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ABSTRACT 

Weighting coefficients are used in Analytical Target 
Cascading (ATC) at each element of the hierarchy to express 
the relative importance of matching targets passed from the 
parent element and maintaining consistency of linking variables 
and consistency with designs achieved by subsystem child 
elements. Proper selection of weight values is crucial when the 
top level targets are unattainable, for example when “stretch” 
targets are used. In this case, strict design consistency cannot be 
achieved with finite weights; however, it is possible to achieve 
arbitrarily small inconsistencies. This article presents an 
iterative method for finding weighting coefficients that achieve 
solutions within user-specified inconsistency tolerances and 
demonstrates its effectiveness with several examples. The 
method also led to reduced computational time in the 
demonstration examples.  
 
Keywords: analytical target cascading, systems engineering, 
optimization, stretch targets, weighting update method 
 
INTRODUCTION 

Analytical target cascading (ATC) is a model-based, 
hierarchical optimization methodology for systems design. 
ATC requires a set of analysis or simulation models that predict 
responses (the characteristics) of each system, subsystem, and 
component as a function of the design variables (the decisions). 
The analysis models are organized using design optimization 
models that are the elements or building blocks of the 
hierarchy, as shown in Figure 1 with the standard index 
notation. The top level represents the overall system and each 
lower level represents a subsystem or component of its parent 
element. In the ATC process, top-level system design targets 
are propagated down to lower subsystem and component level 
targets that are then optimized to meet the targets as closely as 

possible. The resulting responses are rebalanced at higher levels 
by iteratively adjusting targets and designs to achieve 
consistency. 

Following Michelena et al. [1], and using the general 
notation introduced by Michalek and Papalambros [2], the 
original design target problem is: 
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where T is the vector of targets, r is the vector-valued response 
function, x is the complete vector of design variables, g and h 
are vectors of design constraint functions, and || ||22 denotes the 
square of the l2 norm. A complete nomenclature table is 
provided at the end of this paper. Equation (1) represents the 
entire large-scale system, and it is solved all-at-once (AAO); 
i.e., all variables and functions are evaluated together during 
search. Given that the system has an implied hierarchical 
structure of N+1 levels, as in Figure 1, the formulation (still 
solved AAO) can be equivalently represented by designating 
response variables and linking variables, creating copies of 

 

Figure 1 Example of index notation for a 
hierarchically partitioned design problem 
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these variables at parent and child levels, and adding 
constraints forcing the copies to be equal: 
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where xi
ij is the vector of local variables for element j at level i, 

yi
ij is the vector of linking variables for element j at level i, yi-1

ij 
is the copy of the vector of linking variables at element j level i 
coordinated by the parent element at level (i-1), Sj is the 
selection matrix indicating which terms of the parent 
coordinating linking variable vector yi-1

ij are relevant to the 
linking variable vector yi

ij at element j, Ri
ij is the vector of 

responses at element j level i, Ri-1
ij is the vector of response 

targets for element j at level i that are set by the parent element 
at level (i-1), rij is the vector-valued response function of 
element j at level i, gij is the vector of inequality constraints at 
element j level i, hij is the vector of equality constraints at 
element j level i, Ei is the set of elements at level i, Cij is the set 
of element j’s children numbered 1 through cij, and l designates 
the top level element. Note that yi

ij drops out for elements that 
do not have linking variables, such as element l, and Ri

(i+1)k 
terms drop out for leaf elements (elements that do not have 
children). 

Following Michelena et al. [1], the formulation in Eq.(2) is 
relaxed by allowing deviation between linking variable and 
response variable copies to be within a tolerance ε and 
minimizing ε. Additionally, vectors of weighting coefficients w 
are introduced for linking and response variables to specify the 
relative importance of matching each target at each level. This 
yields the relaxed AAO formulation, which is set up to be, but 
has not yet been, decomposed: 
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where εR
ij is the response deviation tolerance variable for 

element j level i, εy
ij is the linking deviation tolerance variable 

for element j level i, wR
ij is the response deviation weighting 

coefficient vector for element j at level i, wy
ij is the linking 

variable deviation weighting coefficient vector for element j at 
level i, and the ○ symbol is used to indicate term-by-term 
multiplication of vectors such that [a1 a2 … an]T ○ [b1 b2 … bn]T  
= [ab1 ab2 … abn]T.  

