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Recent environmental legislation, such as the European Union Directive on End-of-Life
Vehicles and the Japanese Home Electric Appliances Recycling law, has had a major
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e-mail: michalek@umich.edu article presents a methodology for studying the effects of automobile fuel efficiency and
emission policies on the long-term design decisions of profit-seeking automobile produc-
Panos Y. Papalamhros ers competing in an oligopoly market. Mathematical models of engineering performance,
Professor consumer demand, and manufacturing costs are developed for a specific market segment,
and game theory is utilized to simulate competition among firms to predict design choices
Steven J. Skerlos of producers at market equilibrium. Several policy scenarios are evaluated for the small
Assistant Professor car market, including corporate average fuel economy (CAFE) standards, carbon dioxide
(C0O,) emissions taxes, and diesel technology quotas. The results indicate that leveraging
Department of Mechanical Engineering, CO, taxes on producers for expected life cycle emissions yields diminishing returns on
University of Michigan, fuel efficiency improvement per regulatory dollar as the taxes increase, while CAFE
Ann Arbor, MI 48109 standards achieve higher average fuel efficiency per regulatory dollar. Results also indi-

cate that increasing penalties for violation of CAFE standards can result in lower cost to
producers and consumers because of the effects of competition, and penalties based on
fuel economy or emissions alone may not be sufficient incentive for producers to bring
more costly alternative fuel vehicles into the market. The ability to compare regulations
and achieve realistic trends suggests that including engineering design and performance
considerations in policy analysis can yield useful predictive insight into the impact of
government regulations on industry, consumers, and the environment.
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1 Introduction cultural, ecological, and urban infrastructure systems. Since the
Optimal design studies commonly consider tradeoffs among errrln_arket in which goods are traded does not automatically provide

. . ; individual incentives to reduce publicly shared environmental
gineering performance metrics. To explore such trade-offs, muj-

tiple conflicting objectives can be combined within a Paret%?magﬁ(éihei E?\?jgﬁg tirrl]e gggjmoonn3%&?&%2\/:{%@;”;;ﬁgﬂg'an d
optimal approach, but the scalarization prefereriess., weights yPp P

are often difficult to evaluate, and typically the problem must b%tate levels to provide emission reduction incentives. Examples

iteratively reformulated1,2]. Alternatively, conflicts among tech- 'nCrluggttg2\2?:1&5;‘%2&%?52;?l;gsg;zgﬁ)ewirgﬁsr'g_ns’
nical objectives can be resolved if they are viewed in the conteXt'P 9 '

of the producer's overall objective to maximize prdf. In au- Quire vehicle fleets to meet target average fuel efficiencies, and

. ) o L uotas for “cleaner” vehicles, such as California’s “zero emis-
tomotive manufacturing, profitability depends upon a vehicle’s el: ps vehicle” (ZEV) regulation. While National Ambient Air

. . . S
gineering performance and_cost,_as well as its appeal to Consu"kiﬁality Standards established by the Clean Air Act still have not
and the regulatory restrictions imposed by govermnment. In tI~\')een achieved in many major U.S. cities, recent attempts to regu-
investigation, we consider each of these points and evaluate ha\f\é further the vehicle desiéﬁ procless toward producing
regglatory fu.el-economy and gmissio_ns policies can impact W&eaner” vehicles have had only limited success. One example is
design deC|.S|ons made by prgﬂt-segkmg producgrs. . California’s attempt to achieve 10% sales in ZEVs from its top

Autompb_lle producers provide _p_rlvate gog(@xehlcles for pri- seven automotive manufacturers by 20@3 The ZEV technol-
vate profit(investors, but externalitiegemission$ are generated g quota policy has suffered from the high céaverage pur-

a

with costs that are publicly shared. For example, costs associ se cost of $35,00@&nd poor ranggapproximately 90 miles

W|th'dr|vmg hlgh-emlssmn_vehlcles in the southern coast of Cale electric vehicleg9], resulting in limited consumer appeal. The
fornia can generate pollution costs estimated at $10,000 or m icy is now under review, with low polluting gasoline and

per year{4]. Despite regulatory enforcement over the past thr ghly fuel efficient gasoline-electric hybrids likely to comprise

decades, vehicle emissions still significantly impact U.S. air qualia puik of the 10%
. - : O quot@l0]. The example demonstrates the
ity, accounting for up to 95% of city CO emissions, 32% Of>Noimportance of simultaneously considering technology capabilities,

emissions, ar_1d 25% of volatile organic compound em'ssﬁ‘ﬂ‘s costs, and consumer preferences when developing environmental
These emissions create smog, increase atmospheric greenh UhGies

gas concentrations, create human health risks, and damage A this article, a guantitative methodology is developed for con-
_— sidering engineering design performance and constraints, pro-
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impacts on consumers, producers, and total air quality, leadingrtaximize profit. Consumers are assumed to choose from the
estimates of cost and effectiveness for different environmentbailable alternatives those products that have maximum utility

policies under consideration. based on a model of their preferences. Policy can influence these
decisions by imposing penalties and incentives toward the modi-
2 Background fication of producer and consumer behavior. This investigation

%nsiders several policy scenarios that have direct impact on pro-

cer behavior such as CAFE standards, carbon dioxide,XCO

eémissions taxes, and diesel technology quotas.

