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Abstract

The Turdn number of a pair of graphs G and H is denoted ex(G, H), and is
the maximum number of edges a subgraph of G may have and still contain no
copy of H. In this paper, we determine ex (K4, 45.... a., MK, ), where K, o, a,
denotes a complete r-partite graph with part sizes aq, ..., a, and mI, denotes
m vertex-disjoint copies of K, the complete graph on r vertices. We prove
that for any integers 1 < m < a; < as < ... < a, we have

ex(Kay ... 0, mK,) = Z a;a; — arjas + az(m —1).

1<i<j<r

1. Definitions

Definition 1. A graph G is a pair of sets G = (V, E), where V is a fived
set of vertices, and the edge set E is a set of pairs of distinct elements from

V. We often write V as V(G) and E as E(G).

An example of a graph. The nodes represent vertices and the lines
represent edges.

Definition 2. Let G be a graph. A subgraph H of G is a pair of sets

H = (V' E") where V! CV and E' C E, which is itself a graph. If H is a
subgraph of G, we write H C (.



Definition 3. A graph G = (V, E) is called complete if for every pair x # y
in'V we have zy € E. If |E(G)| = n, this graph is denoted K,.

Definition 4. A graph G = (V, E) is called a matching if every vertex is
incident to exactly one edge. That is, for any v € V', there is exactly one
vertex w # v such that vw € E. If every vertex in G is incident to an edge,
then the graph is a perfect matching.
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A perfect matching

Definition 5. A graph G is called r-partite if one can partition the vertex
set into r parts V(G) = Vi U Vo U ... UV, such that if z and y are both in the
same V;, then xy ¢ E(G).

</ .
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A 3-partite (commonly called tripartite) graph

Definition 6. A graph G is called bipartite if it is 2-partite.

A bipartite graph
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Definition 7. A graph G which is bipartite or r-partite is called complete
bipartite or complete r-partite if every pair of vertices among different
vertex sets in the partition (commonly called parts) are adjacent (connected
by an edge). If |Vi| = my, then this graph is denoted K, my.. m, -

A complete bipartite graph

Definition 8. A graph G s called a path if the graph is an alternating
sequence of vertices and edges G = vie1V2€5...V,_1€,_1Up, Wwhere €; = V;V;41,
and if i # j then v; # v,

Definition 9. A graph G is called a cycle if the graph is an alternating
sequence of vertices and edges G = vie1vVs€3...V_1€7_1Vp€,Un11, Where
ei = ViViy1, and if 1 < j < n then v; # v;, and vy = V1.

Definition 10. Let G be a graph. The neighborhood of a particular vertex
v € G is the set of all vertices adjacent to v. The set of neighbors of a vertex
v is denoted N(v). If A C V(G), then N(A) := |J N(v).

vEA
Definition 11. The extremal (Turdn) number of a pair of graphs S and
G with S C G 1is the maximum number of edges which a subgraph of G may
have and still contain no copy of S. This number is denoted ex(G, H).

Definition 12. The rainbow number of a pair of graphs S and G with
S C G s defined as the minimum number of colors so that any coloring of
the edges of G will contain a rainbow copy of S.
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2. Basic Results

Theorem 1. Hall’s Theorem Let G be a bipartite graph, with vertex set
partitioned as V(G) = AUB. Then there exists a matching with every vertex
in A incident to an edge if and only if for any V C A we have [N(V)| > |V|.

Theorem 2. Let H C G be graphs. Let
H:={hCG:h=H—e for some edge e € E(H)}
and define
ex(G,H) :=max{n € Z : 3L C G such that |E(L)| =n and h € L for any h € H}.
Then we have the following:
ex(G,H)+2 <rb(G,H) <ex(G,H)+1 (1)

Proof. We first prove the inequality r6(G,H) < ex(G,H) + 1. Let m =
ex(G, H), and color G with m + 1 colors. Construct /' C G by picking one
edge from each color class. Since each color is used, then |E(F)| = m + 1,
and by the definition of F', F' is rainbow. Since m + 1 > ex(G, H), that
means H C F', and since F is rainbow in this coloring, so is this copy of H.
Since the coloring was arbitrary, that means every coloring of G with m + 1
colors has a rainbow H, so rb(G, H) < m + 1.

