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This technical note provides clarification, modification, and g
eralization of the notation used to describe analytical target
cading, a model-based hierarchical optimization methodolog
systems design.fDOI: 10.1115/1.1862674g

Introduction
Analytical target cascadingsATCd is a model-based, hierarch

cal optimization methodology for systems design. ATC requir
set of analysis or simulation models that predict responsessthe
characteristicsd of each system, subsystem, and component
function of the design variablessthe decisionsd. The analysis mod
els are organized using design optimization models that ar
elements or building blocks of the hierarchy, as shown in F
with the standard index notation. The top level represents
overall system and each lower level represents a subsyst
component of its parent element. In the ATC process, top-
system design targets are propagated down to lower subs
and component level targets that are then optimized to mee
targets as closely as possible. The resulting responses are
anced at higher levels by iteratively adjusting targets and de
to achieve consistency.

Following the general notation for an elemental problem in
ATC hierarchy used by Michelena et al.f1g, the problemPij for
elementj at level i is stated as

minimize
x̄i j

wij
RiRi j

i − Ri j
i−1i + wij

y iyi j
i − yi j

i−1i + «i j
R + «i j

y

subject to o
kPCij

wsi+1dk
R iRsi+1dk

i − Rsi+1dk
i+1 i ø «i j

R

o
kPCij

wsi+1dk
y iysi+1dk

i − ysi+1dk
i+1 i ø «i j

y
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gi jsRi j
i ,xi j

i ,yi j
i d ø 0

hi jsRi j
i ,xi j

i ,yi j
i d = 0

Ri j
i − r i jsRsi+1dk1

i , . . . ,Rsi+1dkcij

i ,xi j
i ,yi j

i d = 0 s1d

where x̄i j P fxi j
i ,yi j

i ,ysi+1dk1

i , . . . ,ysi+1dkcij

i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i ,

«i j
R,«i j

y gT, xi j
i is the vector of local variables for elementj at leveli,

yi j
i is the vector of linking variables for elementj at leveli, yi j

i−1 is
the copy of the vector of linking variables at elementj level i
coordinated at levelsi −1d, Ri j

i is the vector of responses at e
ment j level i, Ri j

i−1 is the vector of response targets for elemej
at level i that are set at levelsi −1d, r i j is the vector-valued re
sponse function of elementj at leveli, gi j is the vector of inequa
ity constraints at elementj level i, hi j is the vector of equalit
constraints at elementj level i, «i j

R is the response deviation tol
ance variable for elementj level i, «i j

y is the linking deviation
tolerance variable for elementj level i, wij

R is the response devi
tion weighting coefficient for elementj level i, and wij

y is the
linking deviation weighting coefficient for elementj level i.

ATC Notational Modifications
Several modifications to the modeling notation of Eq.s1d are

needed for clarity and rigor in order to properly develop a m
ematically rigorous update method for weighting coefficie
which is covered in a separate workf2g. First, it is implied tha
pure norms are used as deviation metrics, while in previous a
cationssfor example, see Refs.f3–6gd the squares of the norms a
used. Second, the response functionr is written as an equali
constraint, while it is used as an embedded definition. Third,
constraintsg and h should be written as functions of targets
the child elements rather than the local responses. Finally
linking variable notation may be modified to clarify the coord
tion of linking variables. These modifications update the nota
in Ref. f1g and are consistent with implementations of actual p
lem solutions reported in the literature.

Deviation Metrics. The use of the “norm” symbol to repres
target-response deviations has generated some confusion.
applications of ATC, including Kim’s dissertationf7g, the squar
of the l2 norm is used, which is not strictly a norm. The A
convergence prooff1g does not require response deviation to
measured with vector norms, and the square of thel2 norm is use
in place of a norm in ATC applications. Direct use of thel1, l2, or
l` norm results in derivative discontinuities and numerical d
culties. Therefore, the expressionixi2

2 will be used henceforth
designate the square of thel2 norm of the vectorx. Use of true
norms in ATC is not recommended if gradient-based algori
such as SQP are to be used. Instead, a more appropriate g
requirement for the deviation function is that the function an
derivative be continuous over the domain and the functio
monotonically increasing in all directions away from the p
-
d

where target deviation is zero. The square of thel2 norm satisfies
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these criteria, and its Hessian is constant over the domain, s
the recommended choice for measuring target deviations.

Response Function Variable.In the ATC convergence pro
f1g the symbolRi j

i is included in the constraintRi j
i −r i j sx̄i j d=0, but

it is not identified as a decision variable. In Kim’s dissertationf7g,
this relationship is represented as an embedded substitution,
the statement “whereRi j

i =r i j sx̄i j d” rather than “subject toRi j
i

−r i j sx̄i j d=0.” To be rigorous, either the substitution statem
“where” should be used, orRi j

i should be included as a decis
variable. We use the substitution statement for the remaind
this note.

