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Abstract. The proposition of using design optimization to formalize 
and add rigor to the decision-making process in building and 
construction was earlier compiled by Radford et al. in 1988, providing 
an in-depth demonstration of techniques available at the time. Much 
has changed since, both in the available solution methods and the 
nature of the problems themselves. This paper provides an updated 
insight into past and current trends of using this engineering design 
paradigm to solve architectural design problems, with an emphasis on 
continuous nonlinear formulations of simulation-based problems. The 
paper demonstrates different problem formulations and current 
techniques for solving them. Examples from recent research are used 
to demonstrate significant achievements and existing challenges 
associated with formalizing and solving decision-making tasks in 
architecture. 

1. Introduction 

Evaluating decisions through iterative interactions between design and 
analysis is common practice among building design and consulting teams. 
Rapid influxes of digital tools for representing and analyzing designs have 
offered unique opportunities to formalize and add rigor to the iterative 
decision-making process. As such, research and development efforts towards 
formal decision-support models have expanded along with automation in 
design, information technologies, and by availability of reliable analysis 
tools in form of simulation software. The distinctions between various 
formulations and methodologies that are available are rooted in different 
understandings and perceptions of the decision-making process. In 
conjunction, tools offering decision-support – ranging from search engines, 
integrated simulations, collaborative design, information exchange, and data 
management – have become the hallmarks of this current paradigm in 
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computer-aided design research. In their various manifestations, the common 
objective emphasized by these efforts is to provide design decision-makers 
with information that facilitates their tasks – be it extensive catalogues of 
data-sets, explicit scoping of design alternatives, or meeting normative 
performance targets for benchmarking decisions.  

By definition, the process of exploring design decisions that best match 
some specified criteria by subjecting decisions to repeated evaluations is 
embodied in the numerical design optimization model.  In fact, the field of 
numerical optimization has been one of the primary influences in the 
rigorous formulation of normative decision-making models in engineering 
and management. It was also proposed as a decision-making model in 
building design by Wilson et al. in 1976, followed by a large (and still the 
most extensive) body of work by Gero et al. (1983) and Radford et al. 
(1988). Despite this decade of early work, the benefits of this formal 
decision-making model have remained largely untapped by the building 
research community. Ironically terms such as optimal, optimum, and 
optimality have become widely embedded in dialogues among design teams, 
but without any explicit definition of either the process or the end results 
they may represent. In the early 90’s AI techniques came to be favored over 
numerical optimization models because of their logical rather than 
mathematical approach (Radford and Gero, 1988; Pohl, 1990; Shaviv, 1992; 
Malkawi; 1994). AI techniques are also less restrictive towards problems 
that are difficult to define mathematically and less demanding in terms of 
problem formulation. However, they have been shown to have limited 
applicability in practice. 

In general, problems involving architectural design elements are often ill-
defined: Many design elements are often selected by simultaneously 
considering a wide range of quantifiable as well as non-quantifiable criteria. 
Even when a problem allows numerical formulation, lack of explicit and 
standard evaluation criteria make the definition of design intents difficult. 
Few attempts at addressing this problem have resulted in building simulation 
software that offer ranking of some set building performance criteria with 
respect to predefined decision variables over and above the simulation.  The 
main limitation of such models has been lack of flexibility in problem 
formulation and in the choice of analysis tools for function evaluations.  

In addition to the nature of the problem, use of complex simulations to 
evaluate functions often yield undesirable properties in the optimization 
model, and therefore require special consideration of solution strategies that 
may be successfully used. Furthermore, the increased complexity of design 
tasks frequently requires multiple functions to be evaluated, many of which 
require different analysis tools. The last two points have also challenged 
engineering design problems, resulting in vast improvements in numerical 
methods and solution strategies for posing and solving large-scale simulation 
based design tasks. In view of recent developments we present an updated 
insight into design optimization models with citations of recent work that 
address past challenges and demonstrate benefits that may be claimed 
towards an explicit and rigorous decision-making process.   

In the following sections we review the general mathematical formulation 
of the nonlinear programming optimization model and highlight some 
distinguishing properties that classify models and solution methods. This 
review largely includes common solution methods that have been applied to 
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design problems in architecture with an emphasis on continuous nonlinear 
formulations for simulation-based problems. 