Now we prove ex(G,H)+1 < rb(G, H). Let ex(G,H) =n,and let L C G
such that |E(L)] = n and h € L for any h € H. We begin to color G by
coloring every edge in E(G) \ E(L) with color 1, which is never used again.
Note this set of edges is clearly nonempty, as if not, then L = G and H € G,
so color 1 is used. We then color every edge in L uniquely. Clearly this
is a coloring of G with n + 1 colors, and we claim that this coloring yields
no rainbow H. Any rainbow subgraph of G must have at most one edge in
E(G) \ E(L). Also, any copy of H in G must contain at least one edge in
E(G)\ E(L),as H ¢ L. Thus, to find a rainbow copy of H C G we must
select exactly one edge in E(G)\ E(L), and the rest of the edges from E(L).
That is to say, we must select a subgraph of the form J = F'Ue where F' C L
and e € E(H). But since for any edge e € E(H) we have H \ e € L, we have
FUe ¢ H. Thus, no rainbow H exists, and the inequality is proven.

O

Theorem 3. Chen, Li, Tu (2009)
ex(Ky, a9, mEKs) = ag(m — 1)



3. Results

Theorem 4. For all integers m > 1,z > 0,r > 2 we have

i
oKyt 2, + 5o+ I = () 0 9 = (4 2+ )

(.

Vv
r times

For notational simplicity we let Kz, := K + 2. m + 2, ...,m + 2, and

~~
T times

we let ex(m, z,7) := ex(K(nyz),, mK,). We proceed by proving a series of
lemmas.

Lemma 1. For allm > 1,z > 0,7 > 2 we have ex(m, z,7) > (})(m + z)* —
(m+ 2)(2 +1).

Proof. We construct a graph G' C Ky, satisfying

L |E(G)| = () (m+2)?—(z+1)(m+2)
2. mK, ¢ G

We let K+ 2), be r-paritioned as A; U Ay U...U A,. We consider a single
part A, and a fixed set of z + 1 vertices in that part. We connect these
vertices to no vertex in part A,, and include every other edge from the host
graph. We claim this graph G satisfies conditions 1 and 2. In order to form
a single K., we must select at most one vertex from each part, as there are
no edges within a part, and since we must select r vertices, we must select
exactly one from each part, and all the edges between these r vertices must
be present. Thus, in order to form mK,, we would need to select exactly m
vertices from each part, and they would all need to be part of some K, C G.
However, there are only m + z — (2 +1) = m — 1 vertices in A; connected to
any vertex in Ay, meaning that if we select m vertices from A;, then at least
one of them has no edge to A,, and so can be involved in no K.

]

We now prove base cases for an inductive argument in the following lem-
mas:

Lemma 2. Our theorem holds for z = 0. That is, form > 1,z =0, we have
the following:

ex(m,0,r) = (g) m? —m
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Proof. By Lemma 1 we know that ex(m,0,7) > (;)m2 — m, so we show
ex(m,0,1) < (72")m2 —m + 1. We note that this is clearly true for m = 1, as
any graph G C K1), = K, with |[E(G)| = (})(1)> =141 = (}) is exactly
K,, as desired.

Now we proceed inductively on m. We first let G C K, satisfying

|E(G)| = ex(m,0,7) + 1 = (})m* — m + 1. Note that
|E(G)] — (ex(m —1,0,7) + 1) = (g)m2—m+1— ((;)(m— 1?2 — (m—1)+1>
= (3)m = =1 -1

- <;)(2m—1)—1

Thus, if we find a K, C G such that removing K, removes no more than
(5)(2m — 1) — 1 edges, then this will guarantee that (m — 1)K, C G\ K,
so mK, C G. Now we show that K, C G. We define an r-tuple as ajas...a,,
with a; € A;. We define the weight of an r-tuple W(ajas...a,) to be the
number of edges in G incident to two of the vertices in the r-tuple. We use
this definition to show K, C G. We suppose to the contrary that K, ¢ G,

meaning that
Z W(ajas...a,) <m" <(g) — 1)

ajaz...ar

where the sum is taken over all possible r-tuples a;...a,. Now we relate
|E(G)| to > W(ay...a,). Summing over all r-tuples means that each edge

ai...ar

is counted m” 2 times, so that

EG)m™? =Y Wlar.a,) <m’ ((2) _ 1)

at...ar

That is,

E(G)m 2 < m" ((2) - 1) = |B(G) < m? ((2) - 1)

And since m > 2, then m? ((5) —=1) < (5)m?* —m + 1 = |E(G)], a

contradiction. Thus K, C GG. We recall that if the number of edges incident



to the r vertices in this copy of K, is at most (})(2m — 1) — 1, then we have
(m — 1)K, C G\ K, which implies mK, C G. This motivates a definition
- let the degree of an r-tuple, d(a;...a,) be the number of edges incident to
any vertex in the r-tuple. We suppose to the contrary that if a;...a, forms a
copy of K, C G, then d(ay...a,) > (})(2m — 1).

