INTERACTIVE LAYOUT
DESIGN OPTIMIZATION

An interactive optimization tool for architectural floorplan layout design.

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering
at the University of Michigan - May 2001.

mxﬁ e] ‘
gy
B!

e

{
'7 2
M
i
[7
=
[

Author:
Jeremy J. Michalek

Thesis Committee:
Professor Panos Y. Papalambros
Professor Kazuhiro Saitou

ABSTRACT

Many areas of design involve both quantifiable and subjective goals, preferences, and
constraints. Subjective aspects of design are typically ignored in optimization models
because they are difficult to model with mathematics;, however, they are extremely
important in areas such as product design and architectural design. The objectives of this
thesis are (1) to formulate quantifiable aspects of architectural floorplan layout design
using computational optimization algorithms, (2) to provide a method for integrating
mathematical optimization with human decision making, and (3) to develop the use of
optimization techniques as a tool to aid early conceptua design. Two design tools have

been developed: an automated tool and an interactive tool.

The automated tool uses a Automated Interactive
iti Design Tool i
decomposition strategy to separate oo Design Tool
i i o ; : Designer Defines T T T RN
topological decisions (discrete design Desired Properties ! Designer Uses
Interactive

decisions) from purely geometric

| |
N : Optimization :
decisions (sizing and placement). The |/ Topology) I Intefface |
i Optimization [! |
designer specifies desired design ' Model ! : :
| | -
haracteristics of the building, and the ' | | ceometic],
Characterisiics or the building, and the " Geometiic : | Optimization |
program automatically generates a ' Optimization ! v Model S
. Optimizaton— '~ _ "7 _ _ _
population of feasible, goal-directed . _Model l
design alternatives. .
]) _ Design Alternatives Designs
The interactive tool uses an object Generated Explored
Automatically Iteratively

oriented representation with an interface
that allows the designer to interact with the building layout optimization problem. Using
the interactive tool, the designer can refine the problem definition on-the-fly and quickly
explore solution aternatives and trade-offs while receiving both visual and computational
feedback. By interacting with the optimization process, the designer can guide globa
search and take unmodeled preferences into account. This interactive approach is a novel
use of optimization methods as an exploratory sketching tool for the early conceptual

design phase.

Acknowiedgements

This thesis work was completed with significant contributions from Ruchi Choudhary
(University of Michigan School of Architecture), and John Whitehead, Panayiotis
Georgeopolous, and Adam Cooper of the Optimal Design Laboratory (University of
Michigan Mechanical Engineering Department). Special thanks to my thesis advisor,
Panos Papalambros, and committee member Kazu Saitou who contributed much support
and knowledge, and the entire Optimal Design Laboratory (including Brian Jensen) who

encouraged, supported, and provided useful feedback.

TABLE OF GONTENTS

TABLE OF CONTENT S ... e e e e e \

LIST OF FIGURES e e e e e IX

LIST OF TABLES . ..o e e e e e XI

CHAPTER 1 . e e e e e e e e e 1

OVERVIEW

1.10ptimization MOdEIS i 2

1.1. 1 Geometric OptimizationModel 2

1. 1.2 Topology OptimizationModel 3

1 2SN TOOIS . . v ottt e 4

1.2 1 Automated Design Tool ...t 4

1.2. 2Interactive Design TOOl o 5

CHAPTER 2 o e e e e 7
BACKGROUND

2. 1 Automated Spatial Configurationci i, 7

2.1. 1 Fixed Grid Space Allocation, 9

2. 1. 2 Decomposition of Topology and Geometry 10

2.1.3Whatisdtillneeded 12

2. 2 Interactive Optimizationt 13

2. 2. 1 Interactive Multi-Objective Optimization 13

2. 2. 2 Interactive Design Space Exploration 14

2. 2. 3 Interactive Building Layout Optimization 15

2.2.4Whatisstillneededo 15

2. 3Exploratory Design CAD TOOIS oo 16

2.3.11ll-Defined DesignProblems oo 16

2. 3. 2 Rapid Generation of Design Alternatives 17

2.3.3Whatisstillneeded 18

CHAPTER 3 . e e e e e 19

OPTIMIZATION OF GEOMETRY

3. 1Problem Formulation o 19
B L L UNIS . ot 19

3.1 2 RO0OMS . oo 21
3.1L.3Boundaries 22

3. 1. 4 Hallwaysand ACCESSWAYS vvieeit e 22

B L BWINAOWS . .o 22

3. L BCONSANS ..ot e 23

3. L 7 ODJECVES . ottt 23

3. 1. 8 Noteson an Earlier Model Formulation 24

3. 2 Mathematical Optimization Formulation 26
3.2.1DesignVariables 26
3.22Resultant Variables 27
3.2.3Forcelnside Constraint Groupovuiiininnennnennnn 28

3. 2. 4 Prohibit Intersection Constraint Groupo, 28

3. 2. 5 Force Minimum Intersection ConstraintGroup 29
3.2.6 ForceToEdgeConstraint Groupcoviiiiiennnennnn. 31
3.2.7Bound Size Constraint GrouP« oo v v vt 31

3. 2.8 Minimum Ratio Constraint Groupc.covuiinnenn... 32

3.2 9BuildCostConstraintot 32

3. 2. 10 Feasible Window Constraint Groupcovivuenn.. 33
3.2.11 Bound Lighting Constraint Group, 33

3. 2. 12 Minimize Heating Cost Objective, 34

3. 2. 13 Minimize Cooling Cost Objectivec.covuivenn.n. 36

3. 2. 14 Minimize Lighting Cost Objective, 37

3. 2. 15 Minimize Wasted Space Objective, 38

3. 2. 16 Minimize Accessway SizeObjective 38

3. 2. 17 Minimize Hallway SizeObjective 39

3. 2. 18 Multi-Objective Optimization, 39

3.3 Local OptimizationMethodst 40
3. 3. 1 Sequential Quadratic Programmingc..coivenn... 40
3.3.2Generdlized Reduced Gradient 43
3.3.3Limitationsof Local Search i 43

3.4 Global OptimizationMethods i 44
4. 1Smulaed Annealing 44

3. 4.2 Hybrid SA/SQP SearchMethod, 45

3. 4.3 Evolutionary Algorithms o i 47

3. 4. 4 The Maximum Distance Distribution Method 49
3.4.5Strategic Exploration 50

3 D OUMMaANY .. e 53
CHAPTER 4 . e e e 55

OPTIMIZATION OF TOPOLOGY

4. 1Problem Formulation 55
4.2 Mathematical Model 57
4.2.AVaniables 57
4.2.20verlap ConstraintScotii 59
4. 2. 3 Connectivity ConstraintSouuiii e 59
4.2.4Path Constraintst e 59
4.2.5Planarity ConStraintSot 60

4.2.6EnvelopeConstraintst e e 60

4.2. TODJECLIVE . .ottt e 61

4.2.8Penalty funCtions 62

4.3 Global Optimization Methodst 62

4. 3.1 Constraint Satisfaction Algorithms 63

4. 3.2 Evolutionary Algorithms o i 64

A 4 SUMMAIY .« v vt e et e e et e 66

CHAPTER 5 o 67

INTERACTIVE DESIGN OPTIMIZATION

5. 1Interactive Problem Definition i i 67
5. 1. 1 Multi-Objective Optimizationc.c.coiiirnenn... 68

5. 1. 2 Addition, Deletion, and Modification of Objectives 69

5. 1. 3 Addition, Deletion, and Modification of Constraints 69

5. 1. 4 Addition, Deletion, and Modificationof Units 70
5.1.5Change of Variable Formulation 70

5. 2 Interactive Optimizationot 70
5. 3Interactive Design Explorationo i 71
5.3. 1interactiveSketching i 71
5.3.2DesignFeedback 72
CHAPTER B . e e e 75

DEMONSTRATION STUDY

6. 1 Automated Design TOOlot 75
6. 2 Interactive Building Exploration 79
CHAPTER 7 o 87

FUTURE DIRECTION

7. 1 Automated Design Optimization Improvements 87
7.1. 1IlmproveDesign Toolbox 87
7.1. 2Explore Shape Grammarsc..couiiiiiiinnnn. 87
7.1. 3Material Selection 87
7.1.4VariableNumberof Hallways 88
7. L S DIVEISItY o 88
7.L6MUltiple FloOrso 88
7.1 7ComMpPIex Shapeso 88
7. 1. 8 Alternative Global SearchMethods. 89
7.1.9Topology Definition i 89
7. 2 Interactive Design Exploration Improvements 90
7.2.1Developlinterface. i 90
7. 2.2 Interface with Design Constraintsoouivennennn.. 90
7.2.3TrUSEREGIONS . . .ot 90
7.2.4Generaization 90

CHAPTER 8 . 91

CONCLUSIONS
8. 1 Automated BuildingLayout Designoiiiiiiiii i 91
8. 2 Interactive Layout Optimizationccoiiiiiiiiniinnnn.. 92
REFERENCES e e e e 93
Automated BuildingLayout 93
Other Automated Layoutttt 93
Optimization REFEreNCESot 9
Interactive Optimizationot 95
Exploratory Design TooIS oottt e e 96
Architectural DesignReferencesc i i e 96
APPENDIX A: MATHEMATICAL NOMENCLATURE 97
APPENDIX B: TOPOLOGY PATH CONSTRAINT CALCULATIONS 101
APPENDIX C: TOPOLOGY PLANARITY CONSTRAINTS 103

viii

List of Figures

OVERVIEW

Figurel. Samplelayout geometryt e 2
Figure2. Samplelayout topologyot 3
Figure3. Automated building layout optimization method 4
Figure4. Interactive building layout optimizationmethod i, 6
BACKGROUND

Figure5. Samplefixed gridallocationlayoutt 9
Figure6. Sample search tree of topology combinations., 11
Figure7. Pareto setin amulti-objective optimizationproblem 13
Figure8. Pareto optimization using an aspiration POiNtvuuuiiennne e 13

OPTIMIZATION OF GEOMETRY

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Alternative variable representationsof alUnit i 20
An example layout showing four different typesof Units 21
Example showing parameterized hall structurein early problem formulation. 25
Example diagram showing the mixed-discrete early formulation. 25
Diagram of design variables and resultant variablesfor asingleUnit 27
An example nonlinearity of a digunctive logic constraint represented as amin() function. .. 29
Example showing effects of the Minimize Hallway Objective......................... 39
Description of the Sequential Quadratic Programming method for optimization. 40
Progression of the CFSQP algorithm optimizing a sample apartment complex building to
minimize annual cost andwasted Space;t e 42
Description of the Generalized Reduced Gradient method for optimization. 43
Description of the Simulated Annealing algorithm. 44
Description of the SA/SQP hybrid algorithm 45
Hybrid SA/SQP sample function with multiplelocal minima. 46
Sample results generated by the SA/SQP hybrid algorithm 47
Description of atypical Evolutionary Algorithm 48
Sample geometry generated by GENOCOPo oottt e e e 49
Demonstration of the MDDM method for finding improved local optima. 50
Sample designs generated by the strategic exploration algorithm. 52

OPTIMIZATION OF TOPOLOGY

Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.

Figure 33.
Figure 34.

Figure 35.

Building topology optimizationmethod i 56
A 4-room example showing design variablesin the topology formulation 57
Alternative geometric interpretations of atopology. 58
Example connectivity graph showing alternativepaths 59
Example connectivity graph showing alternativepaths 60
Schematic showing the relationship between the topology and geometry optimization

fOrmMUIELiONS 61
Formulation of the topology objectivefunction 62
Conversion of a3-variable constraint into 2-variable and 1-variable constraints by introducing an
encapsulated variable 64
Process of generating a new design population using crossover and mutation operators. 65

DEMONSTRATION STUDY

Figure 36.
Figure 37.

Sample designs generated by the automated designtool 77
Sample apartment complex geometric optimization. 79

iX

LiST OF TABLES

Table 1: Outline of Research in Automated BuildingLayout 8
Table 2: Room Specifications for Demonstration Problem 75
Table 3: Topology Specifications for DemonstrationProblem 76

Table 4: Mathematical NOMENCIAIUIEot e e e e e e e 97

Xii

CHAPTER

OVERVIEW

Computational design tools for spatial layout planning present perhaps the most
comprehensive challenges in the area of architectural design computation. Spatial design
tools are the common ground where design representation, generation, evaluation and
decision-making are required to be addressed simultaneously for the goa of reaizing
meaningful design exploration tools. Additionaly, a multitude of ill-posed design
intentions, non-explicit goals, and the non-deterministic nature of the design process itself
add to the problem complexity. Given the difficulties, the problem of architectural layout
design continues to challenge researchers from all areas of design computation.

Reported attempts to automate the process of layout design started over 35 years ago
[1]. Researchers have used several problem representations and solution techniques to
describe and solve the problem (details of previous research models are discussed in
Chapter 2). This thesis presents an aternative automated layout method that generates
goal-directed design aternatives given a set of design objectives and constraints.

Architectural design involves a mix of quantifiable and subjective goals, preferences
and constraints. Aesthetic preferences and other subjective aspects of designs are typically
ignored in automated models because these aspects are difficult to model with
mathematics. Designers generally explore subjective aspects during the conceptual design
phase by sketching and comparing design alternatives. Very few CAD packages address
the needs of designers during this initial conceptual exploratory phase of design. Chapter
2 discusses this further. This thesis presents a novel interactive design tool that uses
optimization to help the designer quickly generate and compare designs using visual and
computational feedback to understand design trade-offs.

This chapter gives an overview of the work presented in the thesis. Two optimization
models (a geometry model and a topology model) are introduced, and two design tools (an

automated tool and an interactive tool) that use the optimization models are discussed.

1. 1 Optimization Models

Two separate optimization models have been developed to model different parts of the
building layout design problem. The geometric optimization model defines position and size
variables for each room, and the design variables have continuous domains. The topology
optimization model defines design decision variables including room connectivity and rough

position, and the design variables have discrete domains.

1.1. 1 Geometric Optimization M odel

The geometric optimization model is used in both

the automated design tool and the interactive design it
tool. The model is discussed in detail in Chapter 3.

Bedraom

The geometric floorplan layout problem is posed as a iring Foam

process of searching for the best location and size of a

group of interrelated rectangular units. This el !

representation assumes that most architectural
floorplans can be described as combinations of Beckonm

Living Room Bedrocm

rectangular shapes (including L-shapes, etc.). The

problem is formulated mathematically with a set of

design variables representing layout dimensions.

] o] Figure 1. Sample layout geometry
Design objectives and constraints are formulated as
functions of the design variables. Several optimization algorithms are used to solve for optimum
layout geometry. The layout geometry optimization determines room position and size (topology

is fixed during optimization). Figure 1 shows a sample layout geometry.

J. Michalek - Interactive Layout Design Optimization

1. 1. 2 Topology Optimization Model

The topology optimization
model is used together with the

Kitchen 5 Bath 8
geometry model in the automated \

A1

design tool. The modd is \
discussed in detail in Chapter 4.

\

Bedopm 4

Dining\Room 2

The topology layout problem is

Al 10
posed as a process of searching :

Hal 7 H{{
for the set of room connectivities \

and rough locations that yields A .

the best geometry. The topology y 2
ving=Rpom 1 Bedregm 15 Be , 3

defines room connections (by

doorway or accessway), rooms
that lie on external walls, and the Figure 2. Sample layout topology

rough placement of rooms inside

the building bounds. The problem is formulated with a set of discrete design variables
(representing topology decisions) and design constraints. An evolutionary algorithm is
used to search for high quality designs that meet all specifications (design ‘quality’ refers
to the objective function value of the resulting geometric layout). Figure 2 shows an
example topology. In this figure nodes represent room positions, and lines represent
connections between rooms.

Theoretically, topologies could be evaluated based on topological objectives, such as
openness, proximity, directionality, or symmetry; however, even though these aspects are
often thought of as topological, they are difficult to evaluate without geometry. However,
any design objective can be evaluated in a geometric layout because the geometry defines
the layout completely (the geometric layout treats connectivity and materials as fixed
values). This is why each topology is evaluated based on the best geometry that it can

produce.

1. 2 Design Tools

Two design tools have been developed to assist a designer in exploring solutions to building

floorplan layout problems: an automated design tool, and an interactive design tool.

1. 2. 1 Automated Design Tool

The mechanics of the automated design
tool are discussed in detail in Chapter 3 and
Chapter 4. By combining the topology and
geometry models, the automated design tool
can be used to generate high-quality design
aternatives for consideration. In this
process, the designer specifies topological
and geometric constraints and objectives.
For example, the designer might specify that
the living room and bedrooms must be
adjacent to external walls for natural
lighting, there must be valid paths from
every room to the entryway, and the kitchen
must be connected to the dining room. The
topology optimization algorithm will search
for topology alternatives that satisfy these
constraints (Chapter 4). Each valid topol ogy

Topology \
J/

Generation

" | y,

Generate a new feasible -
topology

v

Formulate geometric
optimization problem for
this topology.

Initial Geometry
Geometric_constraints

Topology
Evaluation

Geometric optimization
algorithm generates
optimal geometry for this
topology.

Figure 3. Automated building layout
optimization method

Topology agorithm searches for the
topology that resultsin the best geometry

isthen translated into alocal optimal geometric layout using the geometric optimization algorithm

(Chapter 3). This processis shown in Figure 3. The topology agorithm searches for the topol ogy

that resultsin the best geometry, and the algorithm generates a population of feasible layout design

aternatives. This automated design generator helps the design process because it formalizes

design objectives and constraints, it can assist the search for solution alternatives, and it has the

potential to generate novel designs that are not biased by the same set of assumptions and

strategies that human designers use.

J. Michalek - Interactive Layout Design Optimization

1. 2. 2 Interactive Design Tool

Automated design generation tools are sometimes not adequate for problems such as
architectural design for several reasons. Architectural design involves many subjective
decisions about aesthetics or other preferences that are difficult to model or quantify
mathematically. For design qualities that can be well defined, it is often difficult to foresee
al issues that may affect the optimization model before observing some results. The
usefulness of such atool can be greatly improved if the designer is given the opportunity
to refine the problem definition during the optimization process while receiving feedback.

In addition to modeling issues, automated tools face computational difficulties.
Currently, the only methods that can compute or verify the globa optimum of a function
involve systematic exhaustive search with some kind of tree-pruning (branch and bound /
constraint satisfaction programming (CSP) forward checking). These methods suffer from
combinatorial explosion in large, highly constrained problems such as building layout.
Other stochastic methods explore a smaller subset of the design space, and they can often
find good solutions quickly; however, these algorithms do not guarantee solution quality
in finite time because of their stochastic nature. Strict global optimality islessimportant in
ill-defined problems like architectural design, which generally have some design
preferences that are not well represented in the model. Instead, it is important that the
designer is ableto explore and compare high quality aternatives. Allowing the designer to
use experience and intuition to guide the search can improve search time relative to well-
defined objectives and constraints as well as take into account unmodeled objectives and
constraints. In addition, the designer can assist gradient agorithms that may have
computational difficulties for non-smooth objective and constraint functions by guiding

the design away from first-order discontinuities.

A building geometry optimization design
tool was created to allow the designer to
interact with the problem in a number of
ways, including interactively defining the
problem, guiding the search for a solution,
and exploring design alternatives (see
Figure4). This tool offers a new, powerful
approach to using optimization in the design
process. Instead of using optimization in the
final design stages to fine-tune a solution to a
well-defined problem, optimization is used to
help the designer define the problem and to
explore solution alternatives and trade-offs
interactively, while receiving both visual and
computational feedback. If the designer
changes the problem formulation, the new

formulation is automatically updated, and

search in the new design space begins with the last design found before the change. Theinteractive

design tool is discussed in Chapter 5.

Optimization

N

Designer

algorithm

Designer views results and
changes the problem using
interactive interface

v

Formulate geometric
optimization problem for
this problem.

ol
Initial Design
Geometric constraints

Geometric optimization
algorithm generates
local optimal geometry
for this design problem.

Figure 4. Interactive building layout

Designer uses feedback from the algorithm
to refine or change the problem definition.

optimization method

CHAPTER

BACKGROUN

In this chapter, the automated layout design tool presented in the thesis is contrasted
with other research attempts to automate layout design. The new tool offers a novel
approach, and advantages are discussed. The interactive design tool is contrasted with
other interactive optimization methods. It is compared to other CAD systems as atool for
design exploration in the early, conceptua phase of design, and it is presented as a hovel

way to use optimization in this early stage.