In this framework, each produc&rdecides on a set of designs

producely including design decisions, prices, and production

lumes for each design. Design topolddyand design variables

Mlsuch as engine sizeletermine product characteristizgsuch

2 fuel economy calculated using an engineering performance

Policy research related to the automotive industry has focus
primarily on the effects of changing CAFE standards. One su
study by the National Academy of Scienddd] identified tech-
nologies that could be implemented in all vehicles today, inclug-
ing estimated cost and fuel savings associated with each tech o]
ogy. Specifically, the effects of incremental changes in CAF
standards on vehicle price, performance, demand, and prod
mix were evaluated. While external factors such as gasoline pri . . ; ;
were also included in the assessment, the report considered anl lysis model. RDeS|gn variables, production volwh@nd regu-
the inclusion of new technologies in existing engines. Longer ter on penaltlesn_ also determine producer cost c’:alculated by
options to change new vehicle design decisions were not consigé cOSt analysis model. The set of competitors’ des{gnsJy;
ered. The same is true for a recent European Union report on (HE Viewed by producek as static parameters, and consumers
Auto-Oil Il Program, which targets reductions in automobild"@Ke purchasing choices among the set of producer and competi-

emissiong12]. In the report, future vehicle emissions levels wer&P" ProductsJ based on product characteristics and prigeBur-

forecast as functions of fuel quality using atmospheric emissio’ggasmg choices determine demand for each dexiculated by

and impact models. Although alternative emissions policies wele® demar&d modell,.and re?u]ting p(;oﬁisz;re cg!culgte(? in tgrm?
evaluated for their economic efficiency in reducing emissions, ti& P d: andc. Resulting profit is used as the objective function for

option for producers to change design decisions in responsePf@ducerks hoptimiggtiolr(l lmodel, and the dottehd line in Fig. 1|
policy was not considered. represents the feedback loop for iterations of the optimization al-

A different study by Greene and Hops¢h3] examined the gorithm. The optimization model represents each producer’s at-

impact of various regulatory strategies on average fuel econoff§"Pt to maximize profit by making the best design, pricing, and
using a mathematical programming model. Regulatory options iroduction decisions. Government regulation can influence this
ocess by imposing penalties on producers, thereby affecting pro-

cluded raising the CAFE standard, making a fuel-economy sta}f-°¢ ' > C . cting |
9 9 y ction costs and design decisions. Note that this study is limited

dard voluntary, and creating a weight-based metric. Althou . . ; 4 ;
Q government regulation directly affecting producers without im-

regulatory options were evaluated in the context of their impact - behavi h driving habi f
producers and consumers, the market positions of manufactur%"f;ﬁgz?recsonsumer ehavior such as driving habits or preference

were taken as constant, and few longer-term design changes N
In the present model, all producers are profit driven, so produc-

considered. . | i | broduct d d . Thi
While these previous models analyze important aspects #" volume will equal product demand at an optimum. This as-

eSgftion is valid for continuous demand functions with negative

ice elasticities since any producer who wishes to produce a

consideration. Previous investigations assume each manufact .
ower volume of a produdffor example, because of capacity con-

will maintain its current product mix, making only incremental™""* . . .
technology improvements to existing produéésg., direct injec- straints or marginal cost cur\Aeha_s no incentive to produce less
tion, variable valve timing, ett. In contrast, this article provides volum_e tr;an t_hat fﬁr Wh.'Ch the_:edls den&qndl. Instezd, thﬁ p(rjodgc%r
an economic oligopoly analysis where each firm designs its pro%@nds'mpy ra||se the price unti emgn IS ware tﬁ.t € desire
uct mix, changing design variables in response to regulations a@duction volume, so it is assumed th4t=q; from this point

competition. Previous studies also rely on assumptions about ¢ er_vxélard.b. e of each brod . deled i .
sumer willingness to pay for increased fuel economy rather than! "€ Objective of each producer is modeled as profit maximiza-

using attribute-based consumer choice models derived from p&%ﬂ)(n’ revenue minus cossubject to engineering constraints as

purchase data. This article uses an optimization framework to if®*'OWS:

tegrate quantitative models for each component, including emis-

sions, engineering design, cost, consumer demand, and producer maximize Hk=( 2 quj> —Cy
profit. The framework is modular and hence allows for the substi- Jedy

tution of alternative models for any of the various models em-

ployed in this study. Moreover, the producers in this investigation with respect to{M; ,x;,p;}Vj e Ji 1)
are abstract; that is, the results obtained do not apply to a specific ) ) . )
producer’s actions, but rather represent the general market trend subject to engineering constraints

created by government incentives. Therefore the model createghg: t each producer is calculated as a function of the producer
here is able to evaluate trends of cost and effectiveness create ¥ision variables by combining the engineering performance

