature in order to illustrate the approach and 

examine efficiency. Design of a family of scales is a well-suited 

example for illustrating the trade off between commonality and 

achievement of distinct performance targets
6
 because individual 

                                                           
6 Following the bulk of the product family literature, we have treated 

performance targets as exogenous and introduced a generic penalty function for 

deviation from those targets. If data are available, quantification of 

differentiation in terms of the market responses of a heterogeneous consumer 

population would more completely describe the product family tradeoff [44]; 

however, we do not pursue this here. 

products with distinct characteristics and performance 

objectives (e.g. digital and analog) operate according to nearly 

identical principles: The force applied on the top cover B is 

amplified by four levers A that transfer the force to a coil spring 

C at the base of the scale (Figure 3). The spring resists 

displacement proportionally to the force applied, and a pivot D 

transfers motion to a horizontal rack E, which turns a pinion 

gear F attached to the dial G. The result is dial turn per force 

applied. In the analogue case (Figure 4a) the dial is read 

directly by the user. In the digital case (Figure 4b) the dial is an 

encoder wheel, which is read by a photointerrupter and 

displayed on the digital display. The potential for achieving 

significant market differentiation with a high level of 

engineering commonality makes the case study well-suited to 

product family optimization. 

 

 
Figure 3. Disassembled analog scale showing components 

 

 
Figure 4. Scale with cover removed a) dial read-out scale, b) 

digital scale 

 

The engineering model used for optimizing the bathroom 

scale family is taken from Michalek et al. [53]. Product design 

variables are depicted in Figure 5 on the analog scale, and the 

digital scale has the same design variables except for the dial 

diameter, which is not present in the digital scale. A brief 

description of design variables, bounds, and fixed parameters is 

provided in Appendix A. 
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Figure 5. Design variables shown on the disassembled 

analog scale (Michalek et al. [53]) 

 

For module-based product family optimization, design 

variables are grouped according to the component to which they 

belong. These components are depicted on the analog scale in 

Figure 3 and listed in Table 1. It should be noted that in 

platform based product families, which is the focus of this 

paper, commonality is measured based on component sharing; 

i.e. two products have a common part if all of the corresponding 

design variables have the same value for both products. 

 

Table 1: Scale components and their design variables 

 Component Name Associated Variables 

1 Long Lever (A) {x1, x2, x5} 

2 Cover (B) {x7, x13, x14} 

3 Spring (C) {x6} 

4 Pivot (D) {x10, x11} 

5 Short Lever (A) {x3, x4} 

6 Rack (E) & Pinion (F) {x8, x9} 

7 Dial (G) {x12} 

 

Performance objectives are the same as those addressed by 

Michalek et al. [53], except for the tick mark gap, which is not 

considered in this study (Table 2).  

 

Table 2: Performance Objectives for Scale Design 

Product Characteristic Formula 

Weight Capacity 
( )( )

( ) ( )( )51343111

43211096
1

4

xxxxxxx

xxxxxxx
z

+++

++
=

π
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( )( )( )

( )( )

1 1
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4 1 1
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z
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Design constraints are detailed in Appendix A: In addition 

to the constraints developed in [53], we added additional 

constraints to the optimization problem in order to capture 

additional design issues ignored in the prior study. 

 

4. NUMERICAL RESULTS: 

In order to illustrate the concept of generalized component 

sharing in the optimal product family, the proposed approach is 

first applied for solving a family of three bathroom scales; 

including one analog and two digital scales. The commonality 

metric for a platform-based product family measures the 

number of shared/distinct components (not design variables), so 

∆xk in Eq.(6) was generalized in Eq.(7) using a norm of the 

vector of deviations for the component. In the application we 

choose the normalized l1 norm and divide by the number of 

variables to measure the average deviation in each component. 

For example, ∆x1 is defined as follows: 

 
1 21 2 1 2

5 51 1 2 2
1

1max 1min 2 max 2min 5max 5min

1

3

x xx x x x

x x x x x x

 −− −
∆ = + +  − − − 

x  (12) 

 

where ximax and ximin represent the upper and lower bounds for 

the design variables respectively. Performance targets for 

individual products are listed in Table 3. Performance targets 

were picked from the product attribute levels suggested by 

Michalek et al. [53] and checked for feasibility; i.e. they should 

be fully achieved under the no-commonality condition so that 

any performance loss in the family shows the component-

sharing effect. Furthermore, targets were chosen so that the 

performance characteristics of each individual product become 

distinct from those of others to have the least amount of 

component sharing when individual products are optimized 

independently.  