2. 1 Automated Spatial Configuration

Spatial configuration optimization is concerned with finding feasible locations and
dimensions for a set of interrelated objects that meet al design requirements and
maximize design quality in terms of design preferences. Spatial configuration is relevant
to al physical design problems, and so it is a very important area of research. Research
work on automation of spatial configuration includes component packing [16]-[18], route
path planning [23], process and facilities layout, VLSI design [21][22], and architectural
layout [1]-[13]. Architectural layout is particularly interesting because in addition to
common engineering objectives such as cost and performance, architectural design is
especialy concerned with aesthetic and usability qualities of a layout, which are generally
more difficult to describe formally. Also, the components in a building layout (rooms or
walls) often do not have pre-defined dimensions, so every component of the layout is
resizable.

Reported attempts to automate the process of layout design started over 35 years ago
(Levin 1964 [1]). Researchers have used severa problem representations and solution
search techniques to describe and solve the problem. Table 1 outlines some of the major

contributions to this field.

Table 1. Outline of Research in Automated Building L ayout

Authors System Representation Solution Strategy
Liggett Constructive placement
) Fixed Grid Space Allocation followed by iterative

Mitchell[2] improvement
Sharpe)
Marksio[3] TOPAZ Fixed Grid Space Allocation Simulated annealing
\b
Jagielski EDGE Elrggjeggjhesﬁge Allocation using an Evolutionary agorithms
Gero[4][5]
Topology: search through combinations of Topol o9y cSP .
o ;) enumeration techniques
digunctive constraints .
Baykan] i (backtracking)
WRITE |Geometry: cartesian coordinates of each _
Fox[6] . ; Geometry: CSP
room edge. Constraints are defined by the . .
ific tonolo enumeration techniques
specific topology (backtracking)
Topology: decision variables define specific) .
Schwarz topological relationships that define Topql ogy: Enumerative or
. . heuristic CSP search
geometric constraints .
Berry ABD Geometry: Two constraint graphs define technigles
. y: Tw i .
Saviv(7] wall locationsin x-dir and y-dir. Constraints Geometry: CSP
. .) enumeration techniques
are functions of decision variables
Topology: specific room adjacency and
. . room proximity define geometric
Medjeoub |ARCHi constr[;i s Y g CSP solution enumeration
techniques
Yannou[8] | PLAN Geometry: Room coordinates, length and a
width
Topology: room connectivity defines
Michalek geometnc constrai nt.'?‘ﬁ and rough pl acement Topology: Evolutionary
houdh isused only as astarting point for geometric algorithms
Choudhary optimization 9
Papalambros Geometry: SQP

Geometry: room coordinates, length and
width

J. Michalek - Interactive Layout Design Optimization

2. 1. 1 Fixed Grid Space Allocation

One approach to spatial allocation

is to define the available space as a set [ATaTar AT T
of grid squares and use an algorithm to g g g 2 ° I I I
alocate each sguare to a particular drarete

room or activity [2]-[5] (see Figure 5). Bl cle

This problem is inherently discrete, El bfclclcC

non-linear, and multi-modal. Because of alalblcliclc

the combinatorial complexity, it cannot alafbfcic]|c

be solved exhaustively for reasonably- Figure 5. Sample fixed grid
sized layout problems. Severa heuristic alocation layout

strategies have been developed to find

solutions without searching the design space exhaustively.

Liggett and Mitchell [2] use a constructive placement strategy, where space is
alocated for rooms one at a time based on the best probable design move at each step.
Using this strategy, squares will be completely allocated for the first room before the other
rooms are considered. One by one, the rooms are alocated enough sguares on the grid to
meet size requirements. The placement of each room is guided by a probability model that
triesto minimize cost in terms of cost of travel between spaces. Once adesign is complete
by placing al of the rooms, the algorithm uses an iterative improvement strategy to find a
local optimum. In this phase, the space allocation is altered dightly to improve the design
objectives. This heuristic approach is useful in many situations; however, it does not
guarantee global quality or even feasibility.

Sharpe and Marksjo [3] use a metropolis (simulated annealing) algorithm to explore
the space of potential allocations globally and stochastically. More recently, Gero [4][5]
has used an ordered schema to describe the allocation of space and an evolutionary
agorithm (genetic algorithm) to search for solutions. These stochastic solution strategies
have more potential to search the design space globally. Gero was able to produce
improved solutions to layout problems posed by Liggett and Mitchell as well as other
layout problems.

The fixed grid allocation approach is a successful approach for allocating a pre-
defined space into rooms or activities. This approach can be used for applications such as
to redistribute activities in an office building during a reorganization, or to distribute

9

activities in a newly purchased building. The approach may also be successful in generating new

buildings with variable boundaries; however, this has not yet been reported.

2. 1. 2 Decomposition of Topology and Geometry

Anocther approach to representing the building layout design space is to decompose the
problem into two parts. topology and geometry. Topology refers to logical relationships between
layout components. Geometry refers to the position and size of each component in the layout.
Topological decisions define constraints for the geometric design space. For example, a
topological decision that room i is adjacent to the north wall of room j restricts the geometric
coordinates of roomi relative to roomj.

Baykan and Fox [6] developed a system using Constraint Satisfaction Programming (CSP)
techniques! to enumerate solutions to a graph representation of the layout design space. The
topology space is described by defining which rooms are adjacent. Adjacency is represented as

sets of digunctive constraints, for example,

roomi adj-to roomj

would be represented as

(roomi adj-to-north-of roomj) OR
(roomi adj-to-south-of roomj) OR
(roomi adj-to-east-of roomj) OR

(roomi adj-to-west-of roomj).

1. To learn more about CSP formulation and solution techniques, see reference [37].

10

J. Michalek - Interactive Layout Design Optimization

The space of topologies is searched using CSP backtracking to enumerate all feasible

combinations of topological constraints.

kitchenadj-to _ _ _
dining room

bath adj-to_ !
dining hall

Figure 6. Sample search tree of
topology combinations

Each topology combination is searched for feasible combinations of room edge
coordinates [(X1, Y1), (Xo, Yp)] that satisfy the constraints using backtracking. This
approach is complete (will aways find the solution if one exists); however, search time
and space are intractable for large problems (a studio apartment layout is used as a
tractable example).

Medjeoub and Yannou [8] have a similar representation, but first they enumerate all
topologies that produce at |east one feasible geometry. The designer is then able to review
the topologica possibilities and select those which s/he wants to explore geometrically.
This approach can handle moderately-sized problems (up to twenty spacesincluding stairs
and halls).

Schwarz, Berry, and Saviv [7] describe the same basic combinatorial topology search
with a vector of decision variables, and geometric solutions are searched for each
topology. Geometry is represented using two constraint graphs that describe wall positions
in the x-direction and in the y-direction. Wall positions are constrained based on the
topological decisions (decision variable values). They have shown success for small

problems (up to nine rooms).

11

2. 1. 3What is still needed

Existing solutions to the automated building layout problem are varied. Each representation
and solution method has its own set of biases and assumptions. Many research attempts have

yielded impressive results; however, thereis still a need for improvements and additions.

1. Successful generation of global quality solutions has been achieved for medium-sized prob-
lems; however, thereis still aneed for a strategy that can handle larger problems computation-
aly.

2. Inal of the present decomposed solutions, the designer must specify which rooms are adjacent.
In real design situations, specific adjacencies may be compromised, as long as there exists an
acceptable pathway from one room to another. For example, in ahouseit may be important that
thereisavalid pathway from the bedroom to the foyer that does not pass through bathrooms or
closets;, however, the exact adjacency path may be flexible. There is a need for a system that

can handle these path requirements without adjacency requirements.

3. Computational evaluation speed is a magor drawback. It would be useful to take advantage of
the speed of gradient-based algorithms on the geometric aspects of the layout, because they
have a continuous variable nature. Gradient-based algorithms can efficiently handle large sets

of constraints and objectives, especially those that can be represented linearly.

4. Thereisaneed to generate layouts that can be easily manipulated and altered by a designer. It
is rare that a designer would simply choose a computer generated layout without altering it,
because many subjective architectural considerations have not been formalized into the mathe-
matical model used by the computer. The designer should be able to quickly make changes to
generated layouts.

The tool presented in this work addresses all of these concerns. The interactive design tool can
work with much larger geometric layouts than reported in the literature, and the topology layout
optimization can handle problems as large as those reported in the literature [8]. Generic path
constraints have been implemented, the computational efficiency of gradient algorithms has been

used where appropriate, and the design tool allows easy manipulation by designers.

12

J. Michalek - Interactive Layout Design Optimization

2. 2 Interactive Optimization

2. 2. 1 Interactive Multi-Obj ective Optimization

Most work on interactive optimization f;(x)

focuses on multi-objective optimization. This is
because preferences are expressed a posteriori;
after some idea of the trade-off is gained from
comparison of results. Optimization algorithms

are generally designed to maximize or minimize a

| o . feasible designs

single objective function.

interactive techniques use some variation of the

Multi-objective

Interactive Weighted Tchebycheff

approach [50]. In this approach the multi-

infeasible designs

(IWT) f2(x)

Figure 7. Pareto set in a
multi-objective

objective problem is converted into a single optimization problem

objective problem by minimizing the weighted

sum of distances to an ideal point. Figure 7 shows an example of this situation. Here, f;

and f, are two competing objective functions. An optimization algorithm will generate

different points on the Pareto curve depending on how the objectives are weighted. After

obtaining a solution, the designer alters the weights (the relative importance) of each

objective to tune trade-off preferences and move along the Pareto set. This is often an

insufficient approach because there is poor understanding of the relationship between the

location of the desired Pareto points and the corresponding weights.

f1(x)

Aspiration point

Ideal pt.

Figure 8. Pareto
optimization using an
aspiration point

fo(x)

13

Several aternative methods involve the
designer choosing an ‘aspiration point’: a
design close to the Pareto set ([48], [47]). The
algorithm then searches for a point on the
Pareto set close to the aspiration point (see
Figure 8). This is very important, because it
allows the designer to interact with values that
slhe can relate to physically, instead of an
arbitrary weighting scheme. Other techniques

have been developed, including an epsilon-

inequality constraint method where new constraints are added to the problem based on the
designer’s feedback (Azarm 1998 [50]).

In the thesis, the simple Interactive Weighted Tchebycheff approach with linear weights is
used because the objective functions are generally not competing. More advanced interactive
approaches for exploring the Pareto set could be added in the future to help with competing
objectives. More importantly, the approach in this thesis expands on a concept known well in the
multi-objective optimization literature -- that the designer must generally see some physical results
in order to understand design trade-offs. In interactive multi-objective optimization, when the
designer has seen results, s/he can use that information to alter the objective function definition by
changing individual objective weights. Thisideais expanded in the thesis, allowing the designer to
see physical results of the entire design in real-time during optimization and to use this information

interactively to change aspects of the problem statement or redirect search.

2. 2. 2 Interactive Design Space Exploration

In addition to weighted multi-objective optimization, some researchers have extended the
interaction to a process where the designer can change the optimization model during the
optimization process. OptdesX, a commercial optimization tool [52][53], alows the designer to
monitor changes in the design variables during optimization. The designer can pause an
optimization run to make changes in the design variables and move in the design space. For
example, if the designer notices a variable, objective, or constraint value changing to an
unacceptable value, ghe may realize immediately that the model has errors. Alternatively, if the
designer notices that some of the design variables are * stuck’ in an undesirable region, the designer
can stop the optimization run and ‘nudge’ the design by manually changing the value of the design
variable. The change could result in moving search into a better local minimum. OptdesX offers a
general platform for watching and interacting with the optimization process, however,
visualization is limited to numerical information, and the designer cannot change the design
problem itself without reprogramming and recompiling.

Tidd, Rinderle, and Witkin [55] developed a system for a designer to interact with design
variables and resultant design behaviors. In this method, each design variable and behavior is
represented in graphical form. By ‘pulling’ on the graphs as if they were physical objects, the
designer influences the design objectives and changes the shape of the design space. The

optimization algorithm reacts to this change and alters design variables accordingly to find a new

14

J. Michalek - Interactive Layout Design Optimization

local optimum. In this way, the designer can interact with the design problem in an

intuitive way to understand design trade-offs from an entirely new perspective.

2. 2. 3 Interactive Building Layout Optimization

Arvin and House [54] created a physics-based system for architectural layout. In this
system, rooms are connected with simulated springs and dampers, and a dynamic
simulation is run to push and pull the rooms into position. The designer influences the
design by adding springs or changing spring constants. It is unclear how cumbersome this
process would be for an architect; however, it does give the designer a new way to explore
the problem -- one where spaces (such as rooms) are the working elements instead of the
lines used in sketching.

Liggett and Mitchell [45] used the probability model in their automated design tool to
create an interactive design tool for building layout. Their fixed grid space alocation
representation uses constructive placement to allocate rooms into the building space one at
atime (see Section 2. 1. 1). Liggett and Mitchell developed an interactive design tool to
provide graphic feedback to the designer on the probable ‘goodness’ of design moves at
each step. The designer can then use this feedback, along with intuition and other
considerations that are not be represented in the model, to guide the space alocation
selection.

Because of the difficulty in modeling many architectural design preferences, many
researchers feel that

“...attempts to use fully automated computer algorithms to solve the
layout problem should be reexamined with a view of incorporating
man’s visual capability into the procedures.” (Scriabin and Vergin
[60])

2.2. 4What is still needed

Integrating the computational power of optimization algorithms with the guiding
power of human judgement is an extremely rich area for exploration in the design
optimization field. Many design disciplines are concerned with aesthetic and usability
issues that are difficult to quantify mathematically, but are easy to evaluate visually by a
human. Also, many optimization algorithms get trapped in local minima or get diverted

15

because of non-linearities. Building layout design in particular has both of these qualities, and a
tool is needed that allows the designer to guide the search agorithms into areas of interest and
away from computational traps. A human designer with avisual interpretation of movement in the
design space has the potential to recognize computational traps and guide the search into preferred
areas of the design space. The designer can also guide search into areas that are interesting for
unmodel ed subjective reasons.

This thesis work addresses these concerns with an interactive design tool that supports the
designer by computationally optimizing aspects that can be modeled mathematically, while giving

the designer control to make decisions influenced by subjective human judgement and intuition.

2. 3Exploratory Design CAD Tools

Most CAD systems are very good at producing precise, accurate renderings of well defined
designs. Many CAD systems also include detailed analysis packages for obtaining simulation
feedback on the performance of a design. However, very few CAD packages address the needs of
a designer during the initial conceptual exploratory phase of design when the problem is ill-

defined, and the solution has not yet been decided.

The conceptual phase of design (or ideation phase) is the initial phase where
the internal ideas of the designer are externalized or explored interactively
and represented tentatively in some form using any medium... These are
usually early sketches, rough mock-up models and concept renderings.
Normally during the conceptual phase, designers quickly represent as many
as possible different solutions in a short time. These are evaluated visually
before exploring further possibilities. There are two important characteristics
during this phase. First, the quick and intuitive representation of concepts.
Secondly, the generation (in a very short time) of many different solutions and
variations. Sketching is the most widely used imagery aid in evolving new
ideas during the conceptual phase. (Stuyver and Hennessey [57])

2. 3. 1111-Defined Design Problems

The vast majority of design problems are ill-defined. In an ill-defined problem the initia
constraints on the problem are not fully formulated. Resolving ill-defined problemsis a process of
searching for and refining a set of design constraints [61]. Few CAD tools exist to help a designer
to refine design constraints.

Tidd, Rinderle and Witkin [55] developed a system for a designer to interact with design
variables and resultant design behaviors (see Section 2. 2. 2). Arvin and House [54] created a

16

J. Michalek - Interactive Layout Design Optimization

similar physics-based system for architectural layout (see Section 2. 2. 3). These tools
provide a glimpse of the potential of tools that help the designer to explore constraint

optionsinteractively during conceptualization.

2. 3. 2 Rapid Generation of Design Alter natives

Some commercia systems such as Working Model 2D alow designers to quickly
model simple mechanisms to see how they will function. The designer can also receive
feedback on forces and accelerations. Other drawing packages such as Alias, FormZ, and
3D Studio allow ssmple 3D shapes to be created and manipulated easily to explore basic
forms.

Most architectural CAD tools are either drafting or analysis machines -- neither
focusing on the rapid generation of design alteratives. Kharrufa, Saffo, Aldabbagh and
Mahmood [46] developed an architectural CAD tool allowing the designer to interact with
intuitive objects such as spaces instead of drawing lines. They suggested that

CAD could offer significant help... by presenting the architect with
information such as expected cost and spatial allocation, which can
improve the decison making. Furthermore, it could be used to
simulate part of the building’s expected performance in areas such as
thermal loads and lighting (Kharrufa, Saffo, Aldabbagh and
Mahmood [46]).

Many architectural analysistools exist for performing these kinds of simulations; however

The biggest stumbling block that prevents the computer being used to
produce this extra information during the preliminary design stage is
that the data concerning the building must first be input. This is a
lengthy process that might defeat the aim of improving efficiency.
(Kharrufa, Saffo, Aldabbagh and Mahmood [46])

17

2. 3. 3What is still needed
An interactive tool for early design stage conceptualization is needed that can
« help the designer to interactively refine the ill-defined design problem,
« provide an intuitive representation to interact with,

« provide a simple interface that enables rapid design and exploration of
aternatives, and

« provide computational feedback on the performance of designs.

These needs are qualitative in nature. Nevertheless, they are important qualities for an
exploratory design tool. The design tool presented in this thesis addresses all of these issues for
architectural layout design. The interactive design tool provides assistance that allows the designer
to refine the problem definition during exploration, and the use of optimization allows the designer

to quickly generate high-quality layouts and receive both visual and computational feedback.

18

CHAPTER

OPTIMIZATION OF
GEOMETRY

3. 1 Problem Formulation

The geometric optimization problem is posed as a process of finding the best location
and size of agroup of interrelated rectangular units. By formulating the geometric layout
problem mathematically with a set of variables, objectives, and constraints, optimization
algorithms can be used to solve for optimum layout designs. The geometric optimization
problem has been formulated so that al objectives and constraints are continuous
functions of the design variables, and al design variables have continuous domains. To the
author’s knowledge, thisis the only work in architectura layout design that uses this kind

of formulation intended for gradient-based optimization.

3. 1. 1 Units

The layout problem is posed as a search for the best placement and size of a group of

interrelated Units into atwo dimensional cartesian space.

Definition 1. A Unit is a rectangular, orthogonal space
defined to perform a specific architectural function.

Examples of architectural functions include living spaces, storage spaces, facilities, and

accessibility spaces.

19

There are several ways to represent a Unit
mathematically. Figure9 shows some alternative
variable representations that were used as the
research evolved. Each representation affects the
shape of the design space and the gradient
calculations used by the optimization algorithms,
introducing bias into the solution strategy.

An algorithm using model 9(a) can move each
wall of a Unit independently of the others with a
single variable; however, moving the entire Unit
without altering its size requires changing at least
two variables simultaneously. An algorithm using
this representation may have trouble satisfying area
constraints when a Unit needs to be moved.

Model 9(b) is unbalanced. The north and east
walls can move independently, but the south and
west walls cannot move directly without affecting
the north or east walls.

An agorithm using model 9(c) can move a

Unit without affecting its size; however, it cannot

(XE’YN)
W
I
Wy &)
Figure 9. Figure 9.
@ (b)
|
N
— E—
v &y <
| |
Figure 9. Figure 9.
(c) (d)

Figure9. Alternative variable
representations of a Unit

move any wall independently without changing at least two variables simultaneoudy. This

representation may have trouble violating adjacency constraints when it needsto move walls.

Model 9(d) represents a Unit asapoint in space (X,y), and the perpendicular distance from that

point to each of the four walls: {N, S E, and W}. This model has more variables, however, it

alows an optimization algorithm to change the position of a Unit independently without affecting

its size (by changing x or y), and it can change any of the four wall positions independently (by

changing N, S E, or W). Furthermore, (x,y) does not need to be the center of the Unit, and {N, S E,

W} need not be restricted to positive numbers. Although this model increases the problem

dimensiondlity, it offers a lot of flexibility to make the best design moves at each step of

optimization. To the author’s knowledge, this is the only implementation of such a representation

which hasimproved behavior of gradient algorithmsin this problem.