?riternaktllye pollc:je? trat aim to reduce automobile EMISSIONE hsumer demand, cost, profit, and regulation models described in
rough improved fuel economy. . ecs. 3.1-3.5. The sizg, of the setJ, is a variable in this for-
The remainder of this article proceeds as follows. Section 3,200 For 4 fixedh, and fixed engine typedl . for each ve-

describes the proposed policy analysis methodology, including theye “the modekEq. (li)) is a smooth, continuous optimization

development of individual models for engineering performanccfeo mijlation that can be solved with éradient-based methods. To
consumer demand, cost, producer profit, and regulation. The m '

els are utilized to establish oligopoly market competition betwqurriu?gt\é%n;g?ia%fhtz(')sm%riﬁgg:iyél sseeﬁ)ﬂfa;? 105 t|m|zra11t|o:1} ;ﬁgs are
2, Nima

:'ér;uslis"vgfe{ﬁepﬂ\'lceysgngﬁgf :rr: ggﬂ%zai?z::jl\ilr?ssheiqimb“um' Trﬁ jVj e Ji, and gradient-based methods are used to determine the
9 T optimal solution for each value of, . The most profitable solu-
3 Methodol tion among these cases is then taken as the optimum solution.
ethodology While this modeling framework is presented as a single loop of
The general modeling framework used to capture producer aselquential computation solved all-at-once, it is possible to break
consumer behavior in this study is shown in Fig. 1, where indihe problem into smaller pieces using multistage approaches
vidual analysis models are shown as black boxes. Producers [dr4,15 or decomposition and coordination optimization methods
assumed to make product design and production decisions thath as collaborative optimizatig@O) [16] and analytical target
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Fig. 1 Overview of the modeling framework

cascading ATC) [17]. For example, ATC can be used to designutilized in this study with two design variables: the engine scaling
complex engineering systems by coordinating hierarchies of dearametex, in the rangd0.75, 1.50, and the final drive ratio,

sign decisions for vehicle systems, subsystems and componentthe rangg0.2, 1.3. The computed outpuiperformance crite-
[18], or decomposition methods such as CO and ATC could bim) include the gas mileag@asoline equivaleptz, in miles per
used to coordinate marketing and business planning models willon (mpg) and the time to accelerate from 0 to 60 mph, in
engineering design mode]$9-21]. seconds. The engine typd =SI1102 refers to a spark ignition
(gasoling engine withbg;0,= 102 kW based on the 1991 Dodge
Caravan 3.0 L engine, whil& =CI88 refers to a compression
ignition (diese) engine withbcgg=90.5 kW based on an Audi 2.5
engine. Other engine types were explored but turned out to be
versized or undersized for this study. For a particular choice of
ngine typeM, ADVISOR acts as a functiofy, mappingx to z:

3.1 Engineering Performance Model. The engineering
performance model takes design decisignas input and predicts
performance characteristieg that can be calculated for each de
signj. Several analysis models were explored for vehicle mod
ing, and ADVISORJ[22,23 was chosen because of its availability,,
and appropriate level of detail for this study. ADVISOR contains
models for conventional, electric, hybrid electric, compressed
natural gas, and fuel cell vehicles. Experimentally-derived engine z=fu(x), (2
maps are used to estimate fuel economy and emissions character-
istics across engine operating conditions. The vehicle is simulat\%ere 2=[2,,2,]", and x=[x;,%,]T. ADVISOR simulations

thrpu_gh a drlvmg_ cycle, .an_d fuel economy, performance Chara\?/'ere computed for evenly spaced points in a 13 by 19 point grid
teristics, and vehicle emissions are calculated for the cycle. covering the ranges of; andx,, respectively, for each engine
In this study, vehicles are assumed to differ only by engla? e, and the responses were used to create a set of surface splines

design, so the default small car vehicle parameters were use . . ot

290 9% . surrogate models for ease of computation during optimization.
all simulations(based on the 1994 Saturn SL.and only engineé g h1e contour plots of the simulation results are shown in Fig. 2.
variables were changed. ADVISOR offers a set of nine gasoline

and eleven diesel engine types. Each engine type has a base si&2 Consumer Demand Model. The consumer demand
by, corresponding to the power output of a tested engine, whichodel is based on discrete choice analy&€A), which pre-
can be scaled to predict performance of larger or smaller enginsames users make purchasing decisions based autilitye value
(ADVISOR allows scaling parameters between 0.75 and)1.5@f each product option. Utility is measured in terms of an ob-
The EPA Federal Test ProceduféTP-75 driving cycle was used servable deterministic component which is taken to be a func-
for all simulations. Two engine typed ={SI102,CI88, were tion of product characteristics, and a stochastic error compenent
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Fig. 2 ADVISOR simulation result contour plots

The probabilityP; of choosing a particular produgfrom the set
Jis calculated as the probability that prodiittas a higher utility
value than all alternatives.