Finally, the problem is decomposed into separate elements 
Pij, and monotonicity analysis [3] is used to show that the ε-
bound constraints of each element are active, allowing them to 
be solved for ε and moved into the objective function. The 
general notation for a single ATC element Pij in the hierarchy is 
then: 
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(4)  

where p designates the parent of element Pij. 
The sequence of solving each optimization problem 

element Pij and passing its solution to the rest of the hierarchy 
is called a coordination strategy. Michelena et al. [1] proved 
that using certain classes of coordination strategies to manage 
elements of the ATC formulation in Eq.(4), will result in 
convergence to the same solution as that of the relaxed AAO 
formulation in Eq.(3). Under these specific coordination 
strategies, managing the ATC hierarchy can be viewed as 
solving a series of Hierarchical Overlapping Coordination 
(HOC) problems, which have been shown to have non-ascent, 
global convergence properties [4]-[6].  

ATC has been applied to automotive applications [7]-[9], 
including the design of product families [10], as well as to 
architectural design [11], and ATC has recently been 
introduced as a method to coordinate marketing models of user 
and producer preferences with engineering models of product 
performance [12]-[13]. Decomposing large-scale problems can 
be advantageous because doing so serves to organize and 
separate models and information by focus or discipline, provide 
communication only where necessary, and facilitate concurrent 
design. Moreover, ATC can solve some problems that are 
computationally difficult or impossible to solve all-at-once. 
Occasionally decomposition can also result in improved 
computational efficiency because the formulation of each 
element typically has fewer degrees of freedom and fewer 
constraints than the AAO formulation. However, computational 
efficiency of ATC is not yet well understood, and empirical 
evidence shows that it can vary dramatically depending on the 
choice of weighting coefficients [14].  

Several other systems have been proposed for 
multidisciplinary design optimization (MDO) of complex 
systems. In particular, Collaborative Optimization (CO) [15], 
based on concepts introduced by Sobieski [16], contains a 
similar form of minimizing deviations between targets and 
responses using the square of the l2 norm. CO formulations so 
far have dealt only with bi-level problems, although multilevel 
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extensions seem possible. Moreover, it has been observed by 
Alexandrov and Lewis [17] and reemphasized by Kim [18] that 
CO cannot, in general, produce KKT points because of 
constraint qualification failures, whereas ATC has proven 
convergence properties. ATC is different from MDO 
frameworks such as multidisciplinary feasible (MDF) and 
individual discipline feasible (IDF) [19], or the Bi-Level 
Integrated System Synthesis (BLISS) approach [20], where 
analysis models at a single level are integrated under a master 
problem introduced as an authority to achieve the overall 
design goal. Furthermore, ATC should not be confused with 
strategies for nonhierarchical systems, such as Concurrent 
Subspace Optimization (CSSO) [21], or formulation choices for 
design optimization statements at individual problem elements, 
such as simultaneous analysis and design (SAND) or nested 
analysis and design (NAND) [22]. In contrast, ATC represents 
a multilevel decision-making hierarchy for complex systems 
design consisting of an arbitrarily large hierarchy of levels of 
analysis and design models representing systems, subsystems, 
and components.  

The global convergence theory of ATC [1] asserts that 
weighting coefficients can be found such that consistency 
deviation terms converge to zero. However, we will show that 
for problems with attainable targets, strictly consistent designs 
can be found with any positive finite weighting coefficients, but 
for problems with unattainable targets, strict design consistency 
cannot be achieved with finite weighting coefficients. Thus, the 
selection of proper weighting coefficients is necessary to 
achieve a solution within acceptable inconsistency tolerances. 
This result is particularly relevant when intentionally using 
“stretch targets” or “stretch goals”, terms used in management 
communities to describe setting very high, usually unattainable, 
goals in order to motivate employees [23].  

In this article the issue of consistency for unattainable 
targets is discussed, and an iterative approach is proposed to 
find weighting coefficients that achieve solutions with user-
specified inconsistency tolerances. The method is then 
generalized and demonstrated with several examples. 