We investigate the maximum value that d(a;...a,) can attain. For any
vertex a; in the r-tuple, it may be connected to at most m vertices in each
of the other » — 1 parts. Thus, we have d(a;...a,) < r(r — 1)m — (}), over-
counting then subtracting the edges counted twice. We note that r(r —
)m — (5) = (5)(2m — 1). Thus, our assumption to the contrary means that
if a1...a, forms a copy of K, in G, then d(ay,...,a;) = (})(2m — 1), that
is, N(ay) = U A for k = 1,...,r. We now show that this implies

j=1..r: j#k
G = K(n),. We let a;; be the i™ vertex in the j™ part, so 1 < i < m,
and 1 < 7 < r. We let ay1,a12,...a1, be a copy of K, in G (which we
have already shown exists). We consider the r-tuples formed by varying a
single vertex in a single part. That is, for ¢ = 1,...,m and k£ = 1,...,r,
we consider the r-tuples a;1,a19,...,aif,...,a1,. By our assumption that

N(amg) = U Ajfor k=1,..,r we have that all these r-tuples form
j=l...r: j#k
copies of K, in G. Since for any vertex a;j involved in a copy of K, in G

satisfies N(a;x) = U A,, and every vertex is involved in some K, in
G=1..1: £k
G, then G = K,),, a contradiction.

]

Lemma 3. Our theorem holds for m =1,z > 0,7 > 2. That is, we have:

ex(1,2,r) = <;)(1+z)2 —(1+2)?= ((g) - 1) (z+1)?

Proof. We already have by Lemma 1 that ex(1,2z,7) > ((}) — 1) (z + 1)?,
so now we show exz(1,2) < ((5) —=1) (z + 1)? + 1. Let G C K(14.), with
E(G)| = ((}) —1) (¢ + 1)*+ 1. If K, ¢ G, then we have (using the same

definition for weight as before), that W(a...a,) < (}) — 1 for all r-tuples.



Then we have (by the same argument as in Lemma 2) that

BE@|(1+2)72= ) W(a..a,)

at...ar

(o
— |E(Q)| < ((;) - 1) (1+2)?

contradicting |E(G)| = ((3) — 1)(1 +2)? + 1.

We now use this information to prove our main theorem.
Proof. We proceed by inducting on m and z, with m > 2,z > 1 and r > 2.

Loex(m—1,z7)=()(m—1+2)?—=(m—-1+2z)(z+1)

2. ex(m,z—1,r)= () (m+2—1)* = (m+2z—1)(z)

as the base case z = 0 was proven in Lemma 2, and the base case m =1
was proven in Lemma 3. Let G C K(4.), with |E(G)| = (})(m+2)* — (m+
z)(z+1)+1 and suppose to the contrary that mK, ¢ G. If the r-tuple forms
a K, in G, then we know |E(G\ (a;...a,))| < ex(m—1,z,7) because if | E(G'\
(ay...a,))| > ex(m —1,z,r), then (m — 1)K, C (G'\ (a;...a,)), and adjoining
ai...a, with this (m — 1)K, yields mK, C G, a contradiction. If a;...a, does
not form a copy of K, in G, then we know |E(G\ (a;...a,))| < ex(m,z—1,71),
because if |E(G \ (ay...a,))| > ex(m,z — 1), then mK, C G\ (a;...a,)) C G,
a contradiction.

We would like to use this information to construct an upper bound on
|E(G)|, which contradictions the known number of edges in G. To aid in this,
we will first show a lower bound on the number of (not necessarily disjoint)
copies of K, within G.

Suppose there are exactly ¢ copies of K, in G. Then we should have,
summing over all r-tuples, (using the same definition for weight as before)

Z W(ai...a,) < (;)g%— (m+2)" —q) ((;) — 1)

o))



Thus, by the same argument as in the lemmas, we have

E@)|m+2)%=Y W(a..a, <q+<(g)—1)<m+2y

ai...ar

So ¢ > |E(G)|(m+ 2)"2 = ((5) — 1) (m+ 2)", and we let p := |E(G)|(m +
2)" 72— ((}) = 1) (m+ z)", so that ¢ > p.