2. The Design Optimization Model 

A general multicriteria optimization problem for optimizing a design 
involves (1) parameterizing design alternatives using a vector of design 
variables x, which can be manipulated by the designer to alter the design, (2) 
defining constraint functions g(x) and h(x) that specify the range of values 
for x that correspond to feasible and meaningful designs, and (3) defining an 
objective function f (x) or vector of objective functions f(x) that describe the 
goal or goals to be attained by the design. Each of these functions may 
involve simple relationships and/or complex simulations. Formally, the 
mathematical statement of this design problem is posed as:  

minimize )(xf     (1) 
subject to   0)( ≤xg 0)( =xh  

  nℜ⊆ℵ∈x
where  is the set constraint of the n-dimensional real space 

(Papalambros and Wilde, 2000). Once the problem is formulated 
mathematically with a set of variables, objectives and constraints, general 
optimization algorithms can be applied to find the optimal solution(s). In this 
iterative search for optimal solutions, building a good optimization model 
and choosing appropriate methods to solve the problem are crucial for 
finding meaningful solutions that meet stated goals in an efficient manner. 

ℵ
nℜ

Careful model building is a prerequisite in optimization. A fair portion of 
this task depends on the modeler’s understanding of the problem and model 
properties that will affect the solution process. Building an optimization 
model involves translating a problem statement into a mathematical model 
and requires a thorough understanding of the different forms equation (1) 
can take. Typically the mathematical model results from the nature of the 
problem. Often though, this model is ‘designed,’ keeping in mind that its 
form will determine the solution methods that can be applied to solve it, the 
optimization process, and the quality of results.  

Since the use of optimization models in simulation-based building design 
problems has been so limited (structural design being an exception), there is 
no comprehensive source for educating the user on nuances of model 
formulation specific to architectural problems since Radford and Gero 
(1988). In general, optimization models can be characterized based on the 
mathematical properties of variables and functions, such as continuous, 
discrete, or mixed-discrete. Often, a particular situation can be modeled in 
more than one way. For instance, the length of a room can be either 
represented as a continuous range or incremented over discrete lengths (for 
example, in 1 meter intervals) depending on its sensitivity to the objective 
function. This broad model classification is often used to guide model 
building and select appropriate solution strategies. 
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3. Solution Methods 

Methods used for solving optimization problems can be distinguished as 
gradient-based or derivative-free. While implementations of most solution 
methods are now available as software packages, it is important to 
understand how these methods work to be able to select a suitable method 
for a particular problem, to apply the method appropriately, and to 
troubleshoot when necessary. The following sections provide an overview of 
some of these methods with examples of their use for solving simulation-
based design problems in architecture. 

3.1. GRADIENT-BASED METHODS 

Gradient-based methods are proven to converge to local minima for 
formulations with continuous and smooth functions with respect to all 
decision variables. So a general assumption for continuous problems is that 
the functions are also differentiable with respect to decision variables. 
However, gradient-based methods are commonly used to solve any problem 
with variables defined over a continuous domain. Gradient-based methods 
iteratively move from one design alternative to another improved alternative, 
until no better solution can be found in the surrounding neighborhood of the 
design space. They are called “gradient-based” because they use information 
about the gradient of the objective and constraint functions to guide the 
direction of search while looking for improved alternative designs. Common 
examples under this typology of solution methods include generalized 
reduced gradient (GRG) and sequential quadratic programming (SQP). 

Simulation-based building performance functions are often continuous 
functions in theory, and where possible, gradient-based methods have been 
shown to be very efficient and reliable for successfully solving problems 
ranging from shape and partitions in buildings (Jedrzejuk et al., 2002), 
layout design (Michalek et al., 2002), and computing optimal control 
strategies for time-scheduled operation in buildings (Zaheer-uddin et al., 
2000) or specific design elements (Park et al., 2003). They are typically used 
because they are fast, rigorous, guarantee a locally optimum solution, and 
can handle large numbers of variables and constraints. If the problem is uni-
modal, then the local optimum is also the global optimum. However 
architectural design problems constituting multiple criteria are often multi-
modal (i.e. there are multiple local minima – each of which is better than all 
nearby designs, but not necessarily better than all alternatives). For multi-
modal problems, a multistart strategy can be applied, which means that the 
optimization is run repeatedly with different starting points (initial values of 
decision variables), and the lowest of the local minima found among the 
results is taken to be a good local optimum or possibly the global optimum. 
Generally the modeler will have intuition about the design problem and can 
choose starting points to find local minima in the area of interest. Some 
general purpose gradient-based solvers include multistart strategies within 
their implementation to guide this process.  