CONSISTENCY FOR UNATTAINABLE TARGETS 
In the ATC global convergence proof [1] Michelena et al. 

proved that when elements of the ATC hierarchy (Eq.(4)) are 
solved separately and iteratively using certain coordination 
strategies, the system will converge to the solution of the 
relaxed AAO formulation, Eq.(3). They go further to assert: 
“given that consistency and feasibility are assumed for the 
original design target problem, it is possible to find weights 
wR

(i+1)k and wy
(i+1)k such that εR

(i+1)k and εy
(i+1)k ... converge to 

zero. ... This implies that the ATC process, recursively applied 
to the problem hierarchy, produces an optimum solution of the 
original design target problem.”  

The concepts of feasibility and consistency deserve further 
discussion here. Feasibility of the original design target 
problem means that a design exists that satisfies all constraints. 
Feasibility of the ATC elements means a local design exists at 
each ATC element Pij that satisfies all of the constraints at that 
element. Consistency of the ATC formulation further supposes 
a solution exists such that Ri

(i+1)k = Ri+1
(i+1)k and yi

(i+1)k = yi+1
(i+1)k 

for all i, j∈Ei, k∈Cij, which implies that εR = 0 and εy = 0 for all 
elements. Feasibility of the original design target formulation 
implies that a design exists in the decomposed ATC 

formulation that is feasible at all elements and consistent 
among elements. 

In this section it is demonstrated that despite existence of a 
feasible, consistent design, the ATC formulation will not find 
this design with finite weighting coefficients unless the design 
meets the top level targets exactly. Specifically, if a feasible 
solution to the original problem exists that meets the top level 
targets exactly, then any choice of positive, finite weighting 
coefficients in the ATC formulation will yield a consistent 
solution. If such a solution does not exist, the ATC formulation 
will not yield a consistent solution for any finite weighting 
coefficients. However, an ATC solution can be found with 
arbitrarily small inconsistency deviations if weights are chosen 
appropriately. 

Michelena et al. [1] proposed a Pareto optimization 
analogy to illuatrate the existence of error-zeroing weights, as 
shown in Figure 2. Note that if a consistent, feasible design 
exists that meets the top level targets, then the design would 
map to the origin in Figure 2, and any other design would be 
either dominated by or equivalent to it in this space. Therefore, 
the Pareto surface degenerates to a single point, the origin, 
which can be achieved with any positive weighting coefficients. 
If such a design does not exist, then it will be shown in Eq.(8), 
Eq.(14), and Eq.(17) that in general the inconsistency deviation 
approaches zero only as the weighting coefficients for 
inconsistency approach infinity. So, in this case the vertical axis 
is tangent to the Pareto surface, and there are no finite error-
zeroing weights. This is important for applications where 
unattainable targets are used purposefully or when the designer 
is uncertain if targets can be achieved. 

A simple example will demonstrate this situation. Let us 
examine an unconstrained level-0 element with a single level-1 
child. The level-0 element is called l, and the level-1 element is 
called k. There are no linking variables and we consider only a 
single top level target T. Following Eq.(4), the level-0 problem 
(P0l) is written as: 
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Figure 2 Existence of error-zeroing weights proposed by 
Michelena et al. [1] 
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Writing out the squared l2 norm in terms of vector elements by 
using the angle bracket symbol < > to denote vector elements 
indexed with α, and dropping the functional dependency 
notation for r0l, the objective function f0l at level-0 is 
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This problem is unconstrained, and the necessary 
conditions for optimality state that the gradient with respect to 
the local variables x is zero, 
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and the gradient with respect to the response targets R0
1k is also 

zero:  
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This last equation shows that the optimal design will not be 
strictly consistent (R0

1k ≠ R1
1k) for positive, finite weights 

unless the top level target is met exactly or the derivative of the 
response function with respect to R0

1k happens to be zero at the 
optimum. If top level targets are unattainable (T – r0l) ≠ 0, then 
the inconsistency deviation error (R0

1k – R1
1k) will be nonzero, 

except in the special case where the derivative of the response 
function is zero at the optimum, which can happen mostly by 
coincidence. Thus, in general (R0

1k – R1
1k) approaches zero 

only as the terms of wR
1k approach infinity.  