Pj=Pr(vj+ej>Uj,+ej,;Vj'eJ)

®)

The utility equation developed by Boyd and Mellnids

100 60)

vi=PB1Pjt Bo| 7| T B3| -

®)

where B,=—-2.86x10"*, B,=-0.339, 83=0.375, p; is the

price of vehiclgj, zy; is the gas mileage of vehicjeandz,; is the
0-60 mph acceleration time of vehigleAlthough several other
variables were includet.g., vehicle style, noise, and reliability
these variables were assumed constant across all vehicles for this
study. Since logit choice predictions depend on the differences
between utility values, factors that are constant across alternatives
do not affect predictions of choice, and they can be ignored. Other
factors, such as advertising, promotions, aesthetics, and brand im-
age were also assumed equal across alternatives. While the Boyd
and Mellman demand model is adequate for a preliminary analy-
sis, it does introduce several sources of error:

» The model was fit to purchase data from 1977-1978.

» The model utilizes purchase data only; consumers who chose
not to purchase vehicles were not studied. Thus, we can predict
only which vehicles consumers will purchase, nehetherthey
will purchase, and the size of the purchasing population is treated
as fixed, independent of vehicle pricés., there is no outside
good.

* The model is an aggregate model, and therefore it does not
account for different segments or consumer groups.

* The use of the logit model carries with it a property called

Various probabilistic choice models follow the DCA approachindependence from irrelevant alternativ€édA ), which implies

including the logit mode[24] and the probit moddR5]. The logit

that as one product’s market share increases, the shares of all

model, developed by McFadden to study transportation choicesmpetitors are reduced in equal proportj@d]. For example, a
has been used extensively in the marketing literature and has meadel with the 11A property might predict that BMW competes as

cently been applied to engineering design problgé2®21,24.

equally with Mercedes as with Chevrolet. In reality, different ve-

The model assumes that the unobserved error component of utiliigles attract different kinds of consumers, and competition is not

¢ is independently and identically distributé¢iéd) for each alter-
native, and that follows the extreme valuéouble exponential

equal. In this investigation, predictive limitations of the IIA prop-
erty are mitigated since the model is applied only to the small car

distribution(i.e., Pfe<x]=exd —exp(—x)]). In practice, it takes market(a relatively homogeneous markeather than to the entire
a large amount of data to distinguish results predicted by the logpectrum of vehicles.
model from those predicted by the probit model, which assumes

normal distributions for the error terms. The logit model is used

The demand model above was developed by Boyd and Mell-

here because of its simplicity, transparency of interpretation, ¢&@n to study the effects of fuel economy standards on the market,

pability to extend predictions to new designs, and the availabili
of existing models for automotive demand. It yields a simpl
closed form solution, while the probit model does not. Assumin

the double exponential distribution for tleeterms in Eq.(3), the
probability P; of choosing alternative from setJ is computed
[27] as

e’
j: .
> e
jeJ
Each utility functionv; depends on the characteristigsand
the pricep; of designj. Given a functional form for;(z) based

P (4)

on observed data, regression coefficients are found such that the
likelihood of generating the sample data with the model is maxi-

mized. For example, Boyd and Mellma@s] fit a simple logit

d it should be sufficient to capture the trends important in a
eneral analysis, even if the numbers vary for today’s consumers.
or the purposes of this study, the assumption was made that the
ze of the car-buying populatiosiis 1.57 million people. This
figure is based on 11 million people that bought cars in 1BBY
and an assumption that the size of the small car market was about
1/7 of the total market.The Boyd and Mellman model was then
applied to the small car sub-market, with recognition that this
could introduce additional error since the model was developed
based on the entire car market. Using the logit model with a fixed
market sizes, the demandy; for productj is

e’i

S

jed

qJ‘:SPJ':S

6

model to automotive sales data based on price, fuel economy, aviterev; is defined by Eq(5).

acceleration(lamong other vehicle factorsAfter an analysis of
several other vehicle choice mod¢®9—-34, the Boyd and Mell-

man model was chosen for this study for the following reason

S

3.3 Cost Model. Production cost is modeled as a function
of the vehicle design, and all producers are assumed to have the
same manufacturing cost structure. In practice, differences in

* The model is based on product characteristics that can g@uipment, assets, suppliers, and expertise exist between manu-
related to engineering design, as opposed to consumer derfasturers. However, assuming consistent production cost struc-

graphics.

tures across manufacturers is appropriate for oligopoly analysis,

* The independent variables include the vehicle’s price, fuel

economy, and acceleration, which match the characteristics'The coefficientss, and 8, were assumed here to be negative, even though they
predicted by the engineering performance model under coe listed as positive in the Boyd and Mellman article. In the text the authors describe

sideration in this study.

the variables as having a negative relationship even though all coefficients are listed
as positive in the regression summary.

* The model was fit to a Iarge volume of annual market data “Further research indicated that a better estimate of the size of the small car

and validated using data from a subsequent year.