20

J. Michalek - Interactive Layout Design Optimization

Model 9(d) was adopted for most of the examples presented here (except where
noted); however, the object-oriented implementation includes all of these representations,

and it is easy to switch between them or add new representations.

3. 1. 2 Rooms

Definition 2. A Room is a Unit that is used as a living
space.

A living space is any space that is considered to be used for sustained living activity.
Typically this definition would not include pathways or hallways that are used for access,
but may include closets or other Units. It is up to the designer to decide which Units
should be Rooms. The differentiation between living space vs. non-living space is
important only in optimization objectives to maximize the amount of space used for living

and minimize all other space (see Section 3. 2. 15).

Figure 10 shows four different

types of units which are discussed

below. In Figurel10, *“Living
Bedroom
A Room”, “Bedroom”, and

Living Roam A | Hdl “Bathroom” are Rooms.

Figure 10. An example layout
showing four different types of Units

21

3.1.3Boundaries

Definition 3. A Boundary is a Unit that has other Units con-
strained inside itself and is not considered living space.

Boundaries are used to group Unitstogether. By default, the outer walls of the building are defined
by a Boundary Unit, and all other Units are forced inside of this Boundary Unit.

In Figure 10, the large purple colored rectangle that defines the outer walls of the building isa

Boundary.

3. 1. 4 Hallways and Accessways

Definition 4. A Hallway is a Unit with no physical walls that is not
considered living space.

Definition 5. An Accessway isa Hallway that is constrained to geo-

metrically intersect two Units.
Generaly, aHallway isused like a Room, but it does not function as living space. It functions only
to provide a path between other rooms. Accessways are generally restricted to be small, and they
are forced to intersect two other Units. They function to keep the two Units adjacent and
connected, and to ensure that there is room for a door or opening.

In Figure 10, “Hall” is a Hallway. The Units labeled “A” are Accessways. Notice that each

Accessway overlaps two other Units, ensuring access between those Units.

3. 1. 5Windows

Units that are aong external walls may have windows for natural lighting. Windows are
generally added to Rooms and Hallways. By default, adding a window to one of the walls of a
Room also adds an explicit constraint to force the Room against the respective wall of the building
Boundary. It is then assumed that any room with awindow is against an external wall for natural
lighting calculations. Window height can be fixed for each Unit, and window width is a variable
for each direction that has a window: o, O, O, and Dy represent the width of the north,
south, east and west windows, respectively.

22

J. Michalek - Interactive Layout Design Optimization

3. 1.6 Constraints

The model formulation includes a toolbox of constraints that can be used to maintain
relationships between Units. Design constraints have been developed to provide for the

following relations:

Force Inside: Used to force some Units inside of others, such as
forcing all Rooms to be inside the building Boundary.

Prohibit Intersection: Used to prevent Rooms from intersecting
and occupying the same space.

Force Minimum Intersection: Used to force Accessways to
sufficiently overlap Rooms to guarantee space for a doorway or
opening.

Force To Edge: Used to force Rooms against the edge of an
external Boundary Unit to ensure feasibility of external doors for
access or windows for natural lighting or emergency exit.

Bound Size: Used to provide bounds on acceptabl e length, width,
and area of each Unit.

Bound Ratio: Used to bound Unit length-to-width ratios within
an acceptable range.

Feasible Window: Used to ensure a window is small enough to
fitonitswall.

Bound Build Cost: Used to provide bounds on acceptable
estimated cost of building the structure.

Bound Lighting: Used to provide a bound on minimum
acceptable natural lighting for each Room.

Mathematical models of these constraints are explained in Section 3. 2.

3. 1. 7 Objectives

Several design objectives have been developed for measuring the quality of each

design based on designer preference.

23

Minimize Heating Cost: Minimize the estimated annual cost to heat the
building.

Minimize Cooling Cost: Minimize the estimated annual cost to cool the
building.

Minimize Lighting Cost: Minimize the estimated annual cost to
illuminate the building.

Minimize Wasted Space: Minimize the amount of space contained in the
building Boundary that is not occupied by living space.

Minimize Accessway Size: Minimize the size of Accessways to bring
connected Units as close together as possible.

Minimize Hallway Size: Minimize the size of Hallways.

The designer can choose a single optimization objective or may select several objectives and
weight them in terms of importance. Mathematical models of each of these objective functions are

explained in Section 3. 2.

3.1. 8 Noteson an Earlier Modd Formulation

The mathematical model used in this thesis work evolved as the project progressed. The fina
refined model has been described above, but some of the optimization tests used other earlier
models to represent the problem. For completeness, earlier models will be described below and
referenced when they were used.

In modeling Units, the model in Figure 9(b) was used for some of the early optimization runs.
This was a reasonable model because initialy it was assumed that the south and west walls of the

building are external walls, and the north and east walls are not.

24

J. Michalek - Interactive Layout Design Optimization

In some of the earlier models, halls and

accessways were not modeled as Units.
Instead, hallways were represented by a
parameterized hallway structure (see
Figure11). In this model, instead of
- Accessways, each Room has a door,
represented by its center point. The door
I point is constrained to be inside the

room and away from corners. Each door

point is aso constrained to connect with
Figure 11. Example showing parameterized the hal structure. These constraints
hall structure in early problem formulation. would force each door to an edge
The grey colored rectangles represent the hall hetyween its Room and the hall structure,
structure inside the green building bounds. The
colored squares represent Rooms inside the space. guaranteeing connection and ensuring
access to other Rooms and to an exit.
The current model using Hallway Units and Accessway Units is more genera, and it
behaves better during optimization, so the early model will not be discussed further except
to be referenced when used.
In addition, a mixed-discrete
formulation was developed specifically
for the hybrid SA/SQP solution method

(Section 3. 4. 2). In this formulation, two

discrete decision variables are added to

each room. The first discrete variable,
S 4oor» determines which side of the

Room the door is on {north, south, east,

west}, and a continuous variable, d,

determines where the door is located

adong that wall. The second discrete
variable, S
will be forced against an external wall. In
this model, it is assumed that the south

ext determines if the Room 0 Figure 12. Example diagram
showing the mixed-discrete
early formulation

and west walls are the only external walls, so the set of legal values for this variable is

25

{south, west, free}. If Sext = south, then the Room’s y-coordinate variable is fixed. If
N)

x and y-coordinates are free variables. Figure 12 shows a graphical representation of how this

ext — West, then the Room’s x-coordinate variable is fixed. If 8, = free, then the Room’s
formulation works, and Section 3. 4. 2 explains further how this formulation was used.

3. 2 Mathematical Optimization Formulation

The design optimization problem is formulated as

minimize f(x) (1)
subject to h(x) = 0,g9(x) <0
xeR"

where x is the vector of alterable design variables, n is the number of variables, h(x) is avector of
equality constraints, and g(x) is a vector of inequality constraints written in negative null form2.
The continuous problem formulation allows us to take advantage of powerful gradient-based
optimization algorithms designed to search continuous design spaces. Gradient algorithms use
gradient information to make function approximations and calculate best search directions from
the approximations. These algorithms can have unstable behavior if the functions are not smooth
(do not have continuous first derivatives), so it is important to formulate the problem so that

objective and constraint functions are as smooth as possible.

3.2. 1 Design Variables

The optimization variables, x in Eq. (1), follow the variables defined in Figure 9d. Variables
for each Unit include areference point location (X, y), distances to each wall (N, S, E, W), and any
windows added to each Unit (o).

n
X = U6 ¥ N S, B W o, 05, 0, 0w @)
i=1
%, ¥is Niy §, Bj, W e R

)
O, Og, Op, Oy € R,

2. See Papalambros and Wilde [28] for details on design optimization conventions

26

J. Michalek - Interactive Layout Design Optimization

The window variables drop out when the window is not physically present for a specific

Unit and direction.

3. 2. 2 Resultant Variables

In order to smplify

calculations and notation, several N, |

resultant intermediate variables N;

will be used to describe geometry

_ —W, —e E

that results from the design W, (X, ¥)

variables (see Figure 13). This is

useful in an object-oriented S

implementation because the design Ys

variable model can be changed Xw; i X,

without rewriting every constraint

)) Figure 13. Diagram of design variables and

(only resultant relation calculations resultant variables for asingle Unit

need to be rewritten). The

following resultant variables are

caculated from the design

variables asfollows.
Yn, = Vit N, Unit north wall location (©))
Ys =i -S Unit south wall location 4
Xg, = X tE Unit east wall location (5
X, = X =W, Unit west wall location (6)
l; = W, +E Unit length (7)
w, = N;+§ Unit width (8)

27

Note that relations (3)-(8) are linear, so linear functions of these resultant variables are also
linear functions of the original variables. Introducing this notation simplifies the model and makes

it easier to understand.

3. 2. 3Forcelnside Constraint Group

The Force Inside Constraints are generally used to force Units into the main building
Boundary or other grouping Boundaries. In order to force Unit i inside Unit j, the following
constraints must all be satisfied:

YN, gyNj Unit i inside north wall of Unit j, (©)]
Ys <Yg Unit i inside south wall of Unit j, (10)
Xg SXEj Unit i inside east wall of Unit j, (12)
Xy, < Xy, Unit i inside west wall of Unit j. (12

3. 2. 4 Prohibit Intersection Constraint Group

Each Prohibit Intersection Constraint functions to prevent two Units from occupying the same
space. By default, one Prohibit Intersection Constraint is added for every combination of Rooms,
Hallways, and Accessways, except where two Units are forced to intersect, or where one Unit is
forced inside of another.

In order to prevent Unit i from intersecting Unit j, Unit i must be entirely to the north, south,
east, or west of Unit j. At least one of the following constraints must be satisfied

Yg = YN, Unit i is north of Unit j, (13)
Ys =N Unit i is south of Unit |, (14)
Xw, = Xg, Unit i iseast of Unit j, (25)
ijZXEi Unit i iswest of Unit j. (16)

28

J. Michalek - Interactive Layout Design Optimization

Thislogica digunctive constraint set

(%w, 2 Xg) OR (X 2 Xg) OR (y5 2 Yyy) OR (y5 2 Yy) (17)

can be represented in negative null form using a min function

min(xEj—xWi, Xg, = Xwp YN~ Vs yNi—yq)so (18)

This nonlinear, non-
smooth formulation is
undesirable for gradient-based
cdculations;, however, the
nature of the constraint makes
it unavoidable. With this
formulation, the constraint
function acts as a smooth linear
function except when the close
corners of two Units are nearly
diagonal (see Figure 14).
Several other mathematica
representations were explored,
but this representation seemsto

have the best behavior.

o9 _
—ag_ = 04—!—» -1
aXVVj i 6ij ag
o -
Unit j Yy T
OwgYs). S -
/,
(XEi’yNi), 89>0
7/ in thisdirection 5
Unit i v 0
y Ys

X

Figure 14. An example nonlinearity of adigjunctive
logic constraint represented as a min() function.
In the figure, g represents the value of the prohibit
intersection constraint: the left side of Eq. (18)

3. 2. 5 Force Minimum Inter section Constraint Group

Units are generally forced to intersect in order to ensure access (as A ccessways do), or

to make a more complex geometric shape by combining rectangular Units. Forcing

intersection is the opposite of prohibiting intersection, so forcing intersection can be

written as the conjunction of the following constraints

29

yg < YN, Unit i overlaps north wall of Unit j, (29

Ys <YN, Unit i overlaps south wall of Unit j, (20)
Xy, SXE,— Unit i overlaps east wall of Unit j, (21)
Xw, < Xg, Unit i overlaps west wall of Unit j. (22)

Although these constraints ensure intersection of the two Units, they permit intersection at a
point. In designing architectural spaces, we are generally interested in intersection that provides
enough room for a doorway or opening, so we must add an additional constraint. There will be
enough room for adoorway or opening if the overlap in one of the cartesian directionsis at least as
large as the opening. Therefore, in addition to intersection, at least one of the following conditions
must be satisfied

—Yg = max(d;, d) Unit i overlaps north wall of Unit j, (23
—Yg 2 max(d;, d;) Unit i overlaps south wall of Unit j, (24)
£~ Xw, = Max(d;, d)) Unit i overlaps east wall of Unit], (25)
E ~Xw, > max(d,, dj) Unit i overlaps west wall of Unit j. (26)

where d; isthe minimum size for adoor or opening in Unit i. This disunctive set of constraints can

be represented in negative null form using a min function similar to Eq. (18).

mln{max(d,,d) Xg, + Xy max (d;, d) Xg, + Xy (27)
max(d;, d) -y +Ys, max(d.,d) N, +y§}0

Although this constraint function is nonlinear and non-smooth in part of the design space, it is

linear in most of the design space (similar to Figure 14).

30

J. Michalek - Interactive Layout Design Optimization

The complete Force Minimum Intersection Constraint Group is represented as a set of
constraints that force intersection (Eg. (19)-Eq. (22)) and ancther constraint to ensure that

the overlap is large enough for access (Eq. (27)).

3. 2. 6 Force To Edge Constraint Group

The Force To Edge Constraints are used to force a Unit to the edge of a Boundary
because of a window or external door. It is assumed that the first Unit i has already been
forced inside Unit j by another constraint. In order to force a Unit to a particular wall, one

of the following constraints can be added:

YNT YN, Unit i against north wall of Unit j, (28)
Ys= Vs Unit i against south wall of Unit j, (29)
Xg= X, Unit i against east wall of Unit j, (30)
Xw= X, Unit i against west wall of Unit j. (31)

If connection to an edge is important, but the specific edge is not important, (for
instance, a building may require an externa door, but it is not important which one), then

the following constraint can be added to represent a disunction of Eq. (28)-Eq. (31)

min{(XEi—XEj)za (XV\/i_XVVj)Z’ (ys_yq)za (yNi_yNj)z} =0 (32)

This representation is non-smooth at Unit corners; however, it is quadratic in most of the

design space (similar to Figure 14).

3. 2. 7Bound Size Constraint Group

Three kinds of constraints are provided to bound the size of a Unit: minimum area,

minimum length/width, and maximum length/width. Length is not distinguished from

31

width. It is assumed that a maximum area constraint would not be used to bound the area. Instead,

Unit areais only reduced to improve objective functions, such as cost objectives. Minimum area,

Ay, minimum length/width, |, and maximum length/width, | can be set for each Unit.

max?
Default values are applied to each Unit based on common room dimensions because results may

not be physically meaningful if alower bound on length/width or areais not provided.

Arin, — liw; <0 minimum area, (33)
lin, —1i<0 minimum length, (34)
lin, —W; <0 minimum width, (35)
l; =1 max <0 maximum length, (36)
w; — Imaxi <0 maximum width. (37)

3. 2. 8 Minimum Ratio Constraint Group

Unit length-to-width ratio can be bounded to maintain a desired aesthetic scheme or prevent
long, narrow Rooms that may not be usable. The Minimum Ratio constraint group consists of two

constraints.

Ryinli—w; <0 minimum width to length ratio, (38)

min;

Ry Wi —1;<0 minimum length to width ratio. (39)

3. 2. 9 Build Cost Constraint

The build cost constraint is used to keep the construction cost below some value, 1'yy g - FOr
simplicity, build cost is measured only in terms of material cost. Material costsfor walls x5, and
for windows x ; are specified as dollars per square foot of material, and other costs are ignored.
The build cost constraint is calculated as

KWaII(AN + AS+ AE + AW) + Kco(A(oN + A(os + AcoE + Acow) < Fbudget (40)

32

J. Michalek - Interactive Layout Design Optimization

where Ay, Ag Ag, Ay are the areas of the external walls in each compass direction and

A(DN, Aws, AwE, A(DW are the areas of windows facing each compass direction. These

guantities are computed in Eq. (49)-Eq. (56).

3. 2. 10 Feasible Window Constraint Group

In addition to the simple bound restricting window size to be positive, the window

width cannot be larger than the wall it is on. Each window added to a Unit is given one of

the following feasible window constraints (as appropriate).

oy <l north window size,
og <l south window size,
g SW, east window size,
Dy S W, west window size.

3. 2. 11 Bound Lighting Constraint Group

(41)
(42)
(43)

(44)

A simple estimation of the amount of daylight entering a Unit with windows is

calculated using environmental and material information. The following procedure is

used.

Determine available daylight at the window exterior. IESNA
[63] provides three standard skies for use in the evaluation of
daylight designs. Approximate available daylight can be
determined from these based on altitude and azimuth angles.

Ey kg, = vertical sky illuminance (direct)

Evkq11
for month m.

= vertical sky illuminance (sky)

Find coefficient of utilization. The coefficient of utilization,
CU , isafunction of the room geometry and window size, and it
determines the fraction of the available daylight that enters the

33

room. C; can be found in pre-tabulated data [62] based on room depth,
window width, and window height.

Determine net transmittance of windows. The net transmittance for a
window facing direction j is calculated as

O'QMGA(D.
My = —p— (45)
A
where j takes on each of the directions {N, S, E, W}, ug is the
transmittance of the window (material property), A is the area of the
glassin direction j, and AJ- isthe areaof thewall in difectionj.
Determine Daylight at the Room Center. The horizontal illuminance at
the center of roomi is calculated as
— 2
EI = (ZZij(Edemi + EVkSmI)M] CU 10 j (46)
j m
for room i, where j takes on each direction {N, S, E, W}, and m spans the
12 months of the year. The illuminance is then converted into watts, ©; :
_E107 -
! AiBeff
where A, isthe areaof roomi, and B isthe efficacy of the light source
(assumed to be 80).
The required natural lighting per square foot, O, , is defined for each
Unit by the designer (default 1 Watt/sq.ft.). Assuming uniform light
distribution, total required natural lighting can be calculated as
Aiereqi . The minimum percentage of required lighting that is provided
by natural light, @ n, » €an be specified by the designer.
Thefinal constraint iswritten as:
0, S 48
ABroq min (48)

3. 2. 12 Minimize Heating Cost Objective

The annua energy cost to heat the building is calculated as a function of the building

Boundary Unit shape, volume, surface area, and material as well as environmental conditions.

J. Michalek - Interactive Layout Design Optimization

Simplified calculations (ASHRAE [62]) are used to calculate an approximation. The

procedure for calculating heating loads is as follows:

1. Calculate the net area of windows on each external wall. It
is assumed here that windows on all Units are constrained against

external walls

Ao, = D, oy, area of north windows, (49)

i e UNW
Ang = D ogh, area of south windows, (50)

i e USW
A, = D oghg, area of east windows, (51)

i e UEW
ow = 2, Owhy, area of west windows. (52

i e UWW

(UNW, USW, UEW, and UWW refer to Units with north, south,
east, or west windows respectively).

2. Calculatethe net area of each external wall.

Ay = Iihi=A, area of north wall, (53)
As = I1hi=A, area of south wall, (54)
Ag = Wlhl—A(DE areaof east wall, (55)
Ay = Wlhl_AwW area of west wall. (56)

where 1 indicates Unit 1, which is assumed to be the building
Boundary Unit.

3. Calculate heat loss. The heat loss calculation assumes that all
heat is lost from the external walls and windows (no heat is lost
through the roof). This model could be changed depending on
what type of building is being modeled. The coefficient of

35

transmittance for the wall, U, , and window, U, are tabulated based
on the materials used. The annual heat lossis calculated as

Qheat = D ATi((Ay+ Ast Ag + AUy + (A, + Ay T Ay + A,)U,) (57)
i

where i isthe set of months where heat is used, and AT; is the average
internal/external temperature difference for monthii.

4. Calculate cost to maintain temperature. Gas heat is assumed, and the
cost of gas per cubic fOOt,Kgas and efficiency of the heater in Watts per
cubic foot of gas, Npeater » CaN be specified. The heating cost objective
function is formulated as

K
minimize [y, = gasCheat (58)

Nheater

3. 2. 13 Minimize Cooling Cost Objective

The procedure for calculating cooling loads is more complicated than heating loads because

heat due to solar gain must be taken into account.