At this point one is tempted to simply set large weights. 
However, apart from the ATC convergence requirement, the 
size of the weights will also have a scaling effect on the 
nonlinear programming algorithm used to solve the element 
problem. Adverse scaling will increase computational time or 
altogether prevent solution of the element problem. 
Additionally as will be shown later, in multilevel hierarchies 
the resulting deviations at any particular element depend on 
ratios of the weights at that element to weights at the parent 
element, and there are interactions between weights for linking 
variables wy and for response variables wR. So, simply setting 
all weighting coefficients to large values will not necessarily 
result in small inconsistency deviation values. The task then is 
to find appropriate weights such that the resulting inconsistency 
deviation is acceptable. One way to approach this task is to use 
the results of Eq.(8) to calculate estimates of the weighting 
terms wR

1k required to achieve acceptable consistency errors 
θR

1k for each of the response targets R0
1k. To do this, we set the 

left hand side of the equation to the desired inconsistency θR
1k 

and solve for the weights: 
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Thus, in this example the weighting update method for 
finding appropriate weights to achieve consistency error 
tolerances θR

1k would follow these steps: 
1. Set initial-guess weights (say wR

1k = [1, 1, ..., 1]T).  
2. Solve the ATC problem and calculate the top-level 

target deviation and the derivative of the response 
function at the solution. 

3. If the deviation tolerance is not satisfied at the 
solution, use Eq.(9) to find new weighting terms, and 
return to step 2. 

GENERALIZATION OF THE WEIGHTING UPDATE 
METHOD 

The goal of the weighting update method is to 
automatically identify appropriate weighting coefficients that 
achieve designs with acceptable deviation tolerance values for 
the response variables at each element θR

ij and for the linking 
variables at each parent coordinating element θy

(i+1)j. The 
problem is first solved using starting values for weighting 
coefficients. The solution to that problem is used to calculate a 
linear approximation of the weighting coefficients needed to 
achieve the desired tolerances. Weights are updated with this 
approximation, and the problem is solved again. This process is 
repeated until the inconsistency deviation tolerance is achieved, 
namely, the final solution satisfies the conditions 
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At the solution to Eq.(4) the Lagrangian Lij of element j at 
level i is 
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where µ and λ are the vectors of Lagrange multipliers for the 
inequality and equality constraints respectively. Expressing the 
norms with vector terms indexed with the symbol α, we have 
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The KKT first order necessary condition states that at the 
solution the gradient of the Lagrangian with respect to each 
term β of the response target vector Ri

(i+1)γ for element γ is zero. 
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Therefore, at the solution the deviation between response 
variable copies at parent and child level is 
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Note that this equation holds for all elements except the top 
level element. To achieve desired response variable deviation 
tolerances within θR

(i+1)γ for each element in Ri
(i+1)γ, each 

weighting term β in wR
(i+1) γ should be updated as 
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Note again that this equation holds for all levels except the top 
level, where the weighting coefficient vector is not updated. 
Top level response deviations reflect failure of the design to 
meet the top level targets, rather than inconsistencies in the 
design, and the top level weighting coefficient vector is set by 
the modeler to express the relative importance of matching each 

top level target; it is not updated. While all weighting 
coefficient vectors reflect the relative importance of matching 
variable copies, the lower-level vectors are updated such that 
the final preference reflects that which is needed to achieve 
user-defined inconsistency tolerances. 

Additionally, at the solution the gradient of the Lagrangian 
with respect to the linking variables of element j is zero. 
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Therefore, the deviation between linking variable term β in yi
ij 

and the parent coordination copy in yi-1
ip is 
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This term represents deviation between linking variable copies 
at element j and the parent coordination copy. Recall that 
linking variables are shared by elements at the same level and 
coordinated at the parent level. To achieve a desired deviation  
tolerance between elements at the same level, the weight for 
each term β must be set high enough so that the difference 
between copies at any two child elements is less than or equal 
to the tolerance. The updating calculation for the linking 
variable weighting coefficients is then 
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(18)

and where Cβ
(i-1)p is the set of children of parent element p that 

contain linking variable β (i.e., Ψ drops out for children where 
<Sj

Tyi
ij>β = 0). 

In summary, the generalized weighting update method 
involves iteratively solving the ATC formulation and updating 
the weighting coefficient vectors of each element (which 
express relative preferences for meeting each target) to achieve 
a solution with user-specified inconsistency deviation 
tolerances for each response variable θR and each linking 
variable θy. The method is implemented with the following 
steps: 
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1. Set an acceptable inconsistency deviation tolerance for 
each response variable and each linking variable, and set 
initial weights (for example, set all weights to 1).  