Journal of Mechanical Design

market may be 2/7 of the total marke6].
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£20 neously without consideration of the time value of money, oppor-
tunity costs, or changes in production loads over time. Demand is
predicted over the course of one year, with all costs and revenue
occurring during that year. The inclusion of dynamic time consid-
erations brings with it a plethora of uncertainties and issues that
are difficult to model, and is therefore left for future consideration.
Note that it is assumed that the investment adss completely
paid during this year. In practice, the investment cost associated
with designing and building production lines and planning supply
chains is spread over several years with only minor changes to the
vehicles during those few years, implying that this model will
tend to over-predict investment cost.

$15 4

£10

55

Engine Cost (Thousands)

3.5 Regulation Policy. Four producer penalty policies were
used to define®: the no-regulation base case®0), CAFE
standards, COemission taxes, and diesel vehicle sales quotas.

0 100 200 300 400 500 600 Each of these policies applies a penalty cost to the producer as a
Power (kW) function of the fuel economy, emission properties, or fuel type of
the producer’s vehicles. The specific applications of the penalty
Fig. 3 Manufacturing cost for SI and ClI engines policies are described below.

3.5.1 Corporate Average Fuel Economy (CAFELAFE

regulations establish minimum average fuel economy standards
and it is useful to analyze trends even if individual numbers diffehat each producer’s vehicle fleet must meet to avoid penalties. To
between firms. In this analysis, the total cost to manufacturedafine a CAFE policy, both the fuel economy standard and the
vehicle c¢” is decomposed into two components: the investmepenalty must be specified. In this study, only a single market seg-
cost to set up the production lir@ and variable cost per vehicle ment is utilized, although CAFE regulations in the United States
cV. The variable cost is comprised of the cost to manufacture tAPlY to all passenger vehicle markets in which the producer op-
enginecE and the cost to manufacture the rest of the vehifle €rates.(Multiple market segments are left for future consider-

so thatc¥=cB+cE. The cost to manufacturg units of a vehicle ation) The current CAFE fuel economy standard for caigre

with topologyM and design variables is then =27.5mpg, was used here, and two different penalty charges
were explored: the current standapds $55 per vehicle per mpg

cP(M,x)=c'+qcY(M,x)=c'+q(cB+cEM,x)) (7)  under the limit, and a hypothetical double-penalty scenario. Addi-

tional future credit for vehicle fleets with average fuel economies

where it is assumed thaf=$7500 for all vehicles based on data .
for the Ford Tauruga7], andc'=$550 million per vehicle design greater than the standard was not modeled. The total cost incurred

] by designj is thereforepq;(zcare—2z1j), Wherep is the penalty,
for all manufacturers based on an average of two figures for neajxis the number of vehicles of tygethat are soldzearg is the

production Iine§[38]. The cost to manufacture an engine is mOdCAFE limit, andz,, is the fuel economy of vehiclg The total
eled as a function of engine power, as determined by a regress.llgaul‘,ﬂtion éost tolé)roducekris then

analysis of data obtained from manufacturing, wholesale, and re-
built engine cost$39—44. Wholesale and rebuilt engine prices
were assumed to be close to manufacturing prices, and these data cR= max( 0,,2 pYj(Zcare— Z1j) (11)
fit the curve well. The resulting functions are Ted

Baexp(Bsbyx;) if MeSl 3.5.2 CQ Emission Tax. Avehicle emission valuation study
) (8) [45] was used to estimate the economic cost to society associated

Be(buxy) +B7 if MeCl with environmental damage due to the release of each ton gf CO
where 8,=670.51, B5=0.0063, Bs=26.23 and 8,=1642.8. Using this valuatipn, a tax can be imp.os.ed on the manufa}cturer
These functions are plotted in Fig. 3, and all designs considereddased on the estimated lifetime g@missions of each vehicle
this study fall within the range of the data. As expected, the co¥®ld due to the burning of hydrocarbon fuel. Tax per vehicle sold
associated with manufacturing diesel engines is higher than f&n be calculated agday /z;, wherev is the dollar valuation of
gasoline engines. It is possible that increased diesel product®rion of CQ, d is the number of miles traveled in the vehicle’s
volumes would change this cost structure, but this possibility witetime, ay is the number of tons of COproduced by combus-
not explored in this study. Although both cost regression modéei§d a gallon of fuel for engine typdl, andz, is the fuel economy
rely on maximum engine power as the only dependent variabf, the.vehlcle. The total regulation cost to the producer in this
Fig. 3 demonstrates that the regressions fit the data well and p$Bidy 1S
dict realistic cost trends.