1. Calculate the net area of windows on each external wall. Use Eq.
(49) - Eq. (52).

2. Calculate the net area of each external wall. Use Eq. (53) - Eq. (56).

3. Calculate solar heat gain through the windows. Several parameters
are important in calculating solar heat gain. Depending on the orientation
of thewindows (N, S, E, or W), the Solar Heat Gain Factor, B,y , can be
found in tables for a given location [62]. The shading coefficient, B, is
a property of the glass [62], and the time-lag factor, B, is a tabulated
function of glass type and window orientation [62]. The annual solar heat
gain, Qg4 » IS calculated as

36

J. Michalek - Interactive Layout Design Optimization

Qsolar = BSC(Z(ACONBShngBﬂfN + 'A‘mSBshngBtlfS (59)

* AwEﬁshnganE * AwWB ShgfwBtlfW)]

wherei is the set of months where air conditioning is used.

4. Calculate conductive heat gain through the building
exterior. The orientation of each exterior wall and windows is
accounted for in the factor. The cooling load due to conduction is
calculated as

Qeond = D ATI(Uy, (A B, + Au Pty + Ao Pur. + A, Bur,) (60)

+ Upa (AnBus, + APy, + AeBur, + AwBus,)

wherei isthe set of months where air conditioning is used.

5. Calculate the cost to maintain temperature. Electric cooling
isassumed, and the rate of electricity, ko, and efficiency of the
air conditioning unit, n,., can be specified. The cooling cost
objective function isformulated as

_ Kelec(QsoIar + Qcond)

minimize [y =
TlaC

(61)

3. 2. 14 Minimize Lighting Cost Objective

This objective minimizes the cost spent on lighting the building by encouraging
natural lighting. The amount of natural lighting in room i, ©,, is calculated as in Section
3. 2. 11, Eq. (47). The minimum daylight requirement per square foot, f3;; is set by
the designer based on usage intention. The total required cost if al of this light is
provided by electric lighting can be calculated as.

37

Uelec = [ZﬁnghtiAJBHlo_s' (62)

wherei isthe set of Units, and 3, isthe number of hours of use per month.
The total cost to minimize is then the maximum possible electricity cost minus the cost

savings from natural lighting (see Section 3. 2. 11):

minimize Tjigpe = Tgec— (Z@J B0, (63)
i

wherei isthe set of Units, and 35 is the number of hours of available light per month.

3. 2. 15 Minimize Wasted Space Objective

Wasted space refers to space that is not living space. This could be space used for hallways or
un-alocated space inside the building Boundary. Wasted space is calculated as the area of the

building Boundary minus the total area used as living space. The objective is formulated as

minimize(llwl— > Iiwij, (64)

i € Rooms

where 1 indicates Unit 1, which is assumed to be the building Boundary Unit.

3. 2. 16 Minimize Accessway Size Objective

This objective brings connected Units together. Accessways may be constrained to be small
(Section 3. 2. 7) to keep Units together. Alternatively, the Minimize Accessway Objective can be
used to bring Units together if possible, but allow them to be separated if necessary, providing that
there is an Accessway between them. This method allows Accessways to function similarly to

Hallways depending on the design situation. The objective is formulated as

minimize [> Iiwij : (65)

i € Accessways

38

J. Michalek - Interactive Layout Design Optimization

3. 2. 17 Minimize Hallway Size Objective

This objective is used to provide extra living space where possible. Generally, the
Minimize Wasted Space Objective (Section 3. 2. 15) will naturally minimize Hallwaysin
order to increase the area of each Room. However, there are some situations where the
objective function is flat with respect to Hallway variables. An example is shown in

Figure 15.

Room 1 Room 2 Room 1 Room 2

|
L

Hallway-A- - | —= I—J favey
C 2]

Room 3 Room 3

(€Y (b)
Figure 15. Example showing effects
of the Minimize Hallway Objective

In Figure 153, gf—V\/4 = 0, where W, isthe west wall position variable for Unit 4, and
f isthe value of the Minimize Wasted Space objective function. It appears to the algorithm
asif there is no reason to change W4; however, if W4 is decreased enough, as in Figure
15b, then Room 1 is able to move in and take up the space. Using the Minimize Hallway
objective will tend to provide more space for living space where possible. This is one
example where designer interaction with the optimization problem during optimization

would be helpful. The objective isformulated as

minimize[> Iiwij. (66)

i € Hallways

3. 2. 18 M ulti-Objective Optimization

Multiple objectives can be selected and combined into a single objective function using a

weighted sum of the individual objective functions.

39

N
(X) = Z w; f;(x), (67)

j=1
where fj(x) is the jth objective function, w; is the weighing (relative importance) of the jth
objective function, and N is the total number of objective functions. Appropriate weights may be
difficult to set for objective functions measured in different units. After obtaining results, weights
can be adjusted to compensate and to guide the design to desired results. The objectives in the
toolbox do not compete in most of the design space, except for cost objectives, which are all
measured in dollars. This makes multi-objective optimization much easier. In practice weights
only need to be adjusted to keep the function values in the same order of magnitude to avoid

computational problems.

3. 3 Local Optimization Methods

Several gradient-based optimization algorithms were used to solve the geometric layout for

local optima.

3. 3. 1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a method for solving continuous optimization

problems as Eq. (1). A typical SQP algorithm is shown in Figure 16.3

1| Generate QP sub-problem: 1.+
e 2" order approximation of the Lagrangian f(X) = LX)+ VL(X,)X+ =X VZL(X,)X
. 1% order approximation of constraints 2
Use an active set strategy to handle inequality ~ \v4 —
constraints. h(x) ~ h(x,) h(%)ox =0
2| Solve the QP approximation to find search direction h=0,g<0
s. KKT conditions are linear, so the system of T T
equations can be solved explicitly, or a more VE+d Vh+p vg=0
sophisticated method can be used. LI
#9=0
A#0,u20
3| Line search a penalty function of the objective in the Xpg = X, — a(sk)
direction of s, (find a good value for) B B
4| lterate to convergence

Figure 16. Description of the Sequential Quadratic
Programming method for optimization.

J. Michalek - Interactive Layout Design Optimization

OptdesX [53], an optimization package, was used to implement SQP on the early
problem formulation described in Section 3. 1. 8. SQP successfully generated local optima
if the initial design was feasible or near feasible. Infeasible starting points often led the
agorithm to become trapped in infeasible space. The algorithm worked well; however, the
problem was reformulated and re-implemented using CFSQP so that an object-oriented
C++ code could be written and a GUI could be developed to interact graphically with the
problem.

CFSQP, a C implementation of Feasible Sequential Quadratic Programming [31], was
used to solve the building geometric layout problem presented in this thesis. FSQP is
similar to SQP except that once a feasible design is found, search directions are altered to
maintain feasibility at every iteration. If theinitial design is infeasible, a penalty function
strategy is used to find a feasible design. In addition, CFSQP uses a Quasi-Newton
Method to approximate the Hessian of the Lagrangian VZL(X). Instead of using finite
difference methods to approximate the Hessian at every design, the Quasi-Newton Method
begins by assuming an arbitrary Hessian (usualy the identity matrix). Then, at each
iteration, the Hessian approximation is updated with new design space information. The
Hessian updates are constructed so that the Hessian is guaranteed to be positive definite at
every iteration. This isimportant for convergence properties. CFSQP aso handles linear

constraints separately so that they are solved more efficiently.

3. Refer to Papalambros and Wilde [28] for more details on SQP, Lagrangian, KK T conditions, line search, active set
strategies, Quasi-Newton Methods, finite difference, and penalty functions.

41

The CFSQP agorithm has been successful at generating locally optimal geometric designs for

the layout problem. A sample optimization of a particular layout problem is shown in Figure 17

(@ (b) (©)

Figure 17. Progression of the CFSQP a gorithm optimizing a sample
apartment complex building to minimize annual cost and wasted space;
(a) showsthe initial layout sketch provided by the designer (accessways
shown as lines between Units); (b) is an intermediate feasible iteration
(accessways shown also as rectangles); and (c) shows the completed
design (accessways shown as wall openings for clarity).

CFSQP is very fast for moderately sized problems, and it is relatively stable; however,
sometimes the algorithm becomes stuck and is unable to find the next move or determine KKT
optimality. This may be partly due to non-smooth constraints (Eg. (18), Eq. (27), Eq. (32)). SQPis
only provably convergent for smooth convex problems, and it may have unpredictable behavior if
gradient functions are discontinuous. Still, in practice the agorithm almost always converges
quickly, and convergence problems can usually be avoided by perturbing the design slightly to
move it away from non-smooth areas of the design space. An auto-perturb feature has been
implemented to automatically avoid this problem. The auto-perturb feature alters each design
variable by a small random number if the algorithm gets stuck. This usualy moves search away

from the first-order discontinuity and produces a reliable solution.

42

J. Michalek - Interactive Layout Design Optimization

3. 3. 2 Generalized Reduced Gradient

In addition to SQP, the OptdesX package was used to implement the Generalized
Reduced Gradient (GRG) algorithm on the original layout formulation (see Section 3. 1.
8). A typical GRG algorithm is shown in Figure 184,

1| Use an active set strategy to determine which of the g(x) =h (X)
inequality constraints to assume active. Treat active | = — —assumed 1=

inequality constraints as equality constraints and

ignore inactive constraints.

2| Split variables into decision variables and state f(x)= f(d,s)

variables. Number of state variables = number of - -7

independent constraints.

3| Linearize h, set 6h = 0 and solve for ds as a function -1
of od ah:ahas+226d:0.'.65z—(ahj (ahJ

4| Write z(d) function as a projection of the f(x) o of o of o
function onto the d space (unconstrained reduced 0Z= ad od + 670§
space) =

5| Solve the unconstrained z(d) problem using oz
Steepest Descent to find d d . = gn -

constraints for d found in 4 [h(d,s) = 0]. If s cannot
be found (too far for linear model to be valid), use a
smaller .

7| lterate to convergence (goto 2)

6| lterate using Newton’s Method to find s to satisfy P -1
Smi1 = Sm _(] h(g’ §m)

Figure 18. Description of the Generalized
Reduced Gradient method for optimization.

GRG was successful at generating local optima for the layout problem, and it is
unclear if either GRG or SQP is a superior solution method for this formulation. However,
GRG seemed to have more difficulty with discontinuous gradient functions, so SQP was

pursued for the remainder of the problems.

3. 3. 3Limitations of L ocal Search

These gradient-based search algorithms find locally optimal designs. This means that
the design is better than any neighboring design; however, the solution is highly dependent
on the starting point, and there is no guarantee that the design is of global quality. The

design space of this problem contains many local optima, some of which have poor global

4. For more information on GRG, active set strategy, reduced space, steepest descent, and Newton's Method see
Papalambros and Wilde [28].

43

quality. Also, if the starting point is highly infeasible, then the algorithms often cannot find

feasible designs.

3. 4 Global Optimization M ethods

Global optimization methods have been developed to overcome the limitations of local search
and to find solutions of global quality. Several global search strategies were used to generate

geometric layouts.

3.4.1Simulated Annealing

Simulated Annealing (SA - aso known as the metropolis algorithm) is a stochastic algorithm
inspired by the way that molecules in metals minimize energy state during the annealing process.

A typical SA algorithm is shown in Figure 19.

1| Choose initial design and initial temperature T=T i X = Xt
init? ni
2| Examine a random design in the neighborhood of X, =X + X
the current design. =4 T sk =
3| If the new design has a better objective function if (F(X)> F(X)) X =X,

value, accept it as the next design. If the new .
design is not better, accept it anyway with probability | €/seif (random(0,1) < p(T)) X, = X,

proportional to temperature. else X, = X,
K = X
4| Decrease temperature according to some cooling T =cool(T)
schedule

5| lterate until some terminating conditions

Figure 19. Description of the
Simulated Annealing a gorithm.

Initially, the agorithm explores randomly, accepting amost every new point. As the
temperature cools, the algorithm rejects more of the uphill moves. The ideais that by sometimes
allowing the algorithm to accept an uphill move, there is a chance of working its way out of local
minima, but as the algorithm progresses, it begins to accept only downhill moves, switching from
global to local focus. SA isastochastic algorithm, and it is not guaranteed to convergeto alocal or
global minimum in finite time; however, it is often successful at finding solutions of global quality.

SA was implemented using several variations of the early formulation layout problem (see
Section 3. 1. 8). Because SA cannot handle constraints explicitly, the constraints were modeled as
penalty terms in the objective function. Due to the high dimensionality and highly constrained

space of the problem, SA was unable to find afeasible design, even when run for several dayson a

J. Michalek - Interactive Layout Design Optimization

trivial problem. Providing SA with a feasible starting point does not solve this problem
because SA accepts many random design moves in the beginning of the algorithm,
moving far from the initia design. If the cooling schedule and initial temperature are
adjusted to prevent this, then the globa search quality of SA islost.

These results suggest that a stochastic agorithm is not a practical solution to a
problem formulation with high dimensionality and a highly constrained space, athough
aternate formulations of the layout problem may be more suited to thiskind of search (for

example [3]).

3. 4. 2 Hybrid SA/SQP Search Method

A hybrid SA/SQP search strategy was developed to take advantage of the global
gualities of SA and the efficiency of SQP in order to generate local optima of global

quality. The method is outlined in Figure 20.
1| Choose initial design and initial temperature T :Tinil’ X = Xt

2| Examine a random design in the neighborhood of X, =X, +X
the current design. Calculate the quality of this new TAT Sk =

design using step 3.

3| Run SQP using the new design as a starting point X* — QDPQ()

Set the quality of the SA-generated design equalto | =P A

the quality of the local optimum produced from the f(x.)=f(x
starting point. (%) = f (Xeop)
4| If the new design has a better objective function if (F(X)>F(X)): X =X,

value, accept it as the next design. If the new .]
design is not better, accept it anyway with probability | €Seif (random(01) < p(T)): X,,, =X,

proportional to temperature. esel X, =X,
D X =X
5| Decrease temperature according to some cooling T =cool(T)
schedule

6] Iterate until some terminating conditions

Figure 20. Description of the
SA/SQP hybrid algorithm

In this method, SA is used to search for a good starting point, and SQP is used to find
the local minimum near each starting point. In this way SA can search the space more
globaly with large moves while SQP worries about the details. A sample objective
function is shown in Figure 21. In this example, SQP can find six different local optima
depending on where the starting point is chosen. Each point that SA selectsis evaluated by
locally optimizing it, so SA observes any point in the vicinity of alocal optimum to have
the objective value of that local optimum. In a sense, the objective function is being
screened for SA. Notice in the example that the function SA observes has only two local

optimainstead of six. Also, an algorithm searching the resultant function can make larger

45

f(x)

design moves without as much danger of overstepping important features. The discontinuity of the
resultant objective function is acceptable because SA does not require continuous functions, as
long as they are defined over the entire domain. Also, the penalty function formulation that
CFSQP uses to find feasible space is sometimes successful at finding a feasible optimum even

when SA chooses an infeasible starting point (see Section 3. 3. 1).

c

=)

g

>

LL

(]

=

3 . m—— A ctual objective function

'g ' optimized by SQP

! —--— Resultant objective
function observed by SA
Design Variable x -

Figure 21. Hybrid SA/SQP sample
function with multiple local minima.

46

J. Michalek - Interactive Layout Design Optimization

Bath

Bedroom Bedroom

Dining
Room

L.Room T Kitchen
-

syt

_.—
Bed % ¢ ¢ Dining
room iy Room
Bedroom L 4
Kitchen
L.Room T
a
Figure 22. Sample results
generated by the SA/SQP
hybrid algorithm

The hybrid SA/SQP method was
implemented on the ealy problem
formulation for building layout (see Section
3. 1. 8). In this problem, the building external
shape was specified within a tolerance. Loca
optima of reasonable global quaity were
obtained for up to seven room apartment
layouts (70 variables, 269 constraints). Figure
22 shows two resultant layouts generated by
this method. It isimportant to understand that
these designs were generated automatically
with no feasible initial starting point. Thisisa
substantial improvement. Using SA aone, we
were unable to produce even a feasible
design. SQP is quick at generating solutions;

however, the designer must define where

Rooms should be placed relative to one another. In this problem, the early formulation

specifies that all Rooms must be connected to a hallway structure, but it does not specify

arrangement. The agorithm is able to automatically generate a quality feasible

arrangement and optimize that geometry localy.

3. 4. 3Evolutionary Algorithms

Evolutionary algorithms define a class of agorithmsinspired by the natural evolution

of organisms. Evolutionary algorithms include several sub-classes: genetic algorithms

(GA), genetic programming (GP), evolutionary programming (EP), and evolutionary

strategies (ES). In design optimization, evolutionary algorithms are used to evolve a

47

population of designs over a number of generations. A typical evolutionary algorithm is described

in Figure 23, although there are many variations.®

1| Generate an initial population of m designs (usually random) R=P, = {Xp szm}

— linit T

2| Select two individuals from the population using a selection X = s ec(Pk)

scheme. Usually higher quality designs are more likely to be

selected. X, =selec{R,\ x)

3| Call a crossover function to combine traits of the two designs = Cr OSSOV X.
into two new designs. (6, %) . %)

4| Call amutator function to randomly perturb each design with X, =mut atéxd)

some probability.
X%, =mutatéx,)
5| Goto 2 and repeat until m new designs have been generated.
5| Insert the new designs back into the population R=R U{Xa' Xb}
6| Select mindividuals from the population to discard using a R=R \ selectKi m:{()
selection scheme. Usually the lowest quality designs are .
discarded. R =R \sdectKillR)
7| Goto 2 and iterate until some terminating conditions P,=P
.

Figure 23. Description of atypical
Evolutionary Algorithm

The selection function is written so that high quality designs are more likely to be chosen. The
crossover operator combines traits from two designs to produce a new design with the assumption
that high quality designs have high quality components. The crossover operator generates new
combinations of these high quality components. In Genetic Algorithms, for example, the design
variables are trandated into binary strings called chromosomes, and crossover involves cutting the
chromosomes at a random place along the string and swapping ends. The mutation function
introduces some random perturbation to the system, and it is usually applied with low probability

to introduce extra variance.

5. Refer to Bentley [42] for more information on evolutionary algorithms.

J. Michalek - Interactive Layout Design Optimization

Genocop [40][41], a GA tool written in C, was used to
implement a genetic algorithm to solve the layout problem for
designs of globa quality. Due to the high dimensionality and
highly constrained nature of the problem formulation, the GA
was only able to generate feasible designs for the most trivia
problems. It is possible that finding the right set of GA
parameters or using different heuristics could improve the ability
to find feasible and quality designs; however, the complexity of

the problem grows quickly with problem size, and it is unlikely

that a GA would be practical for sizable problems. Besides, one

should take advantage of the efficiency and reliability of gradient ~ Figure24. Sample
geometry generated

agorithms when the formulation has so many simple constraint by Genocop

functions.

3. 4. 4 The Maximum Distance Distribution Method

One way to explore for solutions of globa quality is to use a variation of an
optimization technique referred to as the Maximum Distance Distribution Method
(MDDM [29],[30]). This method was developed for discrete problems, but it also works
for continuous problems. The concept is to use a local optimization algorithm to find a
local minimum x* using the formulation in Eq. (1). Once the local minimum is found, a
new optimization problem is formulated to maximize the distance from X* subject to an

extra constraint that the new point must have an objective value at least as good as f(x*).

maximize (X —x*)2 (68)
subject to h(x) = 0, g(x) <0, f(x)—-f(x*)<0
X e R"

If optimizing Eq. (68) yields a solution, X', in a new area of the design space, then
optimizing Eq. (1) again with xT as a starting point will tend to yield a better local
minimum. This process can be repeated by iteratively solving Eg. (1) and Eq. (68) to
obtain better solutions. MDDM is not guaranteed to converge to the globa optimum;

however, in practice there are many situations where this method is successful at

49

improving the quality of the local optimum returned. An example is provided in Figure 25. The
method is especially useful if f(x*) isflat in some feasible direction at x* .