 

Table 3: Performance Targets for the family of the three 

bathroom scales 

Product 

Attribute 

Analog 

Scale 

1st Digital 

Scale 

2nd Digital 

Scale 

Weight Capacity 300 320 280 

Aspect Ratio 1.0 0.80 1.20 

Platform Area 130 140 120 

Number Size 1.2 ---- --- 

 

Since in the digital scale number size is not a function of 

design variables considered in this study, it is not treated as a 

performance objective for the 2
nd

 and 3
rd

 products. Before 

applying ATC for optimizing the joint product family problem, 

each individual product is optimized separately to find the best 

achievable performance under the zero-enforced-commonality 

condition (i.e. components that are shared among the products 

by chance, without imposing any commonality constraint or 

objective). Optimal designs are listed in Table 4; both the 

analog scale and the 2
nd

 digital scale have the same rack and 

pinion. Hence, the minimum commonality value is 1/12 from 

Eq.(8) and the product family should be optimized for lr 

=2/12,…, 1. 
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Next, the ATC framework described in the previous 

section (Figure 2) is applied for optimizing the family of three 

bathroom scales. The performance objective is the average 

normalized deviation of all product attributes from their 

corresponding targets over the entire family. Results are listed 

in Appendix B for CI from 2/12 (minimum commonality) to 1 

(complete commonality). The Pareto curve is sketched in Figure 

6. The Pareto curve shows the trade-off between the 

commonality and the ability of the variants to achieve their 

distinct performance targets. As can be seen from Figure 6, up 

to a level of around 50% commonality the rate of performance 

loss due to increasing commonality is small; that is we can 

decrease the manufacturing cost considerably while maintaining 

individual distinctiveness. 

 

Table 4. Optimal products for the minimum CI 

Component 

Name 

Analog 

Scale 

1st Digital 

Scale 

2nd Digital 

Scale 

2.53 2.52 1.74 

9.21 8.63 9.95 Long Lever 

2.61 2.61 2.37 

11.53 10.58 12.00 

11.38 13.23 10.00 Cover 

0.50 0.55 0.70 

Spring 139.99 160.00 96.83 

0.54 0.50 0.50 
Pivot 

1.89 1.74 1.90 

3.28 3.17 3.30 
Short Lever 

3.38 3.28 4.51 

6.80 6.60 6.80 Rack & 

Pinion 0.25 0.25 0.25 

Dial 9.33 --- ---- 

 

However, by increasing commonality beyond 50%, 

performance loss grows more rapidly. This effect can be 

quantified by observing the product attribute values from the 

solution tables in Appendix B: Up to CI=9/12, increasing 

commonality only causes small deviation from the associated 

targets, but after that level, as more components are forced to be 

common, attribute values for the variants converge, and the 

family lose its differentiation; that is, the product family fails to 

offer distinct products for targeting different market segments. 

The product family Pareto front gives a thorough perspective to 

the designer on how to decide about the proper commonality 

level and its corresponding platform configuration to reduce 

manufacturing cost without excessive sacrifice of 

distinctiveness. 

Furthermore, this test case reveals the importance of 

considering the general form for the commonality metric in the 

optimization formulation: Most of the optimal product families 

in the case study involve commonality among subsets of the 

family, which is disallowed under most prior all-or-none 

approaches. 

 

 
Figure 6. Pareto curve for family of three bathroom scales 

 

Next, in order to show the scalability of the ATC 

framework, the proposed approach has been applied for 

optimizing a family of ten scales including five analog and five 

digital scales. The Pareto curve is sketched in Figure 7. As in 

the previous case, individual products were first optimized 

separately to find the minimum commonality value, which for 

this case is equal to 21/54. Therefore, the product family was 

optimized for cases lr =22/54, …, 1. As can be seen from Figure 

7, the Pareto curve can be divided into three sections: In the 

first part, we can increase the commonality up to 55% without 

any performance loss, which reveals the importance of solving 

the joint product family problem for cost savings. In the next 

region, i.e. for 0.55<CI<0.70, the rate of performance loss is 

slow; that is product attributes deviate only nominally from the 

assigned targets. However, beyond that limit, the performance 

loss increases rapidly; that is, individual products cannot 

achieve their target characteristics. 