The total cost to producesis the sum of the production costs CEZ q:
for each vehicle irk's product line and the regulation cost, as Sz

described in Sec. 3.5. whered= 150,000 miles,a), is 9.94x 102 tons CQ per gallon
cm E P for gasoline or 9.2% 10 % tons CQ per gallon for diesel fuel
K\ £ s [46], and the value of» was varied from $2/ton to $23/ton with a
median estimation of $14/ton.

cE(M ,x)=

vday

(12)

+og )

3.4 Profit Model. The profit model for each producéris ) . .
’ P 3.5.3 Diesel Fuel Vehicle Sales Quotas®As a regulation

calculated simply as revenue minus cost: )
method, quotas can be used to force more costly alternative fuel
Vv R vehicles into the markgtL0]. In this case, a hypothetical policy is
Hk—(j; a;p; _Ck_(jz (P~ ¢ )_Cl) —Cc (10)  considered that introduces a large penalty cost for violation of a
K K quota on percent diesel sales as a way to enforce adoption of a
Wherec,F(z is the regulation cost for producér (defined in Sec. higher fuel efficiency vehicle alternative. Diesels were selected
3.5. The model assumes that all transactions happen instardae to data availability, their competitive fuel efficiency and ac-
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celeration characteristics, and their similarity to gasoline enginegere s=(11/7)x10°, B;=-2.86<x10 %, B,=-0.339, B,

in unobserved characteristics such as range and existence of sap:375, B8,=670.51, B5;=0.0063, Bs=26.23, B;=1642.8,
porting infrastructure, which allows application of the demangS|102= 102 kW, bcige=90.5 kW, cB=$7500, c¢'=$550x 1P,
model without introducing large errors. It is left for future work t0andc} is defined by Eq(11), Eq. (12), Eq. (13) or zero, depend-
consider regulation of emissions such as,N@d particulate mat- jng on which regulation scenario is used. For each producer, com-
ter, which tend to be larger in diesel engines and which play[%titor products are represented by the{set J,}, and are con-
significant role in determining environmental tradeoffs betweef)jered fixed parameters that affect dem&gd. (6)]. The first
diesel and gasoline engines in practice. The regulation costyj# constraints represent limits on the ability to model variables
modeled as outside these ranges rather than physical feasibility limits. If these

R_ sI si, .cl constraints were active, it would represent an inability to model

Ce=max0,p(qy —(1—¢)(ay +ay))) 13)  the optimum solutior{48]. However these constraints were not

wherep is the penalty per gasoline vehicle over qué#a000, ¢ active in any of the results, indicating that the optima discussed

; e : - here are all interior optima and the solutions are valid.
is the minimum diesel percentage required by the q(42&0), qf' : : . h .
is the total number of spark ignitiofgasoling engines sold by Despite the computational savings gained by creating surrogate

d K anda is th | b ‘ - == 77 models of the engineering performance simulatispines, the
producerk, andq, Is the total number of compression Ignitiongq,mytational burden is still significant. For each producer, sepa-

(diese) engines sold by producér rate optimization runs must be computed to determine which com-
3.6 Nash Equilibrium Solution Strategy. In a free market, bination of vehicles is best for the product line. This combinatorial

manufacturers have economic incentives to produce and sell pr&8t of optimization problems is computed for each producer, and
ucts only if there is an opportunity to make profit within the comeach producer model is then iterated several times in the Nash
petitive market. To account for competition in the design of ve2quilibrium solution strategy. In order to reduce the computational
hicles subject to government regulations, game theory was usedtden, the number of designs per producer was limited to a maxi-
find the marketNash equilibrium among competing producers.Mum of two (ya=2). It was shown that this assumption was

In game theory, a set of actions is in Nash equilibrium if for eaclgasonable because results .of ali runs indicate that gach producer
producerk=1,2, . .. K, given the actions of its rivals, the pro-manufactures only one design, implying that there is a lack of
ducer cannot increase its own profit by choosing any action otHBgentive to produce multiple desigiexcept for the quota regu-
than its equilibrium actiofi47]. In the absence of a cartel agreeJatio_n case where each producer manufactures both an Sl and a Cl
ment or strategic dynamic actions, game theory predicts that @gdine.

market will stay stable at this point. It is assumed that this market

equilibrium point can provide a reasonable prediction of which Results and Discussion

designs manufacturers are driven to produce under various regurpe resylts of the investigation are summarized in Table 1, with
lation scenarios. It should be noted however that the Nash eqyig aphical summary of the resulting fuel economy and regulation
librium does not model preemptive competitive strategies by preast per vehicle provided in Fig. 4. For each regulation scenario,
ducers. Instead, it assumes that each producer will move ¢, (aple shows the maximum number of produdéthat yields a
increase its profit while treating competitor decisions as consta Bsitive-profit Nash equilibrium and the market share per pro-
In order to search for the equilibrium point, an algorithm Wagucer design. The use of the aggregate demand model results in
employed in which each producer separately optimizes its oW producer making the same decisions at market equilibrium,
profit while holding all competitor producer decisions constanfy, Taple 1 summarizes the decision variables, product character-
Each producer’s optimization model is solved sequentially, a’?é?t'cs, costs, and profits for a typical producer in each scenario.
the process is iterated across producers, in turn optimizing affle fact that all producers are driven to produce the same vehicle
updating each producer’s decisions until all producers convergg.qign facilitates comparison of the trends that result from each
Then, a parametric study df is used to determine the largesteqjation scenario. Additionally, at equilibrium each producer
value ofK that produces a Nash equilibrium with positive pro,anfactures only a single design rather than a product(éire
ducer profits, and this point is taken to be the market equnibriureept in the quota cageThis result could be changed by modeling
'Using the models developed in Secs. 3.1-3.5, each pro#ucglyst savings due to economies of scpf@], possible commonal-
WI|| |nd|_V|(_iuaI_Iy attempt to maximize profit by solving the follow- ity among design50], and the use of a heterogeneous model for
ing optimization problem, demand. From Table 1, it is also evident that the model predicts
equal profits for all regulation scenari¢sxcept the quota cage