An auto-improve feature has been implemented to set up and run MDDM iteratively after
finding a local minimum, and it has been successful at improving designs in some situations.
Combining the auto-improve feature with the auto-perturb feature (see Section 3. 3. 1) one can
create interesting results that move far from the initial starting point and sometimes obtain global
solutions (see Figure 25). If the MDDM formulation cannot find a point satisfying Eq. (68) using
local search, then the design is perturbed. If the perturbation moves the search area enough, the
agorithm will explore other areas of the design space, and it may find another point. If not, the
design will be perturbed again. Eventually, an improved design may be found. If an improved
design has not been found by some limit number of perturbations, then the algorithm revertsto the
last best known feasible design and terminates. This method is heuristic; however, in some

situations it improves the design significantly before terminating.

[it

" (©
(b)

Figure 25. Demonstration of the MDDM
method for finding improved local optima.

An initial design (a) was optimized using
CFSQP. Theresult isalocal optimum (b) (the
design cannot be improved by small changes
G)] in the design variables). The MDDM method
was used to generate design (c), an improved
loca optimum for this problem.

3. 4.5 Strategic Exploration

Another design exploration program was written to produce design alternatives by searching

the space using a strategy of random design changes. To use this program, the designer sketches an

50

J. Michalek - Interactive Layout Design Optimization

initial design using the interactive design tool. The program then makes design moves of
three types:

1.Swap the positions of two Units.

2. Perturb the position of a Unit.

3. Reduce the size of a Unit.

After each design move, the program attempts to re-optimize using the geometric
optimization agorithm. The agorithm first attemptsto find afeasible design using penalty
methods. If it is unable to find a feasible design, the program makes another design move
a random. When a feasible design is found, it is saved, and the program continues by
making more random design moves. This strategy was used to generate designs for a
simple three-bedroom apartment layout. The program generated 200 design aternatives
overnight. A sample of generated designs is shown in Figure 26. Although this strategy is
not rigorous, it is a useful tool for generating a spread of design aternatives that can be

explored further with the interactive design tool (Chapter 5).

51

r
M. Choset
Living Room
M. Bed,
Eth
Bcth
Hall
B
Bedroom
Hdl
Kitchen Dining Rexarm
Bedreom
Diring Rsern
Liing Room
M. Bed.
H4
B
Bedroom Eh
:: Barowm Hdl
|
" CM Kitchen
| Buth
E—
M. Chosel |
K. Bz,
Kichen
Berdreesm
Balh
. Ha
B
Bedroom
Liang Rocim Hd
Diniry Fesim

Bedrogrn Bedroorn | M. Choset
—
Dining Focm B
Bath M, Bod
Hal
Beih
Liing Fogm
Kitchen
Hall
Bath
(inivg Fooen 7]
M, Bad,
Balh 9
Hl | |
Livirg F 5 . M Closet |
Hal | |
Badroom
Bedroom
Kitchen
Bevkoxrn
Biadomm Liing Fraom
Hd [B
W, Bed,
Dirirg Feorm
ot |
| Brih
Bdh Kidchen

Figure 26. Sample designs generated by the strategic exploration agorithm.

52

J. Michalek - Interactive Layout Design Optimization

3.5 Summary

Given aninitial geometry, geometric constraints, and a design objective, the geometric
optimization algorithm is successful at generating alocal optimal geometry by finding the
best size and position for each Unit. The algorithm assumes that the layout geometry can
be described by combinations of orthogonal rectangles. Additional methods have been
implemented (Section 3. 4) to include some globa exploration with the local search.
These global methods are successful to some extent; however, it is better to use local
search for situations when the designer wishes to explore specific areas of interest and
guide search. In geometric optimization, the size and position of Units can vary, but the
Units themselves and Unit interactions (connectivity, etc.) are treated as constant
constraints. The designer can explore different Unit topologies by interactively trying
various alternatives (Chapter 5), or the designer can use the topology optimization
algorithm (Chapter 4) to automatically explore configuration aternatives by passing each

valid alternative to the geometric optimizer.

53

CHAPTER

OPTIMIZATION OF
TOPOLOGY

4. 1 Problem Formulation

The topology optimization problem is presented as a process of finding the best set of
relationships between rooms in a space. In this formulation, relationships include
connectivity, and initial rough location. Connectivity defines which rooms are directly
connected by a doorway or open pathway. Rough location defines rough arrangement of
rooms. Other models ([7],[8]) have used decision variables to define topological spatial
relationships (i.e.: adj-to-north-of, adj-to-south-of, etc...). However, the use of rough room
position to describe spatial relationships does not enforce these relationships during
geometric optimization, so the geometric optimization algorithm has more freedom to
mani pul ate the geometry.

Design objectives must be defined in order to evaluate a given topology. Topologies
could be evaluated based on topological qualities, such as openness, proximity,
directionality, or symmetry; however, even though these aspects are often thought of as
topological, they are difficult to evaluate without rough geometry. It is best to evaluate
objectives using ageometric layout, therefore we eval uate each topol ogy based on the best
geometry that can be generated from it. Using this method, layouts can be optimized for

any objective that can be formulated in terms of geometry or topology.

55

Figure 27 shows the topology optimization
process. A discrete optimization agorithm
uses information from previous topologies to
generate new topologies. Each new feasible
topology, X, is translated into a geometric
optimization problem (Section 3. 2). A locally
optimal geometry, x*, is found (Section 3. 3),
and the quality of that geometry, fy(x"), defines
the quality of the topology that generated it,
fi(X). The discrete optimization algorithm
searches for the topology that generates the

best geometry.

56

ﬁ opology algorithm searches for the\
topology that results in the best geometry

Discrete optimization
algorithm uses fi(Xy)
information to generate a
new feasible topology Xy 1

v

Geometric optimization
problem is generated for
>(k+1

ft(x k+1)

Topology
Generation

| geometric constraints
vxinit
Gradient optimization
algorithm generates
optimal geometry x*

Topology
Evaluation

| 1,0¢)

-

Figure 27. Building topology
optimization method

J. Michalek - Interactive Layout Design Optimization

4. 2 Mathematical M odel

4.2.1Variables

The variables for the topology optimization problem are the initial grid position of

each room, and the connectivity between each room and every other room/externa wall.

Xi’ yl S Z+ (69)

¢;; € {0,1}
Vi e {rooms}, Vj € ({rooms>i}_{extwalls})

where (X, y;) represents integer cartesian coordinates of room i, and ¢;; represents the
existence of a connection between room i and room j (or external wall j). Figure 28 shows
avisual representation of the design variables.

It isimportant to note that topological decisions about relative position of rooms (i.e.;
room i is-north-of room j) are represented here using absolute positions of rooms. It is

necessary to use absolute position in this representation so that the topology can be

P N W b~ 01O N

(X ¥i) bij
N Ol 1{ O] O
S Ol O 1] O
f vl E Ol 11 0] 1
| l |
l a4 W 11 0| O] O
‘ I+ 1 ‘ 1 O] 1] 1
IR ? ot
T \3" T 3 1
| |
o — — 4
I 2 3 4 5 6 8 NS EW1 2 3 4
Figure 28a. Room position grid Figure 28b. Room connectivity,
showing (x,y) for each room. ¢i- . A “1" represents a connection
Phantom lines show room bet]ween i and j. Connections to
connections. The dashed line compass directions (N, S, E, W)
shows the implied boundary. represent windows or doors on

external bounds of the building.

Figure 28. A 4-room example showing design
variables in the topology formulation

57

translated into initial geometry for geometric optimization. Several other methods of representing
topological decisions ([7],[8]) do not use absolute positions; however, it is necessary in this
strategy because the geometric optimization algorithm requires a starting design with geometric
information. For example, if the starting design defined all Units to be positioned at (0,0), the
geometric optimization algorithm would be unable to use gradient information to search for
feasible geometries because of the nature of the constraints at that point (see Section 7. 1. 9). The

use of absolute positions has several consequences:

The mapping from topology to geometry is not injective (one-to-one).
It is possible for more than one topology to generate the same geometry.
This means that computation time can be wasted searching similar

topologies.

The mapping from topology to geometry T
is not surjective (onto). Because each 7
room is represented as a grid point, each ‘ '/' ‘
topology could be interpreted ‘1,\4 R ‘
geometrically in several ways (see Figure |

29). It is not clear, however, that every ‘ N ‘
geometric aternative can be generated iN
using the topology definition in this thesis. "
The space of topology combinations is /’7\
exponential.

For a grid size of mXm squares and n 2 ! 2

rooms, there are m2" possible room |_
position combinations. This is a large
gpace of possibilities. Compare this to the |
4" possible connection combinations |—

generated when each room relationship can 4 4
take on the 4 alele values: {adj-to-north, : -
adj-to-south, adj-to-east, adj-to-west} . Figure 29. Alternative
geometricinterpretations of
atopology.

Because of these limitations, this representation is

not well suited to small problems where all solutions need to be enumerated (see Section 7. 1. 9 for
thoughts on improving this shortcoming). It is not clear that the representation can enumerate all
possible topology alternatives, however, this method is powerful for larger problems where
heuristic search is necessary. This is because in practice heuristic search algorithms can often find
reasonable quality designs quickly, while enumeration algorithms must systematically explore

designs one by one, which can often take too long to be practical.

58

J. Michalek - Interactive Layout Design Optimization

4. 2.2 Overlap Constraints

This constraint ensures that no two rooms occupy the same space.

=% +|yi—y| 21 Viz] (70)

4. 2. 3 Connectivity Constraints

Connectivity constraints are defined by the designer for each problem. The constraints
describe how a certain room is required to be connected to an outside wall, to another

room, or how certain rooms are required to not be connected. For example,

¢ = 1 room i required to connect toroomj, (71)
Pjj

Oyt Ot ot djw=1 roomi required to connect to at least (73)

0 room i required not to connect to room j,(72)

one externa wall.

4. 2. 4 Path Constraints

Path constraints are defined by the designer
for each problem. A path may be required between
al combinations of rooms, or a path may be
required between certain rooms. For example, a
path could be required from the bedroom to the
kitchen without passing through a bathroom or

closet. These constraints involve room

connectivity, and they are generated for each

specific constraint with an agorithm (see Figure30. Example connectivity
graph showing alternative paths

Appendix B). An example is shown in Figure 30.

In this 4-room example, at least one path from

room 1 to room 4 must be connected excluding

paths passing through room 3:

59

014+ (9120,9) 21 (74)

This constraint will be satisfied if rooms 1 and 4 are connected (¢, = 1), or if both room 1

is connected to room 2 (¢4, = 1) and room 2 is connected to room 4 (¢,, = 1).

4. 2. 5 Planarity Constraints

The room connectivity and position must be such that the

geometry can be realized with a two-dimensional (planar) floorplan. 2
One way to ensure planar feasibility is to draw lines between

connected nodes on the position grid and ensure that no two lines

cross. These lines will be allowed to share endpoints as long as they 4>
do not share any interior point. This constraint is difficult to represent

with a closed form mathematical function; however, the planarity

check function can be found in Appendix C. @

In Figure 31, the planarity check would interpret the following: 2- Figure 31. Example
connectivity graph

3 does not intersect 3-4 because they share only an end node (node 3). : .
showing aternative paths
1-4 intersects 2-3 because they cross (non-planar), and 3-4 intersects

2-5 because they cross at hode 4 (which is an interior point of line 2-5).

4. 2. 6 Envelope Constraints

Units that are forced to be connected to an external wall must lie on the external envelope of

Units on that wall. The four constraints below are added for each unit i.

din(max(yy, Yz, ---Yn) =¥;) = 0 (75)
dis(Yi =Min(yy, ¥z, --¥p)) = 0 (76)
O;e(MaX(X, Xy, ... Xy) =Y;) = 0 (77)
Oy (X —min(Xy, Xy, ...%X)) = 0 (78)

60

J. Michalek - Interactive Layout Design Optimization

4. 2.7 Objective

The objective of the topology optimization problem is to minimize the objective value

of the resultant loca optimal geometry formed by the topol ogy.

minimize(fy(SQP(X))) (79)
wheref; is the objective value of the geometry, and SQP isafunction that returns the local
optimum geometry for the topology X . Notice that x and y determine starting locations
for rooms in the geometry formulation while ¢ defines constraints for the geometry as
well as windows and accessways (see Figure 32). The optimization objective can be
anything defined by the geometry. Typically, we have optimized for the topology that
produces the most cost efficient layourt.

Only feasible topologies are passed to the geometric optimizer (SQP). If the topology

violates any congtraints, then the design is evaluated using penalty functions.

Topology Geometry
Variables Variables
/ room location \ rooms & halls g Unit position \
room connectivity < Unit size
Constraints Constraints
specified paths forceinside

prohibit intersection
force min intersection

specified connectivity
specified external wall

enforce planarity A force to edge

avoid overlap size bounds
Objective r_ati o bounds

minimize result of lighting bounds

geometric optimization | |- Objective
\ / minimize heating cost
minimize cooling cost
minimize lighting cost

Figure 32. Schematic showing the m! n! m!ze \r/]valsted space
relationship between the topology and minimizehall sze
geometry optimization formulations \ minimize accessway S'Zy

61

4. 2. 8 Penalty functions

Many non-linear discrete search

agorithms do not have an explicit way to ft(xx Bonus for feasibility
handle constraints. Constraints can be fg(x*)lif . l i l
handled either by limiting the operators _g v) v
to produce only feasible moves or by -'§ %)
using penalty functions to penalize the LW *8—
objective function for infeasible designs. i >
In this formulation, penalty functions are i v 4 l
used, and infeasible designs are not % -2, | ¢
passed to the geometric optimizer. é Zg,_ Penalty(X)

Figure 33 shows how this penaty = .v

function works. Here we are trying to _ _

Figure 33. Formulation of the
maximize the topology objective function topology objective function
fi(X). The following procedure is used to

evaluate atopology:

If the design isinfeasible, f; returns a negative value that is penalized for
each constraint violated, and for the extent of violation.

If the design is feasible, X is passed to the geometric optimization
algorithm. Assuming the geometric algorithm finds a feasible geometry
(x"), f; returns a bonus value (B) minus the objective function value of the
geometric optimum f4(x"). The bonus value is set so that it is larger than
any objective value fy(X).

Using this method, al infeasible topol ogies return negative function values, all feasible topologies
return positive objective function values, and feasible topologies that result in better geometries

(lower fy(x)) have abetter objective function value (higher f;(X)).

4. 3 Global Optimization Methods

The discrete topology design space is multi-modal, highly constrained, and highly infeasible,
so it must be searched with a global scope. The space of topologies could be searched exhaustively

with a CSP enumeration algorithm [37] or branch and bound; however, combinatorial explosion

62

J. Michalek - Interactive Layout Design Optimization

will cripple the algorithm for problems of significant size. Furthermore, enumeration is
unnecessary in a problem where many of the implicit design goals (such as aesthetic
intent) are not generally defined mathematically, but instead must be judged. It is not
meaningful to produce a strict global optimum; instead, it is more useful to produce an
array of quality design alternatives to explore. For this reason, evolutionary algorithms
(Section 3. 4. 3) were selected. Evolutionary agorithms search heuristically, and they can
be stopped a any point during the optimization process to return a population of best
designs found. This heuristic search, combined with penalty functions, can often find
quality feasible designs to large problems that are intractable for systematic search
methods.

4. 3. 1 Constraint Satisfaction Algorithms

Constraint satisfaction algorithms include a number of techniques for improving
search speed and reducing complexity including backtracking, node-consistency
checking, arc-consistency checking, path-consistency checking, forward checking, look-
ahead, and look-back schemes. Also, heuristic search strategies and value ordering
techniques can reduce search time.6 These techniques make a CSP representation a good
dternative for some classes of problems. Specificaly, these techniques have been
developed for binary constraint satisfaction problems (where each constraint involves only
one or two variables). Theoreticaly thisis useful because any constraint can be translated
into a group of binary constraints by introducing new variables For example, Figure 34
shows how a constraint involving three variables (x + y = 2) can be trandated into a four-
variable problem with only binary and unary constraints. In this trandation, a new
encapsulated variable, w, isintroduced. The domain of w isthe set of vector combinations
of the individual variables. Theoretically, this binarization conversion method allows any
constraint problems to be solved using binary CSP methods, however, in practice
binarization is generally not worth doing because the new variables add significant

complexity to the search space.

6. For more information on CSP solution strategies, see [37].

63

X 1,2 ye{34} ye {3,4}

X e {1 2} Ze {5 6}
—
+y= —
X+y=z y—secondEIement(w)
x=firstElement(w) Z=thitdElement(w)
we {(1,3,5),(13,6),
Ze {5,6} (1; 4, 5):(15 4, 6)9
w={(a,b,c) | a+b=c} (2,3,5), (2, 3,6),
(2,4,5),(2,4,6)}

Figure 34. Conversion of a 3-variable constraint into
2-variable and 1-variable constraints by introducing
an encapsulated variable

CSP solution techniques were not explored for this problem representation because of the
large number of multi-variable constraints and constraints that were difficult to express explicitly.
For example, the path constraints and planarity constraints would be difficult to represent as a set
of binary constraints. It isimportant to note that other problem formulations may be more suited to

this CSP representation ([6],[7],[8]).

4. 3. 2 Evolutionary Algorithms

An evolutionary algorithm for topology layout was implemented using GAlib, an evolutionary
agorithms optimization package [37]. A SteadyStateGA was selected (described in Figure 23).
Selector, crossover, and mutation functions are defined below, and an example to demonstrate the

process is shown in Figure 35.

Selector: A Roulette Wheel selector was used to select high quality
designs with greater probability than low quality designs. (Design A and
B are selected from the population Py.)

Sexual Crossover: When sexual crossover is used, two parents are
selected from the population, and two new children are produced using

J. Michalek - Interactive Layout Design Optimization

mixed room connectivity from both parent. (One child is shown
asDesignD.)

Asexual Crossover: When asexual crossover is used, one parent
is selected from the population, and one new child is produced by
swapping connectivity values between rooms or by swapping
room positions. (Shown as Design C.)

Mutation: After crossover, new designs are mutated slightly.
Room locations (x,y) are incremented or connectivities are
flipped with low probability. (Shown as Design E and F)

Xy Xy N + D:\‘
sl2] 9121 1aTal 9120 58 ¢
= 5
a[Z] 0130 ofs] iz gg ®
03| ¢330 EERE g g %
S
Design A / Design B FLo
“Asxual T Asexual @
POSItion connectivity connectivity
cros;over Crossover crossover
X Xy

INJa] 9120

——_|

0
0131 2 o=l o130
0

2fa £
s ¢y 3 : 1] dp3 |1
DesignC / Design D

y
fofa] 912
2

2

!
Random Random Rar‘wdom
Mutation Mutation Mutation
S el el et T
Xy Xy o t
1[3] 9130 1aa] dh2|o0 ED;
‘= O
al2]| 9131 20230 o
52| 0,901 (18] ¢,5(1 %8
’ ’ <
. Z
Design E Design F o O
=S
= O

Figure 35. Process of generating anew design
population using crossover and mutation operators
The evolutionary algorithm implementation is able to generate quality feasible designs for

medium-sized example problems. An example problem is explored in Chapter 6.
65

4. 4 Summary

Given constraints about building topology, the topology algorithm is able to search for feasible
topologies using stochastic techniques. Because of the stochastic nature, the algorithm cannot
guarantee a solution in finite time; however, in practice the algorithm has been successful at
generating feasible topologies for medium-sized problems (see Chapter 6). The topology
algorithm evaluates each feasible topology based on the best geometry that can be generated from
it using the geometry algorithm, assuming that all design objectives can be evaluated based on the
geometric outcome. In this process, room connectivities are translated as constraints in the
geometric algorithm, and room positions are translated into starting points for the geometric
design variables. Using this approach, the topology agorithm searches for the topology that will
result in the best geometry.

66

CHAPTER

INTERACTIVE DESIGN
OPTIMIZATION

A building geometry optimization design tool was created to allow the designer to
interact with the design problem in a number of ways including interactively defining the
problem, guiding search for asolution, and exploring design alternatives. Thistool offersa
new powerful approach to using optimization in the design process. Instead of using
optimization in the fina stages to fine tune a solution to a well-defined problem, the
optimization tool is used to help to refine the problem itself and to interactively explore
solution alternatives and trade-offs while receiving both visual and computationa
feedback.