Now we bound |E(G)| from above. We consider the following sum over
all r-tuples:

Z |E(G\ (a1...a,.))| < glex(m —1,z,7)) + (m+ 2)" — ¢)(ex(m,z — 1,r))

aj...ar

<plex(m—1,z,r)) 4+ ((m+ 2)" —p)(ex(m,z — 1,71))

The first inequality is justified by the paragraph immediately following the
proof of Lemma 3. The second inequality is justified by the fact that ex(m, z—
L,r)—ex(m—1,z,r) =m+2z—1 >0, so if G had more copies of K, than
our lower bound, then the upper bound for > |E(G\ (a;...a,))| could only

ai...ar
get smaller.

We now relate this sum to |E(G)|. For any edge a; jar; € E(G), we note

that we only count a; ar; in > |E(G \ (a;...a,))| if we select neither a; ;
ai..ar
nor ay,; to remove, and select any vertex in each of the remaining r — 1 part

to remove. That is, we count a; jay; exactly (m + z — 1)*(m + z)"~? times.
Thus, we have

E(@)(m+2z—12(m+2)"2= Y |EG\(ar...a,))]

ai...ar

<plex(m—1,z,r)) 4+ ((m+ 2)" —p)(ex(m,z — 1,1))
Thus, we should have that
|E(G)|(m+z—1)2(m+2)""2—plex(m—1, z,7))+((m+2)"—p)(ex(m, z—1,7)) <0

Let s = m + z. Substituting m = s — z into this inequality and simplifying
yields s"'(s — 1) < 0. Since m > 2,z > 1, and r > 2, we have s > 3, and
clearly s"~(s — 1) > 0, a contradiction. Thus, mK, C G, and since G was
arbitrary, ex(m,z,r) < (})(m + 2)*> — (m + z)(z + 1) + 1. Since Lemma 1
shows ex(m,z,r) > (5)(m+ 2)? — (m + 2)(z + 1), we have
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i
oKyt 2m + 5o+ zI) = (3) 0 9 = (o4 2+ 1)

N
T times

Theorem 5. For any integers 1 < m < a; < ag < ... < a, we have

ex(Kaya....an, mK,) = Z a;a; — arag + az(m — 1)

1<i<j<r

We let K, 4.0, be r-partitioned as A; U Ay U ... U A,. For notational
simplicity we define ex(ay, ag, ..., a,,m) = ex(Ky, ay.....a,, MK,).

Lemma 4. For any integers 1 < m < a; < as < ... < a, we have

ex(Kay ay.....ar, MEK,) > Z a;a; — ajas + az(m — 1)

1<i<j<r

Proof. We construct a graph F' C K, . with |[E(F)| = > aa; —

1<i<j<r
araz + az(m — 1) and mK, ¢ F. We consider the part A; and a fixed
set of a — (m — 1) in that part. We connect these vertices to no vertex
in part As and include every other edge from the host graph. In order to
form a single K,, we must select at most one vertex from each part, and
all edges between these r vertices must be present. Thus, to form mK,, we
would need exactly m vertices from each part. However, we there are only
a—(a— (m+1)) =m—1 vertices in A; connected to any vertex in Ay, and
so can be involved in no K,. To count the number of edges, we note that
between A; and A, there are as(m — 1) edges, and all other pairs have all

edges present, so |[E(F)| = > aa; —ajas + az(m — 1).
1<i<j<r
[
Proposition 1. For1 <m <a; <ay =a3 = ... = a, we have

1
ex(Kay ay..an, MEK,) = aras(r — 2) + a3 (T 5 ) + ag(m — 1)

The proof is by induction on a; + m, and we prove base cases for this
induction in the following two lemmas.
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Lemma 5. Forl=m <a; <ay =az = ... = a, we have

—1
ex (Ko, 09,09 Kr) = aras(r — 2) + (T 5 )a2

Proof. We have a lower bound by the previous lemma. Now to show an

upper bound we let G C Kg, 4,0, With |E(G)| = araa(r —2) + (", )a? + 1
and suppose to the contrary that K, ¢ G.

> W) < ((g)<_1)(hagl

V... Up

We now relate Y W(v;...v,) to |E(G)|, by finding how many times an
V... Up

edge is counted in the sum. We define e(A;, A;) as the number of edges in G
between parts A; and A;. Then we have

r

Z W(vy...v,) Z (A, A; Z (A;, Aj)(aray” %)

v1...Up j=2 1,771

We then have

0> ZTW(UL..UT) - ((’;) _ 1) =

V1.0
: r

= Z (A, A; 24 Z (A, Aj)(aray ™) — (<2> — 1) ayay

=2 ij#1

& r
= a1ay | E(G)| —I—Ze(Al,Aj)(agf —ayay?) — <(2> — 1) aral”!
=2

= (r —2)(alay™? — arah ™) + ayah " + Z (A1, A —ayal”®)
=b

If as = ay, then 0 > b= aTI’_Q > 0, a contradiction. If ay > ay, then

b Z (7" - 2)(@%(15 2_ alCLSil) + a1a§73 -+ |E(G)| — |E(Ka2’ as, ..., a2)|
——

r—1 times

T

=ay ?>0

a contradiction.