maximize{ qj(pj—c}’)—cl _CE anq aill incurred costs are passed to the consumer at equilibrium.
jedy This is because the demand model assumes a fixed car-buying
population(there is no option not to byyand does not consider
with respect tOM;,Xy;,Xp; ,Pj}V] € J¢ the utility of outside goods.
) It is important to take care when interpreting results of an op-
subject to 0.75x;;<1.50 timization study that is based on a demand regression model.
Even if the demand model succeeds in capturing important trends
0.2<x3=<1.3 in consumer purchasing preferences according to measurable
o characteristics, the metrics do not capture purchasing criteria en-
q=s € tirely, as the model ignores unmeasured and unobservable charac-

2 v teristics. For example, the model used in this study predicts a
e preference for vehicles with faster acceleration; therefore, a ve-

jed hicle that dramatically sacrifices unmeasured characteristics such

100 60 as maximum speed for a slight improvement of acceleration time
vj=PB1pj+ Bal — |+ B3 —) will be preferred according to the model. However, in practice a
4 2 consumer would observe the unmeasured limitations during a road

_¢ test, especially if the limitations are extreme. To check for this

z=fm(x) issue, each optimum vehicle design was tested post hoc to ensure
. _ the vehicle’s ability to follow the standard FTP driving cycle and

V_cB ['34 eXPl Bsbsioy) If M;=SI102 (14) achieve a speed of at least 110 mph on a flat road. All vehicle

4= Bo(bcgexy)) + 87 if M;=CI88 designs in the study passed this test.
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Table 1 Nash equilibrium results for each regulation scenario

Regulation Type
No Reg. Low CO, | Med. CO, | HighCO, CAFE 2:CAFE Quota
# Producers K 10 10 10 10 10 10 5
Market share qls 10.0% 10.0% 10.0% 10.0% 10.0% 10.0% 11.9% 8.1%
Engine type M SI SI SI SI SI SI SI CI
Engine size byx) 127.9 127.7 114.3 110.3 113.3 88.4 127.9 98.0
FD ratio X 1.28 1.28 1.28 1.27 1.28 1.29 1.28 0.88
Price p $12,886 $13,031 $13,719 $14,259 $13,058 $12,772 $13,372 $16,083
Gas mileage z; 20.2 20.3 21.8 224 22.0 25.5 20.2 29.8
Accel. time Z 7.46 7.46 7.93 8.10 7.97 9.29 7.46 7.84
Investment cost a $550 mil | $550mil | $550mil | $550mil | $550 mil [ $550mil | $550 mil | $550 mil
Var. cost/vehicle | cv $9,001 $8,999 $8,878 $8,844 $8,869 $8,670 $9,001 $11,713
Reg. cost/vehicle | cp/gq $0 $147 $956 $1,530 $304 $217 $0 $0
Profit T | $60.5mil | $60.5mil { $60.5mil | $60.5mil | $60.5mil [ $60.5mil | $276 mil | $6.5 mil
4.1 Base Case.As a comparative baseline, the no- In practice, many producers do not currently accrue CAFE pen-

regulation case®=0) was analyzed first. Without regulation,alties and instead treat the CAFE standard as a consfi&dht

the model predicts ten producers in the small car market. EaGme reason for this is the non-modeled extra costs to the producer
producer manufactures a single vehicle with design variablegused by violation, such as damage to the producer’s reputation
product characteristics, and costs shown in Table 1. (which could affect demangdpublic and government relations, as
well as making future compliance more difficult. The results of

4.2 Corporate Average Fuel Economy(CAFE). Table 1 g siudy suggest that these non-modeled aspects may provide
shows that the CAFE regulation results in increased fuel ef@‘lgnificant incentives worthy of further consideration.