Constraint Functions. The constraint functions for problemj
at level i are written incorrectly as a function of the responseRi j

i ,
whereas they should be written instead as a function of the ta
set for the childrenk1. . .kcij, so that

gi jsxi j
i ,yi j

i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i d ø 0

s2d
hi jsxi j

i ,yi j
i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i d = 0

Constraints are placed on theinput of r i j , not the output. This i
consistent with the way ATC has been implemented in pra
sfor example, in Refs.f3–6gd, but the notation has deviated.

Linking Variables. The current notation defines linking va
able copies at upperysi+1dk

i and lowerysi+1dk
i+1 levels for each child

and constrains deviation between the upper and lower level c
using the« terms. However, this notation dictates that a sepa
copy is created for each linking variable vector of each child,
deviations among elements of the parent copies are not exp
constrained. For example, if childB at level 1 has linking var
ablesy1B

1 , and childC at level 1 has linking variablesy1C
1 , then

notation dictates that the parentA at level 0 has linking variab
copiesy1B

0 andy1C
0 with no explicit specification stating thaty1B

0

=y1C
0 . This requirement is implied in the definition ofCij , and cas

studies in the literature have combined copies at the parent
into a single vectorsfor example, see Ref.f7g, p. 80d rather than
creating multiple copies at the parent level. However, for clari
is important that the notation reflect the linking variable in
unambiguously and be flexible enough to accommodate mu
children with interspersed linking variables, some of which m
be shared by some children and not others.

One effective way to denote linking variables in the gen
case is to use a single coordination vectorysi+1d j

i at parent elemen

j slevel id that aggregates copies of the linking variables of a
j ’s childrensat leveli +1d such that it contains exactly one copy
each variable. Each childk in Cij uses a binary selection matrixSk
to define which linking variables in the parent coordination ve
ysi+1d j

i are elements ofysi+1dk
i+1 in child k. The selection matrix i

defined so that the number of columns inSk equals the number
terms inysi+1d j

i and the number of rows inSk equals the number
i+1

Fig. 1 Example of index notation for a hierarchically parti-
tioned design problem
terms inysi+1dk, which is less than or equal to the number of term
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i . Each element ofSk is either 1 or 0, where each row ofSk

sums to 1, such that the productSkyisi+1d j
i extracts the elements

ysi+1d j
i corresponding toysi+1dk

i+1 .
To illustrate this concept, suppose an ATC hierarchy consis

parent elementA at level 0 and child elementsB, C, andD at level
1. Suppose linking variabley1 is shared between elementsB and
C, y2 is shared between elementsC andD, andy3 is shared amon
elementsB, C, andD. In this case, the parent coordination ve
is y1A

0 =fy1,y2,y3gT, element B has y1B
1 =fy1,y3gT and SB

=f1 0 0;0 0 1g, element C has y1C
1 =fy1,y2,y3gT and SC

=f1 0 0;0 1 0;0 0 1g, and elementD hasy1D
1 =fy2,y3gT and SD

=f0 1 0;0 0 1g, where the semicolon is used to represent a
matrix row. Using this notation, the linking variable constra
can be written as

o
kPCij

wsi+1d j
y iSkysi+1d j

i − ysi+1dk
si+1d i2

2 ø «i j
y s3d

This more general notation may appear to add complexity, b
formalizes the way linking variables have been used in ATC
studies in practice.

Weighting Coefficients. The weighting coefficient schem
used in Eq.s1d can be generalized by providing a weighting
efficient for each term of each vector rather than having only
weighting coefficient for each vector. Individual weighting co
ficients for each term allow the designer to express relative
erences for meeting each target, and the generalization is i
tant for using the weighting update method to achieve accep
levels of inconsistency between elements when top level ta
are unattainablef2g. This weighting coefficient scheme can
written as

iwi j
R + sRi j

i − Ri j
i−1di2

2 s4d

wherewi j
R is a vector of weighting coefficients and the+ symbol is

used to denote term by term multiplication of vectors, so that
element of the weight vector is multiplied by its correspond
element in the deviation vector resulting in a weighted vectorsi.e.,
fa1a2. . .angT+ fb1b2. . .bngT=fab1ab2. . .abngTd. Note that the
weighting coefficient scalars in Eq.s1d are special cases of t
weighting coefficient vectors in Eq.s4d, where all terms in eac
vector are equalsaccounting for the squared.