2. Solve the ATC problem. 
3. If the inconsistency deviation tolerance is not satisfied at 

the solution, update each term in each weighting 
coefficient vector (excluding the top level element) using 
Eq.(15) and Eq.(18), and return to step 2. 

DEMONSTRATION 
To illustrate the topic of strict consistency for unattainable 

targets a simple example is used where the target (zero in this 
case) is unattainable: 

 
1

2
1 2

1

minimize  

subject to 1
z

z

z ≥  
(19)

The solution to this problem is z1 = 1. In the relaxed 
formulation of this problem, copies of z1 are made at level-0 
element l and at level-1 element k, using the R notation to 
designate responses (there are no local variables or linking 
variables), and the weighted deviation between the copies is 
constrained less than or equal to ε. The positive, finite weight w 
is used as the weighting term. The relaxed AAO problem 
(before decomposition) is then: 
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Note that the relaxed AAO problem is used in the 
remainder of this example, and the problem is not decomposed 
for ATC, since Michelena et al. [1] showed that these 
formulations yield equivalent solutions. At a KKT point, the 
gradient of the Lagrangian is zero. 
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This shows that ε is nonzero at the KKT point for any finite 
weight; however, w can be found to achieve ε arbitrarily close 
to zero. It is important to note that ε approaches zero as w 
approaches infinity or zero, and the goal is to ensure that the 
inconsistencies between the responses at each level are within 

an acceptable tolerance, rather than focusing on the value of ε. 
The inconsistency (R1

1k – R0
1k) approaches zero only as w 

approaches infinity. 
In addition, to demonstrate the need to avoid setting 

arbitrarily large weights, this problem was implemented in 
Matlab 6.5.0 using the fmincon function with the feasible 
starting point [R0

1 R1
1 ε]T = [2 5 5]T and the following 

parameters: TolCon = TolFun = TolX = 10-12. The algorithm 
and parameters are specified here because the algorithm 
behavior depends on the parameters and starting point; 
however, this example serves to show the basic trends. Figure 3 
shows the number of function evaluations needed to converge 
to a solution for each value of w. The figure shows an upward 
trend, emphasizing the need to avoid large weighting terms 
when possible. 

Figure 4 shows the resulting inconsistency deviation (R1
1 – 

R0
1) at the optimum for each value of w. The graph shows a 

trend of reduced error as the weighting term is increased, 
although the error never reaches zero.  

In general, it is difficult to set appropriate weights simply 
by guessing. The weighting update method is applied to this 
example to show how appropriate weights are found. In this 
example, the response function r0l is a linear function of R0

1, so 
the derivative of the response function is a constant (=1), 
therefore, the use of the weighting update method to find 
appropriate weights yields, 

1 1
2 20

0 0 1
0
1

r T r Rw
Rθ θ

− ∂ = =  ∂   
(22)

The update procedure was implemented for this example with 
an inconsistency tolerance goal of θ = 10-2, and a starting 
weight of w = 1. The proper weight needed to achieve this 
inconsistency tolerance, w = 9.95, was found after three 
weighting update iterations and a total of 89 function 
evaluations. 
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Figure 3 Number of function evaluations required to 
find the solution as a function of the weighting term
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GEOMETRIC PROGRAMMING EXAMPLE 
The geometric programming example, proposed by Kim 

[18], is used here as a multi-level example with linking 
variables to demonstrate the weighting update method. The 
original design target problem is 
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(23)

The original problem will be decomposed first as a two-
level ATC hierarchy with three elements, as proposed by Kim 
[18], and secondly as a three-level ATC hierarchy with five 
elements, as proposed by Tzevelekos et al. [14]. The feasible 
starting point z = [5, 5, 2.76, 0.25, 1.26, 4.64, 1.39, 0.67, 0.76, 
1.70, 2.26, 1.41, 2.71, 2.66]T is used for all trials, and the 
acceptable inconsistency tolerance value of 10-2 is used for all 
response variables and linking variables. 

 
Two-Level Decomposition  

In the two-level decomposition, following Kim [18], the 
problem is partitioned into three elements: one level-0 element, 
A, with two level-1 children, B and C. The equality constraints 
of the original problem h1, h2, h3, and h4 are solved for z1, z2, z3, 
and z6 respectively and used as response functions of elements 
A, A, B, and C respectively. The variable z11 is treated as a 
linking variable between elements B and C, variables z4, z5, and 
z7, are local variables of element A, variables z8, z9, and z10 are 
local variables of element B, and variables z12, z13, and z14 are 
local variables of element C. The constraints g1, g2, g3, g4, g5, 
and g6 are associated with elements A, A, B, B, C, and C 
respectively. 