 
Figure 7. Pareto curve for family of ten bathroom scales 

 

CONCLUSIONS 

In this paper, we proposed a novel single-stage approach 

for optimizing the joint platform selection and product family 

design problem using gradient-based methods. The 

commonality metric introduced in the companion paper [42] 
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was used as the commonality objective, and the Hubbert curve 

was applied for relaxing the binary commonality variables. In 

order to address the scalability of the proposed method, the all-

in-one formulation was decomposed using ATC into a two level 

optimization problem in which the upper level problem finds 

the optimal platform configuration while each sub-problem 

optimizes the individual products. The proposed approach was 

demonstrated in optimizing families of three and ten bathroom 

scales. The Pareto optimal fronts for both cases reveal the 

tradeoff between commonality and the ability to achieve distinct 

performance targets, which can help in product family planning. 

Moreover, existence of optimal solutions where components are 

shared among a subset of the variants points to the importance 

of applying the generalized commonality metric in the 

optimization formulation.  

In future work, we intend to study efficiency and scalability 

more closely, comparing the decomposed approach against the 

all-in-one formulation in terms of computational cost for 

various numbers of products. In addition, the effect of parallel 

computing can be examined by applying the DQA relaxation 

and coordination scheme, which enables use of parallel 

processing [48]. Finally, the Pareto fronts obtained using both 

CI and other proposed metrics (including both all-or-none 

commonality and Fellini’s metric) as the commonality objective 

can be compared, and the trade-off between achieving better 

solutions using the generalized case vs. the additional 

computational cost caused by the generalization can be 

investigated. 
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APPENDIX A: ENGINEERING MODEL  

Table A1. Engineering Model Design Variables 

Design Variable 
Lower 

Bound 

Upper 

Bound 

x1: Length from base to force on long lever 0.125 36.0 

x2: Length from force to spring on long lever 0.125 36.0 

x3: Length from base to force on short lever 0.125 24.0 

x4: Length from force to joint on short lever 0.125 24.0 

x5: Length from force to joint on long lever   

x6: Spring constant 1.00 200.0 

x7: Distance from base edge to spring 0.50 12.0 

x8: Length of rack 1.00 36.0 

x9: Pitch diameter of pinion 0.25 24.0 

x10: Length of pivot’s horizontal arm 0.50 1.90 

x11: Length of pivot’s vertical arm 0.50 1.90 

x12: Dial diameter 1.00 36.0 

x13: Cover length 1.00 36.0 

x14: Cover width 1.00 36.0 

 

Table A2. Engineering Design Model Parameters 

Parameter Value 

y1: Gap between Base and Cover (in) 0.30 

y2: Horizontal Distance between Spring and Pivot 1.10 

y3: Aspect Ratio of Number (Length/Width) 1.29 

y4: Minimum distance from Centerline to Long Lever 

     at Base 
2.0 

y5: Minimum distance from Centerline to Short Lever 

     at Base 
2.0 

y6: Maximum displacement of spring plate 0.50 

y7: Minimum Distance of support positions from the 

     centerline 
0.20 

y8: Number of lbs that Number Length Spans 16.0 

y9: platform area lower bound 100 

y10: platform area upper bound 150 

 

 

Table A3. Geometric Constraints for the Design Problem (Michalek et al. [53], ** new constraints) 

Constraint Definition Formula 

1. Dial should be small enough to fit in the Analog scale 12 14 1 12 13 1 7 9
2 ; 2x x y x x y x y≤ − ≤ − − −  

2.Joint position of the long and shorts levers should be within the bounds of the long ones 25 xx ≤  

3. Rack must fit inside the scale in the fully extended position 11381197 2yxxxyx −≤+++  

4. Rack must be long enough to span from the pivot to pinion in the analog scale ( ) ( ) 10271121138 502 xyxyxyxx −−−+−−≥ .  