Revised ATC Problem Statements
Using the notational modifications earlier, the relaxed n

decomposed problem from Ref.f1g is written as

minimize
x̄i j ,ysi+1d j

i ,«i j
R,«i j

y
iR0l

0 − Ti2
2 + o

i=0

N−1

o
jPEi

«i j
R + o

i=0

N−1

o
jPEi

«i j
y

subject to o
kPCij

iwsi+1dk
R + sRsi+1dk

i − Rsi+1dk
i+1 di2

2 ø «i j
R

o
kPCij

iSkwsi+1d j
y + sSkysi+1d j

i − ysi+1dk
si+1d di2

2 ø «i j
y

gi jsx̄i jd ø 0

hi jsx̄i jd = 0

whereRi j
i = r i jsx̄i jd

x̄i j = fxi j
i ,yi j

i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i gT

∀ j P Ei,i = 0,1, . . . ,N s5d

whereEi is the set of elements at leveli. Note that the« terms

sdrop out for elements that do not have children. The revised state-
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ment forPij , the problem elementj at level i, is then

minimize
x̄i j ,ysi+1d j

i ,«i j
R,«i j

y
iwi j

R + sRi j
i − Ri j

i−1di2
2 + iSjwip

y + sSjyip
i−1 − yi j

i di2
2 + «i j

R + «i j
y

subject to o
kPCij

iwsi+1dk
R + sRsi+1dk

i − Rsi+1dk
i+1 di2

2 ø «i j
R

o
kPCij

iSkwsi+1d j
y + sSkysi+1d j

i − ysi+1dk
si+1d di2

2 ø «i j
y

gi jsx̄i jd ø 0

hi jsx̄i jd = 0

whereRi j
i = r i jsx̄i jd

x̄i j = fxi j
i ,yi j

i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i gT s6d

wherep is the parent of elementPij . Note again that the epsilo
terms drop out for elements that do not have children, and
linking variable terms in the objective function drop out for e
ments that do not have linking variables. Using monoton
analysis f8g, the constraints containing epsilon terms can
shown to be activesepsilon terms are monotonic in the object
function and each is constrained only by its epsilon constraind, so
problem elementj at level i can be alternatively written as

minimize
x̄i j ,ysi+1d j

i
iwi j

R + sRi j
i − Ri j

i−1di2
2 + iSjwip

y + sSjyip
i−1 − yi j

i di2
2

+ o
kPCij

iwsi+1dk
R + sRsi+1dk

i − Rsi+1dk
i+1 di2

2

+ o
kPCij

iSkwsi+1d j
y + sSkysi+1d j

i − ysi+1dk
si+1d di2

2

subject togi jsx̄i jd ø 0

hi jsx̄i jd = 0

whereRi j
i = r i jsx̄i jd
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x̄i j = fxi j
i ,yi j

i ,Rsi+1dk1

i , . . . ,Rsi+1dkcij

i gT s7d

Both of these forms are equivalent; however, Eq.s7d has fewe
independent variables and may exhibit different numerical p
erties depending on the algorithm used to solvePij . Either formu-
lation may be used to solve individual elements in the A
hierarchy.

Conclusions
The modeling and notational enhancements presented her

respect to norms, response functions, constraint functions
linking variables, should supersede previous notation in the l
ture. The generalization of weighting coefficients from scala
vectors, so that a separate weighting coefficient is assign
each response variable and each linking variable, offers addi
flexibility and is important for the weighting update method, p
sented in a separate articlef2g. The ATC problem is complex b
nature: Rigor and clarification in notation and modeling red
confusion and enhance usability.

References
f1g Michelena, N., Park, H., and Papalambros, P., 2003, “Convergence Pro

of Analytical Target Cascading,” AIAA J.,41s5d, pp. 897–905.
f2g Michalek, J. J., and Papalambros, P. Y., 2005, “An Efficient Weighting Up

Method to Achieve Acceptable Consistency Deviation in Analytical Ta
Cascading,” ASME J. Mech. Des.,127, pp. 207–215.

f3g Kim, H. M., Kokkolaras, M., Louca, L., Delagrammatikas, G., Michelena
Filipi, Z., Papalambros, P. Y., and Assanis, D., 2002, “Target Cascadi
Vehicle Redesign: A Class VI Truck Study,” Int. J. Veh. Des.,29s3d, pp.
199–225.

f4g Kim, H. M., Rideout, D. G., Papalambros, P. Y., and Stein, J. L., 2003, “
lytical Target Cascading in Automotive Design,” ASME J. Mech. Des.,125,
pp. 481–489.

f5g Kokkolaras, M., Fellini, R., Kim, H. M., Michelena, N. F., and Papalambro
Y., 2002, “Extension of the Target Cascading Formulation to the Desi
Product Families,” J. Struct. Multidisciplinary Optimization,24s4d, pp. 293–
301.

f6g Choudhary, R., Malkawi, A., and Papalambros, P. Y., 2003, “A Hierarc
Design Optimization Framework for Building Performance Analysis,”Pro-
ceedings of the Eighth International Building Performance Simulation A
ciation (IBPSA) Conference, Eindhoven, Netherlands, August 11–14, 2003

f7g Kim, H. M., 2001, “Target Cascading in Optimal System Design,” Ph.D.
sertation, Dept. of Mechanical Engineering, University of Michigan, Ann
bor, MI.

f8g Papalambros, P. Y., and Wilde, 2002,Principles of Optimal Design: Modelin

and Computation, 2nd ed., Cambridge University Press, New York.

MAY 2005, Vol. 127 / 501