The problem was first solved with default weights wR
1B = 

wR
1C = wy

1A = [1]. At the solution, resulting inconsistency 
deviations are 0.688, 0.649, and 0.961 for z3, z6, and z11 
respectively, all of which are larger than the acceptable 
tolerance value of 10-2. Using the weighting update method, the 
weights are updated with Eq.(15) and Eq.(18), and the new 
problem is solved. This process of updating and solving is 
repeated four times before converging. The final weights, wR

1B 
= 14.534, wR

1C = 16.561, and wy
1A = 27.572, yield 

inconsistencies of 10-2 for z3, z6, and z11. The weighting update 
method successfully found the weighting coefficients that yield 
a solution with the desired inconsistency tolerance. These 
results are summarized in Table 1. 

 

Three-Level Decomposition 
In the three-level decomposition, following Tzevelekos et 

al. [14], the problem is partitioned into five elements: one 
level-0 element A with two level-1 children, B and C, and two 
level-2 elements, D and E, which are children of B and C 
respectively. In the formulation z5 is treated as a linking 
variable between elements B and C, z11 is set as a parameter 
with known (optimal) value 1.30, the equality constraints of the 
original problem h1, h2, h3, and h4 are used to calculate z1, z2, z3, 
and z4 as response functions of elements B, C, D, and E 
respectively, and the response function of element A is f = (z1

2 + 
z2

2). The variable z4 is a local variable of element B, variable z7 
is a local variable of element C, variables z8, z9, and z10 are local 
variables of element D, and variables z12, z13, and z14 are local 
variables of element E. The constraints g1, g2, g3, g4, g5, and g6 
are associated with elements B, C, D, D, E and E respectively. 

The problem was first solved with default weights wy
1A = 

wR
1B = wR

1C = wR
2D = wR

2E = [1]. At the solution, resulting 
inconsistencies are 1.47, 1.26, 0.78, 0.80, and 1.05 for z1, z2, z3, 
z5, and z6 respectively, all of which are larger than the 
acceptable tolerance value of 10-2. Using the weighting update 
method, the weights are updated with Eq.(15) and Eq.(18), and 
the new problem is solved. This process of updating and 
solving is repeated five times before converging. The final 
weights, wy

1A = 109.70, wR
1B = 99.34, wR

1C = 103.59, wR
2D = 

85.96, and wR
2E = 98.05, yield inconsistencies of 10-2 for z1, z2, 

z3, z5, and z6. The weighting update method successfully found 
weights that yield a solution with the desired inconsistency 
tolerance. These results are summarized in Table 1. 

 
Accuracy 

It is important to stress that inconsistencies in response and 
linking variables affect the entire solution, not only the copied 
variables themselves. Table 2 summarizes the solutions to the 
original, 2-level ATC, and 3-level ATC formulations. For the 
2-level and 3-level formulations, results are shown for default 
weights (all weights = 1) and for the weighting update method 
(WUM) with inconsistency tolerances of 10-2 for all variables. 

Table 1 Results of the Two-Level and Three-
Level Geometric Programming Examples 

  Two-Level Three-Level 

  Default 
weights 

Weighting 
update 
method 

Default 
weights 

Weighting 
update 
method 

wy
1A 1 27.72 1 109.70 

wR
1B 1 14.61 1 99.34 

wR
1C 1 16.64 1 103.59 

wR
2D - - - - 1 85.96 W

ei
gh

tin
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oe
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nt

s  
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t s
ol

n.
) 

wR
2E - - - - 1 98.05 

z1 - - - - 1.47 0.01 
z2 - - - - 1.26 0.01 
z3 0.69 0.01 0.78 0.01 
z5 - - - - 0.80 0.01 
z6 0.65 0.01 1.05 0.01 R

es
ul

tin
g 

In
co

ns
is

te
nc

y 

z11 0.96 0.01 - - - -



 8 Copyright © 2004 by ASME 

In the table, the * symbol indicates that the variable has 
nonzero inconsistency at the solution, and the value of the 
variable copy at the parent level is reported. The † symbol 
indicates that the variable was treated as a static parameter. 
Notice that solutions using the default weights are far from the 
solution to the original problem, whereas solutions using the 
weighting update method are close for all variables. Smaller 
inconsistency tolerances result in solutions closer to the 
solution of the original problem. 
 