Other common problems using gradient-based methods result from 
undesirable mathematical properties of the optimization model such as non-
smoothness, or discontinuities. Lack of proper scaling can also lead to 
numerical difficulties and usually occurs when variables or model functions 
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have values of different orders of magnitude. Problems with scaling can be 
generally avoided by normalizing all variables and functions. However, with 
complex simulations it is often difficult to guarantee mathematical properties 
of model functions. In fact, use of complex simulations often results in 
derivative discontinuities that can cause gradient-based methods to fail even 
when the problem is continuous. For example, function responses from 
airflow models based on computational fluid dynamics or heat balance 
models based on finite element analysis are often ‘noisy’. Such cases require 
special considerations such as selecting methods that do not rely on 
directional or derivative information of functions.  

3.2. DERIVATIVE FREE METHODS 

Derivative free methods do not rely on function gradients to guide the search 
process or evaluate the optimum solution. Because derivative-free methods 
do not use gradient information, they are particularly attractive for discrete 
problems, for problems that have discontinuous or noisy function responses, 
or for problems that have disconnected feasible domains. Furthermore, most 
derivative free methods search the design space globally and are therefore 
also well suited for multi-modal problems.  

Methods within this category work through repeated function 
evaluations, accepting and rejecting candidate solutions, and the search for 
an optimum proceeds iteratively using heuristics, which can vary from 
‘highly intelligent’ search techniques to simple random search. In some 
methods local search is also included by enlarging and searching the area 
around a successful iteration. However, due to lack of gradient information 
to guide search the algorithms can take a long time to converge to a local 
minimum around a good candidate solution, especially if the problem is 
large.  

Unlike gradient-based methods, there is no canonical optimality test to 
define convergence or check for optimality of a solution. Instead, 
convergence properties are specific to the solution method. So while some 
methods may have proven convergence to a global optimum, others yield the 
solution found on stopping at specified termination criteria. This broad 
spectrum of derivative-free methods can be classified into deterministic and 
stochastic methods. Derivative free deterministic methods will always 
produce the same solution given the same input. Contrarily, stochastic 
methods contain a random element in the search process and hence may or 
may not arrive at the same solution when the problem is solved multiple 
times.  

The main advantage of derivative-free deterministic methods is that they 
are repeatable without requiring restrictive mathematical properties from 
model functions. Also, they incorporate both global and local search, and if 
run long enough, will find the global optimum, at least in the limit. 
Derivative-free deterministic methods such as generalized pattern search 
(GPS), divided rectangles (DIRECT), and lattice methods have been shown 
to perform particularly well. Saporito et al. (2001) have demonstrated the use 
of Lattice Methods for studying the combined effects of multiple variables 
for the goal of minimizing energy use in lieu of sensitivity analysis 
techniques. Function evaluations in their case are simulation-based, and they 
were able to obtain optimum values of energy consumption when the 
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number of variables was reduced to a small set. Peippo et al. (1999) 
demonstrate a model that uses pattern search to find the economic optimum 
with respect to several physical and technical features of buildings. Their 
work shows how mixed-discrete problems can be implemented easily with 
pattern search algorithms. However, they also report slow convergence, with 
50 variables requiring up to 10000 simulation calls. A major drawback is 
that methods in this category have difficulty solving problems with more 
than a very modest number of variables (over 10 variables). In addition, if 
the functions are expensive in terms of computational run-time, the total time 
required to find a solution can be prohibitive. Another disadvantage of these 
methods is that they do not necessarily converge quickly to the minimum. 
The algorithm may get close to the minimum, but because it proceeds with 
lack of valuable derivative information, it often takes very long to locate the 
exact minimum.  

Like deterministic methods, stochastic methods such as simulated 
annealing (SA) and genetic algorithms (GA) are also very versatile and as a 
result applicable to a wide range of problems. Both are conceptually inspired 
by natural phenomenon (simulated annealing from thermodynamics, and 
genetic algorithms from evolution) and based on drawing analogies between 
“growth towards improvement” in nature and improvement in a current 
design state.  