ciency at a lower manufacturing cost relative to the base case;
however, performance is sacrificed, and regulatory costs are in4.3 CO, Emissions Tax. Comparing the C@emissions tax
curred(see Fig. 4 The “2-CAFE” case represents a hypotheticato the base case, several trends can be observed. As the tax in-
doubling of the penalty for CAFE violation, resulting in improvecdcreases, producers tend to design smaller, more fuel-efficient en-
fuel economy, reduced regulation costs, and reduced vehiclegines while transferring the added regulation cost to the consumer
prices relative to CAFE. In both cases, it is predicted that it irough an increased vehicle prigeig. 4). A low valuation pen-
profitable for manufacturers to violate CAFE standards and takély ($2/ton has little effect on fuel efficiency with the only sig-
the penalty in order to increase market share. The model indicatgécant effect being added regulation costs that are in turn passed
that full compliance with CAFE is dangerous for producers ben to consumers. The median valuati@l4/tor) has a larger
cause competitors can produce larger engines, which are in higipact, increasing fuel-efficiency by 1.6 mpg, while the high
demand, and capture market share. However, when CAFE penaiuation($22/ton adds only slight improvement in fuel economy
ties are increased, there is less danger of losing market share @ & substantial regulation cost increase over the median case.
competitor who sells more powerful engines because all producdiese trends predict reasonable real-world scenarios, since regu-
are subject to a more stringent penalty. Therefore all producdasion provides an incentive to produce smaller, more fuel-
design smaller, cheaper engines with less risk. efficient engines. However, in practice such increases in vehicle
costs could lower the demand and sales of vehicles relative to
other modes of transportation or other market segments.

Gas Mileage (MPG) 4.4 Diesel Fuel Sales Quota. In the quota policy, producers

202 2.2 24.2 26.2 282 302  were forced to offer diesel engines as a minimum percentage of
gl i : : S T i their vehicle fleet ¢§=40%). The results indicate that producers
i g 2“:_‘:';:;“ e follow this regulation strictly to avoid expensive penalties, pro-
L

ducing exactly the minimum required percentage of diesels in

o LowCO2 their product mix. Since each producer manufactures two vehicle

Biid oo’ designs, fewer producers result at the market equilibrium.

c

5 High 02 5 Conclusions

c This article presented a methodology for analyzing the impact

T CAFE of fuel economy regulations on the design decisions made by

S acArE | 3 aytom_obile me_\nufacturers._ The approach integrates models for en-

by ] gineering design, production cost, consumer demand, producer

o | profit, and producer competition toward predicting the impacts
Cuota {51) | associated with different policies that aim to improve fuel
ouda i | 3 economy. Several trends were observed in the policy scenarios

- - 7 examined in this study. One notable observation is that increased
30 %500 $1.000 £1,500 regulation penalties can result in cost savings for all pafges.,

Regulation Cost Per Vehicle (§)

Fig. 4 Resulting vehicle gas mileage and regulation cost per
vehicle under each policy
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in CAFE scenarios Without a regulatory standard, producers

cannot afford to make smaller, cheaper engines due to competi-
tion; however, when all producers are subject to the same regula-
tion costs, then all producers are driven to produce smaller en-
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gines with less risk. On the other hand, increased regulation CE = Total regulation cost for producér

penalties can also lead to diminishing returns in fuel economy ¢V — variable manufacturing cost per vehicle for desjgn
improvement with increased regulation penalies)., CQ taxa- d = Lifetime vehicle miles traveled

tion). The observed trends indicate that the cost-benefit character-¢ =~ — ADVISOR simulation for engine typ#!
istics of a given policy can be modeled in a realistic way, and that " — \ehicle design index
a holistic integration of costs, performance, consumer preference, j — Set of all vehicle designs produced

and competition may be helpful for evaluating and selecting en- 3 — Set of all vehicle designs produced by produker
vironmental policies, as well as for choosing regulatory parameter | — producer index

values. o ) K = Total number of producers in the market

The study also shows that regulation is necessary to provide ;. = |ndex of vehicle engine type for design
incentives for producers to design alternative fuel vehiéteg., n:( = Number of designs produced by produger
diesels that cost more to produce. While diesel engines have bet- . — selling price of desigij

ter fuel efficiency per unit power, gasoline engines are cheaper to ' — pemand for desigi
! - U
manufacture and are therefore preferred by the market. Future . — ytjlity of design |
investigations that combine engineering, marketing, and policy & — Size of the car buying market
models with models of changing consumer preferences and driv- ;. — Opservable component of utility for production

ing habits could be used to predict trends for the diffusion of )J( = Design variable vectonq,x,)"
= Engine scaling parameter for design

alternative fuel vehiqles, possib!y avoi.ding costly investment in Xy =
products that are unI|I_<er to achieve wide acceptance and_help to ij' = Final drive ratio for desigp
focus resources and incentives toward solutions that are likely to é — Product characteristics vectaz,(z,)"
make the most impact in reducing environmental damage. 2, = Fuel economy of desigp o2

The demand model used in this study indicated that individual le_ — Acceleration time(0—60 mph of designj
consumers prefer vehicle acceleration over fuel economy perfo (-gAIfIJE — CAFE fuel economy limit
mance. However, as a society, the same individuals may plac _ :
value on environmental protect)i/on, human health, and sust)altir?abil-a"" = Tons CQ produced per galion of fuel for engine type
ity that is not captured in the market of individual decisions. For
example, while increased CAFE penalties resulted in decreased
costs to producers and consumers relative to other fuel economy
policies, they also result in smaller, lower-performance vehicles, (’;
which are less preferred by individual consumers. Naturally, it
will be necessary to balance social versus individual preferences.
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