5. Long levers must fit in the scale within the allowable bounds 
( ) ( )

( ) ( )

2 2

1 2 13 1 7 14 1

2 2

1 2 13 1 7 14 1 4

2 .5

2 .5

x x x y x x y

x x x y x x y y

+ ≤ − − + −

+ ≥ − − + − −

 

6. Platform area should remain within the specified range 1014139 yxxy ≤×≤  

7. Maximum displacement of the spring must remain below the allowable value** 
1

9 10 11 6
2 x x x yπ − ≤  

8. Spring applied load should remain the same regardless of legs positions ** )()( 513431 xxxxxx +=+  

9. Short levers should be constrained so that they fit in the scale within the allowable 

bounds relative to the long levers position ** ),,,,(

),,,,(

1413321243

137521143

xxxxxfxx

xxxxxfxx

≥+

≤+
 

10. The angular terms should remain within the feasible range 1
2

1
21

7113 ≤
+

−−
≤−

xx

xyx  

10. The dial diameter should be restricted so that the dial does not reach to the support 

position on both levers ** 
12131254212

1213127211

50

50

xxxxxxxf

xxxxxxf

.),,,,,(

.),,,,(

≥

≥
 

11. The distance from support positions to centerline is constrained to be more than the leg 

distance from the center line. ** 

3 1 2 7 13 7

4 3 4 7 8 10 7

( , , , )

( , , , , )

f x x x x y

f x x x x x y

≥

≥
 

 

All physical and geometric constraints for the bathroom scale 

design are listed in Table A3. six new constraints are added to 

the model proposed by Michalek et al. [53] in order to capture 

aspects of the design that were ignored in the prior modeling. 

Derivation of the new constraints is presented in the following 

section: 

 

1. Maximum displacement of the spring must remain below the 

allowable value: spring displacement is restricted by the scale 

thickness; hence, the y6 is introduced as the maximum allowable 

displacement of the spring: 
1

9 10 11 6
2 x x x yπ − ≤      (1A) 
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2. The scale should be designed so that it measures the right 

weight regardless of the consumer legs position. Hence, the 

applied force on the spring for the most general case (i.e. four 

different support loads, p1) should be equal to the one with 

symmetry assumption (four equal support loads, p2).  
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Equating (2A) and (4A), one obtains: 

)()( 513431 xxxxxx +=+     (5A) 

3. Short levers should be constrained so that they fit in the scale 

within the allowable bounds relative to the long levers position. 

Hence, using the cosine rule,  

( )
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−−
−
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114
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where

abbaxx

arccos
.

arctan

.

cos

πθ

θ
 (6A) 
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deedxx

arccosarctan

cos

πφ

φ
  (7A) 

4. Furthermore, we should put some additional constraints to 

ensure that the angular terms achieve feasible values. 

1
2

1
21

7113 ≤
+

−−
≤−

xx

xyx     (8A) 

5. In the analog scale, the dial diameter should be restricted so 

that the dial does not reach to the support position on both 

levers. By defining the x as the distance from the dial center to 

the support position on the levers, we will have the following 

constraints: 

x>x12/2      (9A) 

5. 1. For long levers:  
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5.2.  Short lever: 

θcosabbax 222 −+=  

θ ′′′−′+′== cos, bababxa 2
22

4
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6. In order to have a stable scale, the distance from the scale 

centerline to the support positions on both levers (S) is 

constrained to be more than the leg distance (y7) from the center 

line. 

7yS >       (14A) 

6. 1.  Long levers: 

2

7113

2

21

21

2 2 )()(, xyxxxS
xx

xS
S −−−+=′

+

×′
=   (15A) 

6. 2.  Short Levers: 

6.2.1. Analog Scale: 

43

4
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x
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×
=′′+′′=

δ
δδ ,     (16A) 

6.2.2 Digital Scale: 
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Appendix B: Pareto solutions  

 

Table B1. Optimal product family for CI=2/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.87 2.86 1.74 