The geometric optimization approach uses CFSQP (Section 3. 3. 1), which guarantees
that once a feasible design has been found, every following iterate will be feasible. This
means that each iteration of the algorithm yields a feasible design aternative, and the
progression of the algorithm moves toward improved design alternatives. Allowing a
designer to see this progression of designs visually and intuitively introduces opportunities
for making design and modeling decisions based on the progression of the algorithm. The
object-oriented implementation allows for these changes to be made during optimization.
If the problem formulation is changed, the new formulation is automatically updated, and
search in the new design space begins with the last design found before the change. In this
case CFSQP will search a new design space with changed shape and possibly changed
dimensionality; however, the user sees an uninterrupted progression of designs.

This chapter presents a description of the interactive design tool capabilities and

describes advantages of the tool. A case study using the tool is presented in Chapter 6.

5. 1 Interactive Problem Definition

The interactive design tool allows the designer to add, delete, and modify objectives,

constraints, and Units during optimization to refine the problem definition. The designer

67

can set up the initial problem and start optimization. At each iteration, the current design is
displayed. The designer can watch how the design is changing and use that information to change
the problem definition at any point during the optimization. This is useful because design is an
iterative process for the designer as well as for the algorithm. When the designer has visual
feedback, s/he can redize new preferences or forgotten constraints, and s’/he can explore how
changesin the problem definition affect the design solutions.

Refining the problem during optimization is accomplished using an object-oriented
representation of the building. Each time an optimization is performed, the program trandates the
object-oriented representation into a set of mathematical design variables, objectives and
constraints. This automatic translation allows a new mathematical design space to be formulated
automatically with a different dimensionality or different objective and constraint functions.
Underneath, the problem is actually being regenerated, and a completely new mathematical
optimization is started in the new space at a point analogous to where the designer left off in the
old space. However, the mathematical reformulation is hidden from the designer, so it appears as
though the optimization is progressing naturally with the new design change. This allows a new
way to think about modeling changes during optimization because the designer sees modeling
changes as simple design moves that can be easily added and experimented with during

conceptualization.

5. 1. 1 Multi-Objective Optimization

If the designer chooses more than one objective function to optimize, the individual objectives
are combined into a single objective function using a weighted sum (Eg. (67)). The weights, or
relative importance, of each individual objective can be changed to reflect preference in competing
objectives. Defining appropriate weights for a set of objectives is nontrivia; however, using the
interactive tool, the designer can change objective weights as she observes how the design is
progressing during optimization. Defining appropriate weight values is easier once the designer
can see how the designs react to a particular set of weights. Furthermore, a good set of weightsin
one area of the design space may be poor in another area, so it isimportant to have the flexibility to
change them during optimization. It is common practice to revise objective weights after finding
an optimum; however, this method allows the designer to interject during the process if s’he sees

the design migrating toward an undesirable area of the design space. In the future, other methods

68

J. Michalek - Interactive Layout Design Optimization

of describing objective preference, such as using aspiration points ([47],[48]), could be

implemented to make the process more intuitive for the designer.

5. 1. 2 Addition, Deletion, and M odification of Objectives

As the designer receives feedback of the optimization progression, s’he may want to

change the definition of the design objective.

Adding an Objectivee A designer watching the design
progression will be able to notice many types of layout
deficiencies visually, and s/he can add a new objective to enforce
a preference away from the deficiency. For example, if layout
solutions are lacking on use of space for living areas, the designer
can add a Minimize Wasted Space objective.

Deleting an Objective: After seeing the optimization
progression, the designer may decide that some objectives are
unimportant, or the designer may wish to remove an objective to
simplify the problem or observe how the design progression
reacts without the objective. If all objectives are removed, then
the algorithm terminates when it finds a feasible design.

Modifying an Objective: The designer can modify weights
(relative importance) of each objective to specify preference
(discussed in Section 5. 1. 1).

5. 1. 3 Addition, Deletion, and M odification of Constraints

As the designer receives feedback of the optimization progression, s’he may want to

change the definition of the design constraints.

Adding a Constraint: If the design progresses into an
undesirable area of the design space, the designer can
dynamically add new constraints to prevent search in that area.

Deleting a Constraint: After seeing the optimization
progression, the designer may decide to remove certain
constraints in order to achieve a better solution. Often decisions
about which constraints should be ignored cannot be made until a
designer has seen some physical designs.

Modifying a Constraint: Some constraints can be relaxed by
modifying a numerical bound, such as a minimum area
constraint. Once the designer has seen some feasible design

69

aternatives, s’lhe may choose to relax certain numerical bounds in order
to achieve a better solution.

5. 1. 4 Addition, Deletion, and M odification of Units

As the designer receives feedback of the optimization progression, she may want to change

the layout elements themsel ves.

Adding a Unit: Extraunits may be added to change the problem (i.e., add
an extra bedroom or closet) or to enforce connectivity (i.e., add an extra
accessway).

Deleting a Unit: Units may be deleted if they become extraneous in a
particular layout. Rooms may be deleted (explore a two bedroom instead
of athree bedroom apartment) or forced connections may be relaxed (i.e.:
remove accessway (connectivity constraint) and allow two Rooms to

separate).

M odifying a Unit: Units can be stretched or moved during optimization
to force search into a different area of the design space. Modification can
be used to guide search into an area of interest (discussed in Section 5. 2).

5. 1. 5 Change of Variable Formulation

The geometric layout design problem can be formulated with severa alternative variable
representations (see Section 3. 1. 1) each having its own representation used by CFSQP (defining
which terms are optimization variables and which terms are resultant calculations). The object-
oriented representation, however, can calculate constraints and objectives regardless of which
design parameters are used as optimization variables. It would be easy to switch between
representations during optimization if one representation produced better optimization behavior in

certain areas of the design space.

5. 2 Interactive Optimization

With the ability to modify design variables during search, the designer can guide the the
optimization process. Because the design variables are geometric in nature, the designer can

interact with the variables in an intuitive way. If the designer sees the design moving into an

70

J. Michalek - Interactive Layout Design Optimization

undesirable area of the design space, s/he can intervene and force search into anew area of
the space by manipulating Units. This method uses the designers experience and intuition
to guide global search along with the efficiency and accuracy of gradient algorithms to
direct local search.

In addition, the designer can also help the optimization algorithm to avoid
computational traps. Gradient based agorithms assume that al functions of the design
variables are continuous and have continuous derivatives. If the problem representation
violates these assumptions, the algorithm may have unpredictable behavior. In particular,
the geometric building layout formul ation presented in Chapter 3 has non-smooth gradient
constraint functions in some areas of the design space. If the algorithm has computational
difficulties near one of these areas, usualy it will appear to be stuck, and the designer can
nudge the Units slightly away from the non-smooth area to resume normal optimization.
Typically enlarging the building boundary slightly is enough to resolve the computational

difficulty. This ability isimportant for problems that have some irregularities.

5. 3 Interactive Design Exploration

5. 3. 1 Interactive Sketching

The interactive layout optimization tool can function as an interactive sketchpad for

exploring design aternatives. As atypica procedure, the designer would

71

Define Rooms & Halls: Define which Rooms will be included in the
building (kitchen, bedroom, etc...) and what are acceptable sizes for each
Room (length, sg. ft.).

Move Rooms Into Rough L ocation: Rough dimensions also can be set
by stretching.

Define Connections: Add Accessways to define which Rooms will be
connected.

Choose an Objective: Choose an objective to optimize for

Add Additional Constraints: Add any special constraints besides those
added by default

Optimize: The optimization algorithm will compact the geometry into a
locally optimum layout.

Examine Results: Check results visually and check estimated
performance values cal culated by the objective function.

Iterate: Use the information to refine the problem definition or guide
search into a new area.

The problem setup (steps 1-5) can be completed in less than one minutes for a typical two-
bedroom apartment. Optimization for the same problem usually terminates within a few seconds.
At this point, making changes to the design, such asrelocating aroom, isjust a matter of dragging
rooms into alternative positions and re-optimizing. This process is extremely fast, and many
design aternatives can be easily examined both visualy and computationally. The speed and
simplicity offers alot of potential as an exploratory tool. Examining alternative configurations is
faster than sketching, and possibly more intuitive because the designer manipulates objects
(Rooms, Halls,...) instead of lines.

5. 3. 2 Design Feedback

In addition to receiving quick visual feedback about various configurations, the design tool
also provides computational feedback about design performance with respect to the design

objectives. The designer can immediately see quantitative data about design aternatives, including

72

J. Michalek - Interactive Layout Design Optimization

Performance Cost: An estimate of the annual heating, cooling,
and lighting cost.

Build Cost: An estimate of the cost of materials (glass and walls)
to build.

Lifetime Cost: An estimate of the net financial cost over the
lifetime of the building including trade-off between build cost and
annual performance cost, taking into account annual interest
rate.

Natural Lighting: An estimate of the lighting levelsin each room
for a given environment.

Living Space: An estimate of the building area that is used for
living space in comparison to area used for passageways or
wasted space.

In the current implementation, al of these estimates are rough estimates, which is
appropriate for a conceptua exploratory tool; however, more accurate models could be
used if necessary. One drawback to using gradient-based optimization techniques is that
these functions must al be smooth, clean functions in order to behave well during
optimization; however, complex non-smooth simulation functions can be smoothed using
surrogate modeling technigues to fit into this model [43]. The use of rough models to
provide computational feedback to the designer during conceptualization offers the
potential for consideration of important computational objectives early in the design
process as well as the opportunity to explore how design changes affect building

performance.

73

74

CHAPTER 5

IDDEMONSTRATION STUDY

This chapter reports on studies that illustrate the use of the automated design tool and

the interactive design tool.

6. 1 Automated Design Tool

A large scale problem was implemented to test the scalability of the automated
building generation agorithm. This example problem involves a small apartment complex

with three separate apartments. Rooms and specifications are shown as below.

Table 2: Room Specificationsfor Demonstration Problem

Min Area [Min length & [Max length &
Apt Room . .
(sq.ft.) width (ft.) width (ft.)
- | Public Entry 9 3 100
1 |Living Room 160 12 40
1 |Dining Room 100 10 30
1 Kitchen 100 8 40
1 | Bedroom 120 10 40
1 | Bathroom 30 5 20
2 |Living Room 160 12 40
2 |Dining Room 100 10 30
2 Kitchen 100 8 40
2 | Bedroom1 120 10 40
2 | Bedroom 2 120 10 40
2 | Bathroom 30 5 20
3 |Living Room 160 12 40
3 |Dining Room 100 10 30
3 Kitchen 100 8 40
3 | Bedroom1 120 10 40
3 | Bedroom 2 120 10 40
3 | Bathroom 30 5 20

75

Topologica constraints are defined as in Section 4. 2. Constraints that are specific to this
problem are listed bel ow.

Table 3: Topology Specifications for Demonstration Problem

Constraint Type|Section|Constraint
Section .
Overlap 420 No two Units can occupy the same space
. Section|PublicEntry must connect to the LivingRoom of each
Connectivity
4. 2. 3 |apartment
Connectivity S4e(:§|03n PublicEntry must connect to an external wall
. Section
Connectivity 423 All bedrooms must connect to an external wall
Section In each apartment, there must be a path from the
Path 424 Kitchen to the LivingRoom that may pass through the
~7 " |DiningRoom
Section In each apartment, there must be a path from the
Path Bathroom to the LivingRoom that may pass through the
4.2.4 | .. :
DiningRoom and Kitchen
Section In each apartment, there must be a path from the
Path DiningRoom to the LivingRoom that may pass through
4.2. 4 .
the Kitchen
Section In each apartment, there must be a path from each
Path 424 Bedroom to the LivingRoom that may pass through the
~7 7 |DiningRoom
Section
Accessways 425 Accessway lines connecting Units cannot intersect
Envelope Section |Units that are connected to an external wall must lie on
P 4. 2. 6 |the boundary envelope of rooms

This problem was run for 20,000 generations (100 designs each generation) to search for
global solutions (see Chapter 4 for details). Feasible designs take much longer to evaluate than
infeasible designs (because they are passed to the geometric optimization algorithm), so a second
termination criterion was added to terminate after 50 feasible designs were found. This criterion

was intended to make search time more consistent.

76

J. Michalek - Interactive Layout Design Optimization

Two sample solutions shown in Figure 36 were generated on separate runs using the

automated design tool.

3-Bathroom
/ 2-Bedroom? . 2-Bedroom2
3-Bedroom2 3Bedroom “Dir
\ / i o
1-Bedroom1 T-Bahroom “FLiying 3-Badroomt 2Bahroom 2:ilchen Enlryway
1-Dining 3-Bedroom2 3-Living—+—3-Bathroom 1-Dining
ke 3Kitchen 1-Bathroom 3-Dining 1-Bedroom1
LVING—__ 4 Kitchen 2Bedroom1
1-Kitchen
2-Dining 3Kitchen 2-Bathroom
2-Living
/ }\\ 1-Living
i 2Kilchen——s— 5 gedroom2
F—Eahroeen ,7 29— Bedkoornl T—Bedroam?
3-Berkonitz | |
J 2-Diirg
| = o
-Baskoirnl - -
1-Bathroeen i 3-Betroern g |
ILidng Z2-Bolhnon
| 1-Drirg E-Kihten
I-Living
2~Edroom
T-Kikghen _ e
- 1 Eniryacy
P 3Dvirg
I-Batroom I-Liwing
L IHiden
2—Bediggrml
2—Divirg
3-Diring
Ertryrecyy — T
|-Batte: 1=Dining
2-Lhing 2-Edlhveom [p———
I-Living
P-Bedroor —
an 1-Hitchen - "
\— L IL

Figure 36. Sample designs generated by the automated design tool

The agorithm was able to generate local optimal solutions to this fairly complex problem.
However, global search is quite limited due to combinatorial complexity. Once a feasible topology
is found, it will have a much higher probability of being selected as a parent design by the
evolutionary algorithm because it will have a much higher fitness value than infeasible designs.
Thus, new designs tend to be very similar to the first feasible design found, and other designs are
usually discarded. The result is that the algorithm tends to fixate on the first feasible solution it
finds, exploring mostly variations of that solution. The algorithm can be run several times to
produce design alternatives, but generally when it is run once, the final population converges to
variations of one main design theme. This is a serious limitation for global search, and the
algorithm is more useful as afeasible-design-finder than as atrue optimizer. For smaller problems,
the evolutionary algorithm is still able to search a significant range of the design space to find
globa quality solutions. The evolutionary agorithm may be better suited to examples like this
than enumeration algorithms. For this problem, the evolutionary algorithm can consistently find
solutions in under 20,000 generations (2 x 106 design evaluations). By comparison, even if the
room position grid was reduced to 20 X 20 sguares an enumeration algorithm would have
257 X

evaluate, and it is unclear how many need to be evaluated to find a feasible solution.

20218 = 1% possible combinations to search. This is far too many combinations to

The geometric optimization problem does not have the same combinatorial nature that the
topology problem has, and it is able to handle much larger problems. An example shown in Figure
17, and repeated below in Figure 37, contains 23 rooms, three hallways, one boundary, and 25
accessways for atotal of 52 units. This geometric optimization problem contains 312 variables and

1578 constraints.

78

J. Michalek - Interactive Layout Design Optimization

1 F

A

- —

Biricrn

Living Rocen

@

(b)

Figure 37. Sample apartment complex geometric optimization.

() Initial layout sketch provided by the designer.

(b) Optimized design.

6. 2 Interactive Building Exploration

Typically, optimization algorithms are used to fine tune design parametersto improve
a pre-existing parameterized design concept. The interactive optimization software
presented in this thesis is intended to use optimization as a tool to aid in design
conceptualization and exploration. A sample design problem is shown here for laying out

asimple apartment. The example will show how the optimization tool can be used to help

the designer to:

-- Quickly sketch design concepts

-- Receive visua and computational feedback on design concepts

79

-- Formalize the design problem objectives and constraints
-- Use visual and computational feedback to refine the problem definition

-- Quickly explore design alternatives and design trade-offs

First, the initial layout concept is sketched out.

This design will consist of two bedrooms, a full

e bath, kitchen, dining room and living area with a
] /mh hallway structure consisting of two main paths.

p Connections are defined as shown in the picture

, ' / by adding accessways between Units. Each Unit is

initialized with its own default constraints for

minimum area, length, and width (Section 3. 2. 7).

Default constraints are automatically added to

prohibit intersection between all Room-Room and
Room-Hallway combinations (Section 3. 2. 4).

Default constraints are added to force al Units

inside the building bounds (Section 3. 2. 3). Each Accessway is added by the designer to guarantee
connected access between two Units by doorway or opening (accessways represented here as lines
drawn between Units). Default constraints are added that force intersection between the
Accessway and each of the connected Units such that the intersection overlap is large enough for a

door or opening (Section 3. 2. 5). Using the defaults, this entire process takes about one minute.

Next, design objectives are specified. Thisdesignisoptimizedto |, ...
minimize annual heating cost (Section 3. 2. 12) and minimize wasted | * M\ /

space (Section 3. 2. 15). The optimization process takes a few || =l P L{/

— A |
seconds, and the solution is shown here (accessway connectivity is D\n;m/%n
represented as lines between Units, and actual accessway position is . } xm
shown by the rectangular Units marked “A”). . :

80

J. Michalek - Interactive Layout Design Optimization

> |
B
—

>&.—

BEN

Bedroom

N

Suppose that after viewing the
results, the designer decides
that it will be more economical
if the bath and kitchen are close
together so that piping can be
clustered. The bath is dragged
down below the kitchen, and
the design is re-optimized. The

optimization algorithm repacks

the Units. Results show that the designer forgot an important constraint. The Hallway

between the living room and dining room was intended to be an entryway, but the designer

failed to specify that the Hallway must connect to an external wall. The designer now adds

anew constraint to force the hall against the west wall (Section 3. 2. 6) and optimizes the

design again.

A

Results show that another
constraint has been forgotten.
The two main Halway Units
should be connected. Another
constraint is added to force a
sufficient intersection between
the two Hallways (Section 3. 2.
5). The new formulation is re-

optimized. Results now match

the designer’s intentions. It is much easier for designers to be sure that they have included

design intentionsin amodel if they see results. Thistool allows the designer to quickly see

results and adjust the problem definition if necessary. The layout is saved as a design

aternative, and the designer continues to explore other alternatives.

81

<t
il

The designer considers moving the
bath to the east side of the apartment
to separate the public space from the
private space better, and also to
alow more room for the private
rooms while shrinking the
bedrooms. Another design
aternative is produced. The ability

to make design changes and quickly

examine results, consequences, and trade-offs is very useful. The effects of design changes can be

seen quickly - even faster than sketching with pencil and paper.

The designer examines the results and decides that the default e
minimum area for the living room (120 sg. ft.) was too small. The | — ~]
minimum areaisincreased to 150 sg. ft. and the design is re-optimized. B I |
This ability to change constraint parameters allows designers to | — /
perform parametric studies intuitively and examine trade-offs. Many Biring Focrn
constraints, such as minimum allowable room area constraints, are _ \ F%T
flexible because these constraints can be relaxed if doing so provides a dren =

significant gain somewhere else. A designer using this tool can often

"] L.M..Tm
7““ Eanainl
L. — :
TN <: :
IS e
e ||
il

The designer notices that the doorway
(accessway) to the north bedroom could
be moved south, and the living room
could take up the space currently
occupied by a hallway. The living room
is moved north of the halway and
enlarged so that it uses the space. The

apartment is re-optimized.

T

=

see visually where relaxing constraints can improve the design, and it is quick and easy to explore

constraint relaxation. In this case, the constraint isincreased to provide more space. The algorithm

J. Michalek - Interactive Layout Design Optimization

enlarges the living room to meet the new constraints. A new design alternative has been

created. The designer saves this design and moves on to explore.

The designer wants

Kiirhen

[=

to reduce the size of the

apartment. The last . i |)i
design measured 27 X 40 .) _a/
(1080 sg. ft). A new | ,. Féirwrm
design arrangement is L » |'/ | o .

considered by moving / A w{;m Awm
the kitchen and bath to L e

the north end, and —

moving the living room \

to the south. The design

is reoptimized. The
resulting design measures 30 X 33 (990 sg. ft.) - a reduction of 90 sqg. ft. The design

dternative is saved.