Local Convergence 

One purpose of using the weighting update method is to 
avoid setting weights arbitrarily high to avoid costly iterations; 
however, the weighting update method requires additional 
update iterations to converge on the desired weights, so it is 
worthwhile examining and comparing the convergence 
efficiency. For comparison, the two-level geometric 
programming problem was solved using the required weights 
directly as starting weights, thus achieving the desired tolerance 
without any weighting update iterations. This represents the 
best possible case that could be attained by guessing weights. 
Still, in this case the algorithm required almost twice as many 
function evaluations per element to converge as did the 
weighting update method. These results are summarized in 
Table 3. The Matlab function fmincon, based on SQP, was used 
in all cases. 

It took longer to converge when starting with the required 
weights because the starting point is not close to the solution. 
Large weighting coefficients act to slow progress of the 
algorithm by restricting the deviation between parent and child 
elements at each ATC iteration. Conceptually, this can be 
thought of as an effect similar to that of a trust-region 
algorithm, where high weighting coefficients have the effect of 
tight trust regions, preventing large moves at each iteration. In 
contrast, the weighting update method first solves the problem 
with small weighting coefficients, allowing the algorithm to 

move quickly in the design space and converge to a point close 
to the final solution. The weights are then updated (increased), 
and the new problem is solved starting at the solution to the 
problem with the previous weighting coefficients. In this way, 
the weighting update method first moves quickly to the 
proximity of the solution, then tightens tolerances and closes in 
precisely on the final solution. Results vary based on the 
problem, acceptable inconsistency tolerance, and the starting 
point; however, this example shows that using the weighting 
update method can sometimes be substantially more efficient 
than even best-case scenario guessing.  

Further study on local convergence properties of ATC and 
the weighting update method is needed before these results can 
be generalized. Note that in contrast with notions of asymptotic 
local convergence developed for AAO algorithms, e.g., 
standard nonlinear programming, local convergence concepts 
have not been rigorously defined for any system optimization 
method relying on decomposition, including ATC. 

Table 3 also shows that the ATC decomposition can be 
solved with fewer function evaluations per element than the 
original AAO formulation. It is difficult to compare these cases 
directly since the objective function of each element is different 
than the objective function of the AAO formulation; however, 
generally, each decomposed element will take less 
computational time per function evaluation than the AAO 
formulation, and decomposition allows additional possibilities 
of parallel computing. These results are encouraging because 
they show that in some situations the decomposed formulation 
can be solved in less time than the AAO formulation. 

CONCLUSIONS 
This article showed that it is important to set weights 

appropriately to achieve inconsistency deviations within an 
acceptable tolerance when top level targets are unattainable. 
Setting appropriate weights is nontrivial, particularly for 
multilevel hierarchies where weights at various levels influence 
each other in complex ways. Setting weights too small can 
result in solutions far from the solution of the original problem, 
and setting weights too large can result in excessive 
computational cost and numerical problems. The weighting 
update method can automatically find weighting coefficients 
required for generating a solution with user-specified 

Table 2 Optimal Solution to Original, 2-
Level ATC, and 3-Level ATC Formulations 

 Original 2-Level ATC 3-Level ATC 

  AAO Default 
Weights 

WUM 
(10-2) 

Default 
Weights 

WUM 
(10-2) 

z1 2.84 2.25 2.83 0.75* 2.82* 
z2 3.09 2.04 3.07 0.64* 3.07* 
z3 2.36 1.53* 2.35* 1.58* 2.35* 
z4 0.76 0.76 0.76 0.90 0.76 
z5 0.87 1.00 0.87 0.70* 0.87* 
z6 2.81 1.21* 2.79* 1.76* 2.80* 
z7 0.94 1.30 0.94 0.64 0.93 
z8 0.97 0.93 0.97 0.97 0.97 
z9 0.87 1.07 0.87 0.86 0.86 
z10 0.79 0.93 0.80 0.80 0.80 
z11 1.30 0.94* 1.30* 1.30† 1.30† 
z12 0.84 0.84 0.84 0.84 0.84 
z13 1.77 1.27 1.76 1.76 1.76 
z14 1.55 0.96 1.54 1.55 1.55 