8.67 8.39 9.96 Long Lever 

2.74 2.70 2.41 

11.42 10.58 12.00 

11.91 13.23 10.00 Cover 

0.75 0.56 0.68 

Spring 169.93 179.99 100.80 

0.50 0.50 0.50 
Pivot 

1.90 1.74 1.90 

3.29 3.19 3.26 
Short Lever 

3.14 3.02 4.52 

6.80 6.59 6.80 
Rack & Pinion 

0.25 0.25 0.25 

Dial 8.9679 --- ---- 

Weight Capacity 298.75 320.00 280.00 

Aspect Ratio 0.961 0.8 1.2 

Platform Area 135.97 140.00 120.00 

Number Size 1.18    

Table B3. Optimal product family for CI=4/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.63 2.69 1.93 

9.02 8.27 9.73 Long Lever 

2.63 2.67 2.06 

11.40 10.71 11.92 

11.53 13.24 10.19 Cover 

0.50 0.52 0.69 

Spring 149.99 179.99 100.90 

0.51 0.50 0.51 
Pivot 

1.89 1.79 1.89 

3.25 3.25 3.76 
Short Lever 

3.23 3.23 4.01 

6.69 6.69 6.69 
Rack & Pinion 

0.26 0.26 0.26 

Dial 9.20 --- ---- 

Weight Capacity 294.53 320.98 279.71 

Aspect Ratio 0.99 0.81 1.17 

Platform Area 131.38 141.86 121.46 

Number Size 1.17    

Table B2. Optimal product family for CI=3/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.49 2.88 1.72 

9.24 8.37 9.88 Long Lever 

2.58 2.71 1.98 

11.53 10.62 12.01 

11.38 13.22 9.99 Cover 

0.50 0.50 0.80 

Spring 149.99 179.99 100.90 

0.50 0.50 0.50 
Pivot 

1.90 1.74 1.90 

3.36 3.18 3.78 
Short Lever 

3.48 2.99 4.36 

6.70 6.70 6.70 
Rack & Pinion 

0.25 0.25 0.25 

Dial 9.33 --- ---- 

Weight Capacity 297.32 320.01 281.28 

Aspect Ratio 1.01 0.80 1.20 

Platform Area 131.24 140.42 120.01 

Number Size 1.18    

Table B4. Optimal product family for CI=5/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.74 2.74 1.93 

8.81 8.81 9.66 Long Lever 

2.54 2.54 2.15 

11.26 10.75 11.90 

11.68 13.23 10.20 Cover 

0.50 0.50 0.76 

Spring 149.99 179.99 100.90 

0.50 0.50 0.50 
Pivot 

1.89 1.80 1.89 

3.28 3.28 3.68 
Short Lever 

3.04 3.04 4.10 

6.68 6.68 6.68 
Rack & Pinion 

0.27 0.27 0.27 

Dial 9.06 --- ---- 

Weight Capacity 291.00 329.89 279.26 

Aspect Ratio 0.96 0.81 1.17 

Platform Area 131.47 142.18 121.41 

Number Size 1.16    
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Table B5. Optimal product family for CI=6/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.66 2.66 1.87 

8.92 8.92 9.45 Long Lever 

2.53 2.53 2.40 

11.34 10.76 11.90 

11.55 13.23 10.19 Cover 

0.50 0.50 1.05 

Spring 149.99 179.95 100.90 

0.50 0.50 0.50 
Pivot 

1.88 1.88 1.88 

3.32 3.32 3.35 
Short Lever 

3.15 3.15 4.30 

6.68 6.68 6.68 
Rack & Pinion 

0.27 0.26 0.27 

Dial 9.14 --- ---- 

Weight Capacity 292.97 325.22 279.64 

Aspect Ratio 0.98 0.81 1.17 

Platform Area 130.87 142.33 121.23 

Number Size 1.16    

Table B7. Optimal product family for CI=8/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.45 2.45 2.45 

9.10 9.10 9.10 Long Lever 

2.54 2.54 2.54 

11.43 10.94 11.47 

11.08 13.22 10.76 Cover 

0.51 0.59 0.51 

Spring 120.12 179.78 130.80 

0.50 0.50 0.50 
Pivot 

1.90 1.90 1.90 

3.31 3.31 3.31 
Short Lever 

3.43 3.43 3.43 

6.69 6.69 6.69 
Rack & Pinion 

0.28 0.28 0.28 

Dial 9.15 --- ---- 

Weight Capacity 283.87 349.35 280.31 

Aspect Ratio 1.03 0.83 1.07 

Platform Area 126.61 144.72 123.43 

Number Size  1.20   

Table B6. Optimal product family for CI=7/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.58 2.58 2.58 