Over the past few years stochastic methods have been applied to a range 
of mixed-discrete problems for optimizing thermal and lighting performance 
based on building enclosure, HVAC design, and control schedules (Wright 
et al., 2002; Choudhary and Malkawi, 2002; Caldas et al., 2002; Coley et al., 
2002). The success of these methods rely to a large extent on how the 
algorithm is setup; and setting all the parameters can be quite arduous and 
require considerable intuition and experience. Also, the convergence rate of 
these methods is generally slow. Choudhary et al. (2002) report results from 
a mixed-discrete constrained problem for optimizing ventilation efficiency 
using GA with respect to duct layout and room geometry. They demonstrate 
that it is hard to gauge a priori how long the algorithm should be run to be 
able to arrive at a “good enough” solution – especially when the runtime is 
even longer because the problem is simulation-based. 

Another important feature of most derivative free methods is that they do 
not handle constraints explicitly. Choudhary et al. (2002) formulate 
constraints by formulating an auxiliary objective function, which includes 
penalties for constraint violations added to the objective function – which is 
the most common and general strategy. Another way of ensuring constraint 
satisfaction is to restrict the search, which means defining the set of possible 
search moves such that infeasible points are impossible. This is a problem-
dependent approach, and more details can be found in the literature on 
heuristic search techniques (for example, Michalewicz and Fogel, 2000; 
Reeves, 1993). 

Recent applications (Whetter and Polak, 2003; Choudhary 2004) have 
addressed issues of large computational runtime associated with derivative-
free methods by using approximation-based methods that derive simpler 
functions of the original simulation responses and use them for a partial 
search during the optimization process. For instance, Choudhary (2004) used 
an approximation based technique called Efficient Global Optimization 
(EGO), (Jones et al., 1998, and later extended by Sasena, 2002) that fits a 
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response surface to an initial data sample of the objective function and 
applies the DIRECT algorithm to simultaneously search for the minimum on 
the response surface and improve the response surface by sampling more 
points in areas of high uncertainty. The work showed significant reductions 
in total run-time when compared to using the DIRECT algorithm. Such 
techniques have earlier been demonstrated in solving many engineering 
design problems. 

3.3. HYBRID METHODS 

Hybrid strategies combining two or more methods are sometimes used to 
overcome problems associated with one particular method. For example, 
Michalek et al. (2002) demonstrate a hybrid strategy combining two solution 
algorithms for finding the global optimum for an architectural layout design 
problem involving multiple objectives of cost, function, and aesthetics. Their 
model offers a new approach to solving multi-modal and mixed-discrete 
optimization problems that takes advantage of the efficiency of gradient-
based algorithms (SQP), where appropriate, and uses evolutionary 
algorithms (SA) to make discrete decisions and do global search. Monks et 
al. (2000) have also demonstrated a similar approach for solving acoustic 
design optimization problems. Wetter and Wright (2003) propose to 
combine GA and pattern search to derive a hybrid method that reduces 
computational run time in problems involving expensive simulations. Such 
strategies have been shown to be successful where using one or another 
method for solving problems may fail. 

4. Large-scale Optimization 

The selection of a suitable method depends on the problem formulation and 
the goals of performing the optimization. Often though, we encounter design 
problems that are not only complex, simulation-based formulations, but are 
also large – requiring evaluation of multiple functions that use diverse 
simulations. In principle it is desirable to evaluate interrelated design 
decisions concurrently so that their combined effects on different functions 
may be maintained. However, combining all design decisions and evaluating 
them simultaneously is often difficult because it involves multiple and often 
conflicting functions that may require expert analysis at very different levels 
of complexity and with different kinds of design information. Past work on 
the simultaneous optimization of a design to achieve multiple criteria has 
used multi-criteria formulations with preference or non-preference based 
strategies. They will typically provide the decision maker with values for 
decision variables that best accommodate a weighted set of performance 
criteria. The difficulty in elaborating these efforts to include more than a few 
analytical tasks and decision variables is that the problem quickly becomes 
too large and complex to be implemented in one model. Even when 
numerical results are successfully obtained, one may not be able to interpret 
the design trade-offs or use intuition to confirm computed results 
(Papalambros 2001), and the high-dimensionality of some problems make 
solutions difficult or impossible to find in practice. For large and complex 
cases, some form of problem decomposition therefore becomes necessary. In 
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addition to making a problem manageable, decomposition of a large problem 
by focus or discipline is beneficial because it allows the specialized analysis 
and decision-making of individual design tasks. On the other hand, when the 
decision-maker separates and designs individual parts of the problem, he 
must not only coordinate common decisions between different problems, but 
also combine the solutions into a single compatible set. 