Table 3 Speed of Convergence Statistics for 
the Geometric Programming Problem 

 Number of Function 
Evaluations 

Num. 
Weight 
Updates 

Original Problem 
AAO 25,173 - - 

2 Level ATC 
Default Weights 

A: 241  B: 110 
C: 115 - - 

2 Level ATC 
Weighting Update 

 A: 18,002  B: 8,639 
C: 8,517 4 

2 Level ATC 
Required Weights 

A: 31,777  B: 15,316 
C: 16,297 - - 

3 Level ATC 
Default Weights 

A: 195  B: 158 
C: 152  D: 24  E: 19 - - 

3 Level ATC 
Weighting Update 

A: 45,092  B: 34,087 
C: 35,449  D: 984  E: 905 5 
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inconsistency tolerances. This method can help ATC users to 
achieve acceptable solutions without the burden of trial-and-
error searching for appropriate weighting coefficients, which 
can be intractable for multilevel problems. Despite the added 
computation involved in iteratively updating the weights, the 
total computational cost can sometimes be lower than solving 
the problem directly with the desired weights or solving the 
problem AAO. Future work is needed to define and understand 
local convergence properties of coordination strategies for 
hierarchical partitioned systems and bring more rigor to 
solution efficiency definitions for multidisciplinary 
optimization strategies. 
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NOMENCLATURE 
⋅  Vector norm 

α
⋅  Vector element α (where α indexes the vector elements, 

ranging from 1 to the length of the vector) 

 ○ Element-by-element vector multiplication, for example  
[a1, a2]T ○ [b1, b2]T = [a1b1, a2b2]T

 and a ○ b = diag(abT) 

ijc  Number of elements that are children of element j at level i 

ijC  The set of elements that are children of element j at level i 

iE  The set of elements at level i of the hierarchy 

ijf  Objective function for element j at level i 

ijg  Vector function of inequality constraints for element j at level 
i in negative null form 

ijh  Vector function of equality constraints for element j at level i 
in null form 

i  ATC hierarchy level index (starts at level 0) 
j  ATC element index 
k  ATC element index, used to designate children of element j 
l  ATC element index designating the top level element 

ijL  The Lagrangian for the formulation of element j at level i 
p  ATC element index, used to designate the parent of element j 

ijP  Problem formulation of element j at level i 

ijr  Vector function that calculates responses for element j at level 
i 

i
ijR  Vector of response variable copies at level i for element j 

1i
ij
−R  The (i–1)th level parent-copy of the vector of responses that 

function as targets for element j at level i 

jS  Binary selection matrix for element j specifying which terms 
in the parent coordination vector are relevant to element j 

T  Vector of top level targets (= R-1
0l) 

i
ijx  Aggregation vector for all input variables to the response 

function of element j at level i 
i
ijx  Vector of local decision variables for element j at level i 
i
ijy  Vector of linking variables for element j at level i 

( 1)
i
i j+y

 

Vector of coordinating variables for the linking variables in 
the children of element j at level i. This vector includes one 
copy of each linking variable from all of element j’s children 

R
ijw  The weighting coefficient vector for the deviation of 

responses between element j at level i and its parent 

( 1)
y
i j+w

 
The weighting coefficient vector for the deviation of linking 
variables coordinated at element j level i 

α  Index for terms in a vector 
β  Index for a specific term in a vector 

R
ijε  The tolerance variable for consistency of targets set at 

element j level i and the responses of j’s children  

y
ijε  

The tolerance variable for consistency of linking variables 
coordinated at element j level i for child elements at the 
(i+1)th level 

γ  ATC element index, used to designate a specific child of 
element j 

ijµ  Vector of Lagrange multipliers for inequality constraints at 
element j level i 

ijλ  Vector of Lagrange multipliers for equality constraints at 
element j level i 

R
ijθ  

Vector of user specified tolerances for inconsistency 
deviation between response variables of element j at level i 
and targets set by j’s parent 

( 1)
y
i j+θ

 

Vector of user specified tolerances for inconsistency 
deviation between linking variables at level i+1 that are 
coordinated at parent element j at level i 
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