9.03 9.03 9.03 Long Lever 

2.66 2.66 2.66 

11.38 10.93 11.55 

11.43 13.23 10.84 Cover 

0.52 0.59 0.57 

Spring 149.98 179.80 130.80 

0.50 0.50 0.50 
Pivot 

1.89 1.89 1.89 

3.24 3.24 3.25 
Short Lever 

3.32 3.32 3.44 

6.70 6.70 6.70 
Rack & Pinion 

0.26 0.26 0.27 

Dial 9.16 --- ---- 

Weight Capacity 293.26 334.48 277.79 

Aspect Ratio 1.00 0.83 1.07 

Platform Area 130.09 144.51 125.27 

Number Size 1.17    

Table B8. Optimal product family for CI=9/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.66 2.66 2.66 

8.86 8.86 8.86 Long Lever 

2.49 2.49 2.49 

11.43 10.91 11.43 

11.23 13.24 11.23 Cover 

0.60 0.50 0.60 

Spring 160.40 179.98 160.40 

0.50 0.50 0.50 
Pivot 

1.88 1.88 1.88 

3.42 3.42 3.42 
Short Lever 

3.20 3.20 3.20 

6.37 6.78 6.78 
Rack & Pinion 

0.25 0.25 0.25 

Dial 8.68 --- ---- 

Weight Capacity 290.32 325.44 289.91 

Aspect Ratio 1.02 0.82 1.02 

Platform Area 128.31 144.45 130.34 

Number Size 1.11    
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Table B9. Optimal product family for CI=10/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.65 2.65 2.65 

8.87 8.87 8.87 Long Lever 

2.66 2.66 2.66 

11.47 10.94 11.47 

11.26 13.28 11.26 Cover 

0.64 0.55 0.64 

Spring 160.40 179.98 160.40 

0.50 0.50 0.50 
Pivot 

1.87 1.87 1.87 

3.27 3.27 3.27 
Short Lever 

3.27 3.27 3.27 

6.70 6.70 6.70 
Rack & Pinion 

0.25 0.25 0.25 

Dial 8.72 --- ---- 

Weight Capacity 291.90 328.08 292.76 

Aspect Ratio 1.02 0.82 1.02 

Platform Area 129.17 145.27 129.20 

Number Size 1.11    

Table B11. Optimal product family for CI=1 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

1.84 1.84 1.84 

9.18 9.18 9.18 Long Lever 

2.20 2.20 2.20 

11.48 11.48 11.48 

11.37 11.37 11.37 Cover 

0.50 0.50 0.50 

Spring 119.98 119.98 119.98 

0.50 0.50 0.50 
Pivot 

1.90 1.90 1.90 

3.07 3.07 3.07 
Short Lever 

3.66 3.66 3.66 

6.80 6.80 6.80 
Rack & Pinion 

0.25 0.25 0.25 

Dial 9.28 --- ---- 

Weight Capacity 296.39 296.39 296.39 

Aspect Ratio 1.01 1.01 1.01 

Platform Area 130.50 130.50 130.50 

Number Size 1.17    

Table B10. Optimal product family for CI=11/12 

Component 

Name 

Analog 

Scale 

1
st
 Digital 

Scale 

2
nd

 Digital 

Scale 

2.58 2.58 2.58 

8.92 8.92 8.92 Long Lever 

2.44 2.44 2.44 

11.41 10.89 11.41 

11.28 13.26 11.28 Cover 

0.63 0.52 0.63 

Spring 160.24 160.24 160.24 

0.50 0.50 0.50 
Pivot 

1.85 1.85 1.85 

3.44 3.44 3.44 
Short Lever 

3.25 3.25 3.25 

6.47 6.47 6.47 
Rack & Pinion 

0.26 0.26 0.26 

Dial 8.68 --- ---- 

Weight Capacity 302.79 319.23 302.82 

Aspect Ratio 1.01 0.82 1.01 

Platform Area 128.68 144.47 128.68 

Number Size 1.11    

 

 

 