The designer decides T ‘ j/% i] r
to consider adding a third B oo g o b o _/
bedroom. The designer | . s I_*T i - ?J/m
places the third bedroom E r l e /-“H | 7
and adds an Accessway. Vi P |'a - e - / I
The new design is , _ . Lm
optimized. The new three- [] M{m m
bedroom layout can now

be compared to the two

bedroom layout. Adding an extra bedroom increases the apartment size from 30 X 33 (990
sg. ft.) to 30 X 42.5 (1275 sg. ft.), and the heating cost will rise an estimated 15%.
Providing the designer with computational feedback as well as visual feedback can aid in
decision making in the early conceptual stages of design. The new three-bedroom layout is

saved.

83

After examining the results, the designer decides that the private area should be more
distinctly separate from the public area. The three bedrooms are moved to the west side of the

apartment, and the new design is optimized.

|
/Ba&m . nT».an _
| 1 4 7 — | &"{ JV;C?(
4 | 5 | | ju B
LMFIJIIIHmm 2 \\ I— / }—Fth
‘ Belm \Mm Liing! Feae Bectoom

Theresult is accepted and saved as an aternative three bedroom arrangement. The design can

be viewed in severa different ways to get a better feeling for the layout.

. bithetean bithetean
Accessways can be viewed | aan B
Bafcorn Bafcormn
as openings or doorways, and i e binig P
the living room and dining | _ —
Hdl Hd Hadl Hd
room can be viewed without | — —
physical walls. Backonen - B
Livirg Fexcen Barfoorn Living Fecen Barfoorn
Fibeher,

The layout can be viewed in three dimensions to give a

Bxh

different feel for the space alocation. Three dimensiona g o

views can be used to help visualize the look and feel of the

interior space.

Living Fuocen

J. Michalek - Interactive Layout Design Optimization

This example has shown how the interactive optimization design tool can be used to
quickly generate and compare design alternatives visually and computationally. The
designer uses the optimization tool during conceptualization to help refine the problem
goals, understand design trade-offs, and explore design options. The entire process of
generating, visualizing, examining computational feedback, and using that information to
explore new designs in the above example was completed in about ten minutes. This tool
offers speed for design concept sketching with the power of computational feedback and
optimization results. The tool helps the designer to understand design trade-offs and to

define design objectives and constraints more formally as ghe views real results.

85

86

CHAPTER7

FUTURE DIREGTION

This chapter discusses possible future directions and ideas for improvement of the

automated tool and the interactive tool.

7. 1 Automated Design Optimization I mprovements

7.1. 1 Improve Design Toolbox

New constraints and objectives can be added to the representation to improve
optimization behavior, better represent architectural criteria, and improve the quality of
resultant layouts. Constraint sets can be added to allow designers to more easily deal with
complex shaped rooms or building boundaries made of multiple Units. Current objective
and constraint functions can be improved for better accuracy. Also, additional objectives
and constraints can be added to model building codes, structural supports, routing of
wiring, piping and ducts, human traffic patterns, or other aspects of architectural design
that can be quantified.

7. 1. 2 Explore Shape Grammars

Shape grammars offer an alternative possible representation for exploring topology
and geometry simultaneously. Shape grammars have a strong presence in the field of
architecture, and the integration of a shape grammar with an optimization search

algorithm could yield interesting results.

7.1. 3 Material Selection

In the current implementation, materials are assumed. New variables can be added to

the topology representation to represent material selection decisions for windows and

87

walls. Thisis especialy important in examining the trade-off between build cost and performance

cost.

7. 1. 4 Variable Number of Hallways

The number of hallways in a layout is somewhat arbitrary in this representation because
complex hallways structures are made up of some number of rectangular hallway units. In the
topology layout, a fixed number of hallways is assumed, and hallways are removed from the
geometric layout if they are not being used (less than 2 connections). An improved way to dea

with avariable number of hallways could be developed to improve layout solutions.

7. 1. 5 Diversity

Solution alternatives generated in a single run of the algorithm tend to be very smilar
(although they differ greatly between runs). A diversity objective could be incorporated to increase

diversity of the resultant design population.

7. 1. 6 Multiple Floors

An ability to add extra floors can be added with spaces shared between the floors (such as

stairs or high ceilings).

7. 1. 7 Complex Shapes

A more generalized Unit component that can represent non-rectangular and non-orthogonal
shapes would be necessary to generalize this tool to handle a larger class of problems. It is
important, however, that the representation remain simple for two reasons: (1) The problem must
be fairly simple in order to get fast, reliable results from the optimization algorithm, which is
necessary for the interactive tool. (2) If the representation of the geometry is too complex, it will
be difficult to interact with, and the interactive tool will loose some of its use as a sketching tool.

There is a compromise between speed and the level of simplicity and approximation.

88

J. Michalek - Interactive Layout Design Optimization

7. 1. 8 Alternative Global Search Methods

Alternative global search methods can be explored, such as CSP agorithms, that
search the design space more rigorously and guarantee completeness. Alternate strategies
may be more successful at generating layouts for large problems. The topology strategy
presented in this paper is heuristic, and it is not guaranteed to find a solution in finite time.
Also, the evolutionary algorithms used in this thesis can be explored further to compare

different parameter values or new mutation and crossover functions.

7. 1. 9 Topology Definition

The topology can be defined in a new way so that topology decisions create different
kinds of constraints in the geometry optimization problem. This could be especialy
powerful if the topology decisions are designed to map to linear constraints in the
geometry optimization problem. Linear constraints can be handled efficiently by gradient
algorithms. It may be possible to construct a topology model that produces only linear
constraints for the geometric optimization agorithm. One idea would be to define
topology similar to definitions by [7] and [8] (see Chapter 2). Topology decision variables
could make decisions such as “Rooml is-west-of Room2”. This would produce a linear
constraint in the geometry model instead of the nonlinear Prohibit Intersection Constraint
that is usually used (see Section 3. 2. 4). Using this kind of topology, it is possible that the
rough position topology variables could be completely eliminated. If all constraints were
linear, an initial design where all Units are positioned at (0,0) would be manageable by the
geometry algorithm. In its current form, the geometry algorithm cannot handle such a
starting point because intersection constraints are nonlinear and non-smooth if two rooms
share the same center position. The rough position variables are used to generate initial
geometry that the geometry algorithm can manage, and it uses the rough position variables
to search different configurations. If decisions such as “Room1l is-west-of Room2” were
used instead to search different configurations, the mapping from topology to local
optimal geometry might be both injective and surjective (meaning that each valid topol ogy
will create a different local optimal geometry, and that all possible local optimal geometry
could be created by a specific topology). This would be a significant improvement over

the current representation which is not injective or surjective (see Section 4. 2. 1).

89

7. 2 Interactive Design Exploration | mprovements

7. 2. 1 Develop Interface

The interface can be improved to commercial application quality to improve intuitive

interaction and increase speed and ease of use.

7. 2. 2 Interface with Design Constraints

Interface with design constraints is text based in the current representation. A system for
creating, displaying, and interacting with constraints graphically can be developed to give the
designer more of aphysical feel for the design constraints and improve the process of interactively

refining the praoblem definition.

7.2. 3 Trust Regions

Trust regions (bounding boxes) can be used to limit the size of optimization moves during
each iteration. This may be useful in interactive optimization if the designer can control the size of
the bounding box, forcing the design moves to slow down when s/he wants more interaction, and

alowing optimization to speed up when s’/he wants more computational efficiency.
7. 2. 4 Generalization

The interactive tool can be generalized to work with exploration of other classes of product

design.

0

CHAPTER

GCONCLUSIONS

This chapter summarizes and discusses the automated design tool and the interactive

design tool.

8. 1 Automated Building L ayout Design

Two automated optimization algorithms have been used to automate the generation of
design layouts: the geometry and topology agorithms. The geometric algorithm, built on
rigorous gradient-based algorithms, is efficient and robust, and it has been successful at
optimizing geometry for large problems. In its present state, it is most useful as an aid for
design exploration, rather than design automation, because results are highly dependent on
the starting point defined by the designer. Several tools have been implemented for
searching the geometric space more globally, including a hybrid SA/SQP that uses SA to
choose starting points for SQP local optimization and a strategic program that uses a set of
design moves to explore the space and find feasible layouts. These tools have been
successful at automatically finding alternative arrangements for rooms and exploring
many local minima.

A second topology optimization algorithm was built on top of the geometric algorithm
to search feasible topology alternatives and find the feasible topology that generates the
best geometry. The topology problem defines room connectivity and rough placement, and
it is highly nonlinear and discrete in nature. Only global methods, such as enumeration
agorithms and heuristic algorithms, are useful for exploration of this kind of multi-modal
design space. Heuristic evolutionary algorithms were selected for this thesis because of
the combinatorial explosion that threatens enumeration algorithms. The results are
interesting, but limited. Heuristic algorithms also suffer from combinatorial explosion, and
solving a problem with around 20 rooms takes nearly a day of computation. Furthermore,
because the algorithms are heuristic, they cannot guarantee convergencein finite time, and

a designer cannot know how long he will have to wait to find a solution. One difficulty

91

evaluating with topology combinatorial search algorithms for building layout is that results have
not been reported for buildings with more than 20 rooms. Automation of small problem solutions
is not as interesting from a design point of view because small problems often can be explored in
less time using intuition and sketching -- especially when the subjective nature of aesthetic
elements is considered. Automation of topology solutions would be much more useful for large
scale, highly constrained problems. One example would be to layout a public space, such as an
airport, and include additional considerations such as queuing, routing, and scheduling in the
model. For small problems that are highly dependent on designer judgement as well as
computational factors, an interactive approach that takes advantage of designer knowledge and
intuition is recommended. One advantage to the approach presented here is that the final design

generated by the algorithm can be used as a starting point for interactive design exploration.

8. 2 Interactive Layout Optimization

The interactive design optimization tool shows significant potential for computational
optimization algorithms to be used in the early conceptual stages of the design process to help
designers explore solutions and trade-offs. Design conceptualization is an extremely important
part of the design process, and it is one that computer tools typically ignore because of the poorly
understood nature of creativity and subjective judgement. The interactive tool assists the designer
with design generation and evauation, rather than attempting to automate these processes
completely. This approach alows the designer to maintain control, to use quantitative and
subjective judgements where appropriate, and so it supports creative exploration. Such conceptual
support tools may finally begin to fill an important gap in the present array of computer design

support capabilities.

92

REFERENGES

Automated Building L ayout

1. Levin, P. H. "Use of Graphsto Decide the Optimum Layout of Buildings." Architect 140
(1964): 809-15.

2. Liggett, Robin S., and William J. Mitchell. "Optimal Space Planning in Practice." Com-
puter-Aided Design 13, no. 5 (1981): 277-88.

3. Sharpe, R, B. S. Markgo, J. R. Mitchell, and J. R. Crawford. "An Interactive Model for
the Layout of Buildings." Applied Mathematical Modeling 9 (1985): 207-14.

4. Jo, Jun H., and John S. Gero. " Space Layout Planning Using an Evolutionary Approach.”
Artificial Intelligencein Engineering, no. 12 (1998): 149-62.

5. Jagielski, Romuald, and John S. Gero. "A Genetic Programming Approach to the Space
Layout Planning Problem." CAAD Futures (1997): 875-84.

6. Baykan, Can A., and Fox Mark S. "Spatial Synthesis by Disjunctive Constraint Satisfac-
tion." Artificial Intelligence in Engineering Design, no. 11 (1997): 245-62.

7. Schwarz, A., D. M. Bery, and E. Shaviv. "Representing and Solving the Automated
Building Design Problem." Computer-Aided Design 26, no. 9 (1994): 689-98.

8. Medjdoub, B., and B. Yannou. " Separating Topology and Geometry in Space Planning.”
Computer-Aided Design 32 (1999): 39-61.

9. Arvin, Scott A., and Donald H. House. "Modeling Architectural Design Objectives in
Physically Based Space Planning.” ACADIA (1999): 212-25.

10. Gero, J. S., and V. Kazakov. "Learning and Reusing Information in Space Layout Prob-
lems Using Genetic Engineering.” Artificial Intelligence in Engineering 11, no. 3
(1997): 329-34.

11. Rosenman, Mike. "Case-Based Evolutionary Design." Ai Edam-Artificial Intelligence
for Engineering Design Analysis and Manufacturing 14, no. 1 (2000): 17-29.

12. Rosenman, M. A., and J. S. Gero. "Evolving Designs by Generating Useful Complex
Gene Structures." Evolutionary Design by Computers (1999): 345-64.

13. Park, Kwang-Wook, and Donald E. Grierson. "Pareto-Optima Conceptua Design of
the Structural Layout of Buildings Using a Multicriteria Genetic Algorithm." Com+
puter-Aided Civil and Infrastructure Engineering 14 (1999): 163-70.

14. Faucher, Didier, and Marie-Laure Nivet. "Playing With Design Intents: Integrating
Physical and Urban Constraintsin CAD." Automation in Construction 9 (2000): 93-
105.

15. Peponis, J., and Craig Zimring. "Designing Friendly Hospital Layouts. The Contribu-
tions of Space-Syntax.” Journal of Healthcare Design 8 (1996): 109-16.

Other Automated L ayout

16. Yin, Su, and Jonathan Cagan. "An Extended Pattern Search Algorithm for Three-
Dimensional Component Layout." Transactions of the ASVIE 122 (2000): 102-8.

93

17. Cagan, Jonathan, Drew Degentesh, and Su Yin. "A Simulated Annealing-Based Algorithm
Using Hierarchical Models for General Three-Dimensional Component Layout.” Computer-
Aided Design 30, no. 10 (1998): 781-90.

18. Szykman, S., and J. Cagan. "Constrained Three-Dimensional Component Layout Using Simu-
lated Annealing." ASME Transactions 119 (1997): 28-35.

19. Choo, Hyun Jeong, and Iris D. Tommelein. " Space Scheduling Using Flow Analysis." Proc. Sev-
enth Annual Conference of the International Group for Lean Construction, July 1999

20. Rong, Bai. "Automated Generation of Fixture Configuration Design." Journal of Manufacturing
Science and Engineering 119 (1997): 208-19.

21. Koide, Tetsushi, and Shin'ichi Wakabayashi. "A Timing-Driven Floorplanning Algorithm With
the EImore Delay Model for Building Block Layout.” Integration, the VLS Journal, no. 27
(1999): 57-76.

22. Wang, Yinglin, and Huizhong Wu. "Method of Constraint Graphs Used in Spatial Layout." Ruan
Jian Xue Bao Journal of Software 9, no. 3 (1998): 200-205.

23. Ito, Teruaki. "A Genetic Algorithm Approach to Piping Route Path Planning." Journal of Intelli-
gent Manufacturing, no. 10 (1999): 103-14.

24. Davidson, R., and D. Harel. "Drawing Graphs Nicely Using Simulated Annealing." ACM Trans-
actions on Graphics 15, no. 4 (1996): 301-31.

25. Fadel, Georges M., Avijit Sinha, Todd McKee. “Packing Optimisation Using a Rubberband
Anology” Proceedings of DETC’ 01 2001 ASME Design Engineering Technical Conferences
DETC2001/DAC-21051 September 2001.

26. Kim, J.J., and D.C. Gossard “Reasoning on the Location of Components for Assembly Packag-
ing” ASME Journa of Mechanical Design, Vol. 113, No. 4 1991 pp 402-407.

27. Chapman, C.D., K. Saitou, and M.J. Jakiela. “ Genetic Algorithms as an Approach to Configura-
tion and Topology Design” Journal of Mechanical Design, Transactions of the ASME, v 116 n
4 Dec 1994, pp 1005-1012.

Optimization Refer ences

28. Papalambros, Panos Y., and Douglass J. Wilde. Principles of Optimal Design - Modeling and
Computation - Second Edition. Cambridge, England: Cambridge University Press, 2000.

29. Kott, G. J., and G. Gabriele. "A Tunnel Based Method for Mixed Discrete Constrained Nonlinear
Optimization." ASME Desigh Automation Conference 1998.

30. Kott, G J. "A Method for Mixed Variable Constrained Nonlinear Optimization Based on a New
Function Bounding Technique.” PhD Thesis, Rensselaer Polytechnic Institute, 1998.

31. Zhou, J. L., and A. L. Tits. "An SQP Algorithm for Findy Discretized Continuous Minimax
Problems and Other Minimax Problems With Many Objective Functions.” SSAM Journal of
Optimization (1995).

32. Lawrence, C. T., J. L. Zhou, and A. Tits. “User’s Guide for CFSQP Version 2.3: A C Code for
Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problem, Generating
Iterates Satisfying All Inequality Constraints’ Institute for Systems Research, University of
Maryland, Technical Report TR-94-16r1, 1995.

33. Zhou, J. L., and A. Tits. "Nonmonotone Line Search for Minimax Problems." Journal of Optimi-
zation Theory and Applications 76, no. 3 (1993): 455-76.

94

J. Michalek - Interactive Layout Design Optimization

34. Panier, E., and A. Tits. "On Combining Feasibility, Descent and Superlinear Conver-
gence in Inequaltiy Constrained Optimization." Mathematical Programming 59
(1993): 261-76.

35. Mayne, D. Q., and E. Polak. "Feasible Directions Algorithms for Optimization Prob-
lems With Equality and Inequality Constraints." Mathematical Programming 11
(1976): 67-80.

36. Bonnans, J. F., E. Panier, A. Tits, and J. Zhou. "Avoiding the Maratos Effect by Means
of a Nonmonotone Line Search: Il. Inequality Problems - Feasible Iterates." SIAM
Journal on Numerical Analysis 29, no. 4 (1992): 1187-202.

37. Bartak, Roman. "Constraint Programming: In Pursuit of the Holy Grail." http://
kti.ms.mff.cuni.cz/~bartak/constraints 1999.

38. Koziel, Slawomir, and Zhigniew Michalewicz. "Evolutioniary Algorithms, Homomor-
phous Mappings, and Constrained Parameter Optimization.”.

39. Wall, Matthew. "Galib: A C++ Library of Genetic Algorithm Components - Version 2.4
- Document Revision B"."1996.

40. Kozidl, S. and Michalewicz, Z., "Evolutionary Algorithms, Homomorphous Mappings,
and Constrained Parameter Optimization" Evolutionary Computation, Vol.7, No.1,
pp.19-44, 1999.

41. Koziel, S. and Michalewicz, Z., "A Decoder-based Evolutionary Algorithm for Con-
strained Parameter Optimization Problems, Proceedings of the 5th Parallel Problem
Solving from Nature" Springer-Verlag, Lecture Notes in Lomputer Science,
Vol.1498, Amsterdam, September 27--30, 1998, pp.231--240.

42. Bentley, Peter J. Evolutionary Design by Computers. San Francisco, CA: Morgan Kauf-
mann Publishers, Inc., 1999.

43. Guuvaerts, P. Geostatistics for Natural Resources Evauation. Oxford University Press,
New York, NY 1997

I nter active Optimization

44. Schwarz, A., D. M. Bery, and E. Shaviv. "On the Use of the Automated Building
Design System." Computer-Aided Design 26, no. 10 (1994): 747-61.

45. Liggett, Robin S., and William J. Mitchell. "Interactive Graphic Floor Plan Layout
Method." Computer-Aided Design 13, no. 5 (1981): 289-98.

46. Kharrufa, S., A. Saffo, H. Aldabbagh, and W. Mahmood. "Developing CAD Techniques
for Preliminary Architectural Design." Computer-Aided Design 20, no. 10 (1988):
581-88.

47. Tappeta, Ravindra, and John E. Renaud. "Interactive Multiobjective Optimization
Design Strategy for Decision Based Design.” Proceedings of the 1999 ASME Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference.

48. Diaz, Algandro. "Interactive Solution to Multiobjective Optimization Problems.” Inter-
national Journal for Numerical Meghods in Engineering 24 (1987): 1865-77.

49. Miettinen, Kaisa, and Marko M. Makela. "Interactive Multiobjective Optimization Sys-
tem WWW-NIMBUS on the Internet." Computers & Operations Research, no. 27

95

(2000): 709-23.

50. Pdlli, N., S. Azarm, P. McCluskey, and R. Sundararajan. "An Interactive Multistage Epsilon-Ine-
quality Constraint Method for Multiple Objectives Decision Making." Journal of Mechanical
Design 120 (1998): 678-86.