In a recent work, Choudhary (2004) shows that it is possible to treat large 
scale architectural problems as systems design problem by extending a 
hierarchical design optimization model called analytic target cascading 
(ATC) to simulation-based design contexts in architecture. ATC is a 
hierarchical optimization methodology for achieving compatible design 
targets in large engineering systems at early product development stages 
(Kim, 2001; Kim et al., 2001). The following main assumptions apply for 
extending ATC as a methodology for handling simulation-based design 
problems in architecture: (a) a complex simulation-based design problem can 
be decomposed or partitioned into subproblems; (b) it is possible to identify 
a hierarchical organization in the decomposition; and (c) building 
performance goals can be embodied as targets that are to be achieved via 
design decisions, and some of the performance goals can be set and 
introduced as part of initial problem definition. This work includes 
illustrative case studies involving optimization of HVAC capacity, energy 
consumption, thermal comfort, and ventilation efficiency targets for complex 
and critical problems (where meeting prescribed values of some performance 
targets is highly prioritized). The decision variables included in the model 
are decomposed hierarchically into subproblems and a coordination strategy 
is applied to iterate through the multi-level structure. 

In the context of simulation-based design, a particularly beneficial feature 
of this decomposition-coordination approach is that each subproblem in the 
hierarchy constitutes a separate optimization problem and is associated to 
only those analysis models that are capable for computing the values of 
performance goals set for it. This allows both optimization algorithms and 
analysis tools to be used exclusively for the relevant decision-making 
subproblem, while coordinating all such subproblems to achieve a consistent 
solution that is optimal with respect to the overall system.  

5. Concluding Remarks 

Properties of the optimization model will typically have a significant bearing 
on which method can be applied to solve a problem or a subproblem. For 
instance, gradient-based methods are fast and rigorous for solving 
continuous problems, while a large combinatorial problem can be best 
handled using stochastic methods. The quality of the final solution is another 
aspect influenced by the optimization algorithm and solution strategy. 
Gradient-based methods search locally, but if the problem is well understood 
and if the process can be started from a ‘point of interest’, then a local 
minimum will suffice. Otherwise, multiple starting points will often derive 
the global optimum. Derivative-free require a large number of function 
evaluations to converge which is almost always impractical for simulation-
based problems. So here again it is usually good to have a vision of what 
would suffice as a ‘good enough’ solution. This compromise between 
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quality of the solution and computational time almost always exist. 
Sometimes, two methods can be used in conjunction with each other and 
such hybrid strategies often perform very well for combining both global 
and local search. Rigor and mathematical precision are generally preferred 
qualities for a process, but they are not always possible because of the nature 
of problems architectural designers want to solve and for the technical skills 
they demand. So at best, the most suitable method is one which is well 
understood so that it can be used efficiently to yield desired solutions and to 
enhance the knowledge of the problem itself.  

In addition to exploring a range of different methods, the applications 
from the past few years also demonstrate that with good understanding of the 
methods involved, design optimization can be effectively used to improve 
building performance and provide rigor in the way we use simulation tools. 
In a larger perspective, this body of work revealed several areas and 
subsequent questions that require further research. For example, establishing 
standard building evaluation functions (such as performance indicators) 
along with their sensitivity to typical decision variables can help the user 
immensely in formulating appropriate objectives functions. Recent work 
called the Design Analysis Integration (DAI) (Augenbroe et al., 2003) has 
addressed this by defining and correlating specific design problems to their 
corresponding analysis functions.  

From an implementation perspective the main requirement is of 
prototypes that are flexible and can yet assist the user in problem 
formulation and in organization of decision-making tasks by rigorous 
criteria. This essentially implies a general framework that contains a 
repository of decision and analysis models, assists the modeler in 
mathematical formulation of the decision models, and incorporates 
organizational aspects such as book-keeping – a task that would require a 
pool of effort from different sub-fields of computer-aided architectural 
design.                                
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