51. Wieghardt, K., D. Hartmann, and K. R. Leimbach. "Interactive Shape Optimization of Contin-
uum Structures." Engineering Sructures 19, no. 4 (1997): 325-31.

52. Balling, Rick, Alan Parkinson, and Joseph Free. "Interactive Optimization in Engineering
Design."Computing in Civil Engineering, Proceedings of the 3rd Conference 1984.

53. Parkinson, A. R., R. JBalling, and J. C. Free. “Optdes. BYU: A Software System for Optimal
Engineering Design” Computers in Engineering 1984, Advanced Automation: 1984 and
Beyond, Proceedings of the 1984 International Computers in Engineering Conference and
Exhibit.

Exploratory Design Tools

54. Arvin, Scott A., and Donald H. House. "Modeling Architectural Design Objectivesin Physically
Based Space Planning." ACADIA (1999): 212-25.

55. Tidd, William F., James R. Rinderle, and A. Witkin. "Design Refinement Via Interactive Manip-
ulations of Design Parameters and Behaviors." Design Theory and Methodology - DTM '92
American Society of Mechanical Engineers New York, NY, USA: ASME Design Engineering
Division, 1992.

56. Parmeg, C., and C. R. Bonham. "Towards the Support of Innovative Conceptual Design Through
Interactive Designer/Evolutionary Computing Strategies.” Ai Edam-Artificial Intelligence for
Engineering Design Analysis and Manufacturing, no. 14 (2000): 3-16.

57. Stuyver, Ralph, and Jim Hennessey. "A Support Tool for the Conceptual Phase of Design.” http:/
/www.io.tudelft.nl/research/I DEATE/papers/stuy_hci/stuy_hci.htm 1997.

58. Hennessey, Jim. "The IDEATE Project: Exploring Computer Enhancements for Conceptualiz-
ing." http://www.io.tudelft.nl/research/I DEATE/papers/henn_els’henn_els.htm 1997.

59. Duffy, A. H. B., A. Persidis, and K. J. MacCallum. "NODES: A Numerical and Object Based
Modelling System for Conceptual Engineering Design." Knowledge-Based Systems 9 (1996):
183-206.

60. Scriabin, M., Vergin, R “Comparison of Computer Algorithms and Visual Based Methods for
Plant Layout” Management Sciencev 22 n 2 Oct 1975 p 172-181

61. Simon, H.A, “The Structure of 111-structured Problem” Artificial Intelligence 4, 1973 p 181-201

Architectural Design Refer ences

62. ASHRAE “Fundamentals, American Society of Refrigeration, Heating and Air-conditioning
Engineers, Atlanta, GA 1997

63. IESNA “IESNA Lighting Education: Intermediate Level, [llumination Engineers Society of
North America. 1998

96

Appendix A:
Mathematical
Nomenclature

Table 4: Mathematical Nomenclature

Variable | Type Description

n Parameter | Number of rooms

X Vector Vector of design variables for the geometry optimization problem

fg(x) Function | Objective function of the geometric design variables

WJ- Parameter | Weight of objective function j in a multi-objective formulation

g(x) Function | Vector of inequality constraint functions of the geometry design variables
h(x) Function | Vector of equality constraint functions of the geometry design variables
x* Vector Local optimal geometric design solution

xT Vector Local optimal geometric design solution to the MDDM formulation

X Variable The reference point position of Unit i in the Cartesian x-direction

Yi Variable The reference point position of Unit i in the Cartesian y-direction

N; Variable Perpendicular from Unit i reference point to north wall of Unit i

81 Variable Perpendicular from Unit i reference point to south wall of Unit i

E Variable Perpendicular from Unit i reference point to east wall of Unit i

W, Variable Perpendicular from Unit i reference point to west wall of Unit i

Op, Variable Length of north window of Unit i

Og Variable Length of south window of Unit i

O Variable Length of east window of Unit i

Oy Variable Length of west window of Unit i

Sdoori Variable Discrete variable that determines which side of Unit i adoor ison (alt. form.)
Sexti Variable Discrete variable that determines which external wall Unit i isagainst (alt. form.)
YN, Result Cartesian y-coordinate of the north wall of Unit i

Ys, Result Cartesian y-coordinate of the south wall of Unit i

XEi Result Cartesian x-coordinate of the east wall of Unit i

XWi Result Cartesian x-coordinate of the west wall of Unit i

97

Table 4: M athematical Nomenclature

Variable | Type Description
l; Result Length of Unit i (x-direction)
W, Result Width of Unit i (y-direction)
A Result Areaof Uniti
h, Parameter | Height of Unit i
AN Result Areaof the north wall of the building
Ag Result Areaof the south wall of the building
A Result Areaof the east wall of the building
Ay Result Areaof the west wall of the building
A oy Result Total area of window glass on the north wall of the building
A(DS Result Total area of window glass on the south wall of the building
AwE Result Total area of window glass on the east wall of the building
A Oy Result Total area of window glass on the west wall of the building
di Parameter | Minimum width of doorways or openingsin Unit i
Anmin Parameter | Minimum allowable area of Unit i
lmi n Parameter | Minimum allowable length/width of Unit i
| max Parameter | Maximum allowable length/width of Unit i
Rmi n; Parameter | Minimum allowable length-to-width and width-to-length ratio for Unit i
ATi Parameter | Average internal/external temperature difference during month i
Uwa” Parameter | U-vaue of wall material (quality of material)
U o Parameter | U-value of window material (quality of material)
Bshgf Parameter | Solar heat gain factor (function of geographical location)
Bsc Parameter | Shading Coefficient (property of glass)
an Parameter | Time lag factor (property of glass and orientation)
MNheater Parameter | Estimated efficiency of gas heater
Nac Parameter | Estimated efficiency of air conditioning unit
Qheat Result Estimated annual heat 1oss through building walls during heated months
Qsol ar Result Estimated solar heat gain per year during air conditioned months
Qcond Result Est. conductive heat gain through the building exterior during air cond. months
I'heat Result Estimated annual cost to heat the building
rcool Result Estimated annual cost to cool the building

98

J. Michalek - Interactive Layout Design Optimization

Table 4: Mathematical Nomenclature

Variable | Type Description

Dbudget Parameter | Maximum allowable material cost to construct the building

Kuyall Parameter | Estimated cost per unit area of wall

K, Parameter | Estimated cost per unit area of window glass

Kelec Parameter | Estimated cost of electricity

Kgas Parameter | Average cost of gas per cubic foot

O, Result Average illuminance from natural lighting in Unit i

ereqi Parameter | Minimum required average illuminance per square foot in Unit i

Pmin, Parameter | Minimum allowable percentage of required lighting from natural source for Unit i
X Vector Vector of design variables for the topology optimization problem
f.(X) Function | Objective function of the topology design variables

¢ij Variable Connectivity between Unit i and Unit j

Penalty(X) | Function | Function to penalize atopology, X, for being infeasible

B Parameter | Bonus given to feasible topologies in the topology optimization

P Vector The kth population of designsin an evolutionary algorithm progression

99

100

Appendix B:
Topology Path
GConstraint
Calculations

Thisis C++ code that checksif aconnected path exists from a start Unit to agoal Unit
while passing through only legal units (as defined by the designer in the problem
definition). Thefirst checkForPath function recursively calls the second function checking

for longer paths each call.

int BuildingGenome::checkForPath(int start, int goal, vector<int> legalUnits) {
/] Check for a path of length i through any legalUnits between start and goal
/| for each possible value of i. Returns 1 if any legal path is found
if (getConnectivity(start, goal) == 1) return 1;
for (int 1=1; 1 < legalUnits.size(); it+) {
if (checkForPath(start, goal, legalUnits, i)) {

return 1;

[/ No path has been found:

return 0;

int BuildingGenome::checkForPath(int start, int goal, vector<int> legalUnits, int pathLength) {
/! This is a recursive formula used to find a connectivity path between
[/ start and goal of length "pathLength". It returns 1 if there is a path
/] through legalUnits from start to goal of length pathLength. 0 otherwise.

/! Path lengths must be >= 1
if (pathLength < 1) return 0;

/] A pathLength of 1 means a direct connection (connectivity(start, goal) = 1)

if (pathLength == 1) return getConnectivity(start, goal);

/] To check for a path of length pathLength > 1, check for a direct
/] connection between the start and some room i, and a path

/] of length (pathLength-1) between room i and the goal.

101

/] Try this for all rooms i
for (int 1=0; i < legalUnits.size(); it+) {
if (1 != start && 1 != goal) {
if (getConnectivity(start, i) == 1) {

/! Construct remaining units to avoid loops
vector<int> remainingUnits;
for (int j=0; j < legalUnits.size(); j++) {
if (legalUnits[j] != i) remainingUnits.push_back(legalUnits[j]);
}
if (checkForPath(i, goal, remainingUnits, pathLength - 1)) {

return 1;

}

[/ No path has been found:

return 0;

102

Appendix G:
Topology
Planarity
GConstraints

This is a C++ function to check if a given topology is ‘planar’. In the check,
connections between units are represented as lines. This function checks to see if any of
the lines intersect. There are specia rules about intersecting at endpoints included in the
comments. The main goa is to avoid passing designs to the geometric optimizer only if

thereis no possible geometry that can satisfy the input.

int checkLineIntersection(double Ax1, double Ay1, double Ax2, double Ay2,
double Bx1, double By1, double Bx2, double By2) {
double Adx = (Ax2-Ax1);
double Ady = (Ay2-Ay1);
double Bdx = (Bx2-Bx1);
double Bdy = (By2-By1);

double Amaxx = (Ax2>Ax1 ? Ax2 : Ax1);
double Amaxy = (Ay2>Ay1 ? Ay2 : Ayl);
double Aminx = (Ax2<Ax1 ? Ax2 : Ax1);
double Aminy = (Ay2<Ay1 ? Ay2 : Ay1);

double Bmaxx = (Bx2>Bx1 ? Bx2 : Bx1);
double Bmaxy = (By2>By1 ? By2 : Byl);
double Bminx = (Bx2<Bx1 ? Bx2 : Bx1);
double Bminy = (By2<By1 ? By2 : By1);

/] First reject far away line segments using bounding box
if (Aminx > Bmaxx) return 0;
if (Aminy > Bmaxy) return 0;
if (Bminx > Amaxx) return 0;

if (Bminy > Amaxy) return 0;
/] First deal with points

103

if (Adx == 0 8& Ady == 0) {
[/ A is a point
if (Bdx == 0 && Bdy == 0) {
[/ B is a point
if (Ax1 == Bx1 && Ayl == Byl) {

/] The two points are the same

return 1;
}
else // The two points are different
return 0;
}
else {
/! B is a line
if (Bdx == 0) {
/] B is a vertical line
if (Ax1 == Bx1 && Ayl >= Bminy && Ayl <= Bmaxy) {
/] Point A is on vertical line B
return 1;
}
else // Point A is not on vertical line B
return 0;
}
else if (Ayl - Byl == (Bdy/Bdx)*(Ax1 - Bx1)) {
/! Point A is on line B
return 1;
}
else // Point A is not on line B
return 0;
}

}
if (Bdx == 0 8& Bdy == 0) {
// B is a point, A is a line
if (Adx == 0) {
/] A is a vertical line
if (Bx1 == Ax1 && Byl >= Aminy && Byl <= Amaxy) {
/! Point B is on vertical line A
return 1;
}
else // Point B is not on vertical line A

return 0;

104

J. Michalek - Interactive Layout Design Optimization

if (Byl - Ayl == (Ady/Adx)*(Bx1 - Ax1)) {
// Point B is on line A

return 1;

else // Point B is not on line A

return 0;

/] Next deal with the infinite slope case:

if (Adx == 0) {
/! Line A is vertical
if (Bdx == 0) {
/] Line B is also vertical
if (Ax1 == Bx1) {
/] Both lines have same x: colinear
if (Amaxy > Bminy && Aminy < Bmaxy) {
/] Line segments overlap
return 1;
}
else // Line segments are separated in y-dir
return 0;
}
else // Vertical lines separated in x-dir

return 0;

else {
/] Line B is not vertical: Find intersection with x=Ax1=Ax2
double y = Byl + (Ax1 - Bx1)*(Bdy/Bdx);
if (y >= Aminy && y <= Amaxy &&
((y > Bminy && y < Bmaxy) || (y==Bminy && y==Bmaxy)) &&
Ax1 > Bminx && Ax1 < Bmaxx) {
/] Line B crosses line A within segment A
/! and inside of segment B
return 1;
}
else if (y > Aminy && y < Amaxy &&
y >= Bminy &% y <= Bmaxy &%
Ax1 >= Bminx && Ax1 <= Bmaxx) {
/] Line B crosses line A within segment B

// and inside of segment A

105

return 1;

}

else return 0;

}
else if (Bdx == 0) {
[/ Line B is vertical, Line A is not.
/] Find intersection of line A with x=Bx1=Bx2
double y = Ayl + (Bx1 - Ax1)*(Ady/Adx);
if (y >= Bminy && y <= Bmaxy &&
((y > Aminy && y < Amaxy) || (y == Aminy & y==Amaxy)) &&
Bx1 > Aminx && Bx1 < Amaxx) {
[/ Line A crosses line B within segment B
[/ and inside of segment A
return 1;
}
else if(y > Bminy && y < Bmaxy &&
y >= Aminy &% y <= Amaxy &&
Bx1 >= Aminx && Bx1 <= Amaxx) {
[/ Line A crosses line B within segment B
/] and inside of segment A
return 1;

}

else return 0;

/] NOW DEAL WITH FINITE SLOPE CASES

/I calculate y-intercepts:
double A b = Ayl - (Ady/Adx)*Ax1;
double B b = Byl - (Bdy/Bdx)*Bx1;
if ((Ady/Adx) == (Bdy/Bdx)) {
/] Lines are parallel
if (Ab==Bb) {
/! Lines are colinear
if (Aminx < Bmaxx && Amaxx > Bminx) {
/] Line segments overlap
return 1;

}

else // Line segments do not overlap

106

J. Michalek - Interactive Layout Design Optimization

return 0;
}
else // Lines are non-colinear
return 0;
}
else {
/] Slopes are not equal, find intersection pt
double xx = (B b - A b)/((Ady/Adx)- (Bdy/Bdx));
double yy = (Ady/Adx)*xx + A_b;
if (xx >= Aminx && xx <= Amaxx &%
yy >= Aminy && yy <= Amaxy &%
xx > Bminx && xx < Bmaxx &&
((yy > Bminy && yy < Bmaxy) || (yy==Bmaxy & yy==Bminy})}) {
[/ Intersection point is within segment A
/! and inside of segment B
return 1;
}
else if(xx > Aminx && xx < Amaxx &&
((yy > Aminy && yy < Amaxy) || (yy == Amaxy && yy==Aminy)) 8&&
xx >= Bminx && xx <= Bmaxx &%
yy >= Bminy && yy <= Bmaxy) {
[/ Intersection point is within segment B
[/ and inside of segment A
return 1;
}
else { // Line intersection is not inside of either segment
/] NOTE: The two line segments may share endpoints
return 0;
}
}

107

	Interactive Layout Design Optimization
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1
	Overview
	1. 1 Optimization Models
	1. 1. 1 Geometric Optimization Model
	1. 1. 2 Topology Optimization Model

	1. 2 Design Tools
	1. 2. 1 Automated Design Tool
	1. 2. 2 Interactive Design Tool

	2
	Background
	2. 1 Automated Spatial Configuration
	2. 1. 1 Fixed Grid Space Allocation
	2. 1. 2 Decomposition of Topology and Geometry
	2. 1. 3 What is still needed

	2. 2 Interactive Optimization
	2. 2. 1 Interactive Multi-Objective Optimization
	2. 2. 2 Interactive Design Space Exploration
	2. 2. 3 Interactive Building Layout Optimization
	2. 2. 4 What is still needed

	2. 3 Exploratory Design CAD Tools
	2. 3. 1 Ill-Defined Design Problems
	2. 3. 2 Rapid Generation of Design Alternatives
	2. 3. 3 What is still needed

	3
	Optimization of Geometry
	3. 1 Problem Formulation
	3. 1. 1 Units
	3. 1. 2 Rooms
	3. 1. 3 Boundaries
	3. 1. 4 Hallways and Accessways
	3. 1. 5 Windows
	3. 1. 6 Constraints
	3. 1. 7 Objectives
	3. 1. 8 Notes on an Earlier Model Formulation

	3. 2 Mathematical Optimization Formulation
	3. 2. 1 Design Variables
	3. 2. 2 Resultant Variables
	3. 2. 3 Force Inside Constraint Group
	3. 2. 4 Prohibit Intersection Constraint Group
	3. 2. 5 Force Minimum Intersection Constraint Group
	3. 2. 6 Force To Edge Constraint Group
	3. 2. 7 Bound Size Constraint Group
	3. 2. 8 Minimum Ratio Constraint Group
	3. 2. 9 Build Cost Constraint
	3. 2. 10 Feasible Window Constraint Group
	3. 2. 11 Bound Lighting Constraint Group
	3. 2. 12 Minimize Heating Cost Objective
	3. 2. 13 Minimize Cooling Cost Objective
	3. 2. 14 Minimize Lighting Cost Objective
	3. 2. 15 Minimize Wasted Space Objective
	3. 2. 16 Minimize Accessway Size Objective
	3. 2. 17 Minimize Hallway Size Objective
	3. 2. 18 Multi-Objective Optimization

	3. 3 Local Optimization Methods
	3. 3. 1 Sequential Quadratic Programming
	3. 3. 2 Generalized Reduced Gradient
	3. 3. 3 Limitations of Local Search

	3. 4 Global Optimization Methods
	3. 4. 1 Simulated Annealing
	3. 4. 2 Hybrid SA/SQP Search Method
	3. 4. 3 Evolutionary Algorithms
	3. 4. 4 The Maximum Distance Distribution Method
	3. 4. 5 Strategic Exploration

	3. 5 Summary

	4
	Optimization of Topology
	4. 1 Problem Formulation
	4. 2 Mathematical Model
	4. 2. 1 Variables
	4. 2. 2 Overlap Constraints
	4. 2. 3 Connectivity Constraints
	4. 2. 4 Path Constraints
	4. 2. 5 Planarity Constraints
	4. 2. 6 Envelope Constraints
	4. 2. 7 Objective
	4. 2. 8 Penalty functions

	4. 3 Global Optimization Methods
	4. 3. 1 Constraint Satisfaction Algorithms
	4. 3. 2 Evolutionary Algorithms

	4. 4 Summary

	5
	Interactive Design Optimization
	5. 1 Interactive Problem Definition
	5. 1. 1 Multi-Objective Optimization
	5. 1. 2 Addition, Deletion, and Modification of Objectives
	5. 1. 3 Addition, Deletion, and Modification of Constraints
	5. 1. 4 Addition, Deletion, and Modification of Units
	5. 1. 5 Change of Variable Formulation

	5. 2 Interactive Optimization
	5. 3 Interactive Design Exploration
	5. 3. 1 Interactive Sketching
	5. 3. 2 Design Feedback

	6
	Demonstration Study
	6. 1 Automated Design Tool
	6. 2 Interactive Building Exploration

	7
	Future Direction
	7. 1 Automated Design Optimization Improvements
	7. 1. 1 Improve Design Toolbox
	7. 1. 2 Explore Shape Grammars
	7. 1. 3 Material Selection
	7. 1. 4 Variable Number of Hallways
	7. 1. 5 Diversity
	7. 1. 6 Multiple Floors
	7. 1. 7 Complex Shapes
	7. 1. 8 Alternative Global Search Methods
	7. 1. 9 Topology Definition

	7. 2 Interactive Design Exploration Improvements
	7. 2. 1 Develop Interface
	7. 2. 2 Interface with Design Constraints
	7. 2. 3 Trust Regions
	7. 2. 4 Generalization

	8
	Conclusions
	8. 1 Automated Building Layout Design
	8. 2 Interactive Layout Optimization

	References
	Automated Building Layout
	Other Automated Layout
	Optimization References
	Interactive Optimization
	Exploratory Design Tools
	Architectural Design References

	Appendix A: Mathematical Nomenclature
	Appendix B: Topology Path Constraint Calculations
	Appendix C: Topology Planarity Constraints