11



Lemma 6. For 1 <m=a, <as = ... = a, we have

-
ex (Ko, a9, ap, 1K) = aras(r — 2) + ag( 5

) + as(ay — 1)
Proof. We already know the extremal number is bounded below by
aras(r —2) + a3(",") + az(a; — 1) by Lemma 4. Now we show the extremal
number is strictly less than ajas(r — 2) + a3(",") + as(a; — 1) + L.

Let G C Ko, a,....0, With |E(G)| = aras(r —2) + a3(",') + az(a; — 1) + 1.
We begin by noting that

|E(G)|—(ex(Kay—1.0y1....a9-1, (a1—1) ) +1) = ag(r—1)+(r—1)(a1+as(r—2))— (2) —1,

which is one fewer than full degree of a K. Thus, if we find a single K, with
strictly less than full degree, we may remove it and conclude

‘E<G \ Kr)| Z ex(Kalfl,agfl,...,agflu (CL1 - 1>Kr) + 1.

Thus, (a; — 1)K, CG\ K, = a1 K, C G. We know a; > 1, so |E(G)| >
aras(r—2)+a3(",') +1 = ex(Ka, ay..a5, K) +1, where the last equality holds
by Lemma 5. Therefore, K, C G by the definition of an extremal number.
By previous reasoning, if any K, has less than full degree, mK, C G, so we
suppose to the contrary that every copy of K, C G has full degree.
Thus, our assumption to the contrary means that if v;...v,. forms a copy
of K, in G, then N(vy) = |J A, fork=1,...,r. We now show that this
j=1...r: j#k
implies G = K, 4,,...0,- We label the vertices, where v; ; is the ith vertex in
the " part. We let V11,012, ...01, be a copy of K, in G (which we have al-
ready shown exists). We consider the r-tuples formed by varying a single ver-
tex in a single part. That is, we consider the r-tuples vy 1, v1,2, ..., Vik, --; V1
By our assumption that N(viz) = |J  Ajfor k=1,...,7, we have that
j=1...r: j#k
all these r-tuples form copies of K: in Gj.#Since for any vertex v;, involved
in a copy of K, in G satisfies N(v;) = U A, and every vertex is
j=1...r: j#k
involved in some K, in G, then G = Kal,a,é,i”m, a]fcontradiction.
O
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We now use these two lemmas to prove our proposition:

Proof. The proof is by induction on a; + m.

Let G C Ky, a5.....0, With |E(G)| = aras(r —2) +a3(";") + (m — 1)as + 1,
and suppose to the contrary that mK, ¢ G. By the previous two lemmas,
we know that this assumption implies m > 1 and a; > m. We first obtain a
lower bound on the number of (not necessarily disjoint) copies of K, in G.
We suppose there are exactly ¢ such copies, and see that

> W(vr..v,) <q<g>—|—(a1a§ ! q)(@) —1)

V1. > Z W(vy..v.) — ayaly ™t ((2) _1)

V1. Up
! T
= Ze(Al, Z Dayay™ — ayay™? ((2) — 1)
J=2 1,j7#1
=p

We use this lower bound to get an upper bound on the |E(G)|. We note
that:

Z |E G\Ul UT) <Q(€x(Ka1 Lag—1,...,as—1s ( _I)KT))

V1...Ur

+ (alag_l - Q) (ex(Kal—l az—1,..., az2—1» mKT’))
= q(1 — ag) + (aray™t) [ (ap — 1)(ag — 1)(r —2)

r—1
+(a2—1 ( 2

)+ a2—1)]
< p(1 — as) + (ara}” [a1—1 (ag — 1)(r —2)
o

+(ay — 1) ( , )t a2—1)]
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We define t := (p + a1ay ") (1 — ay), so that the above inequality reduces
to

V]...Up

> IE(G\ vrvy) <t agah 2_1[%_17,_2 (a2_1)(7«_1>

e (()-9)]

A simple counting argument shows that

r

D E(G\viv)| =) e(Ar, Aj)(ar—1)(az—1)(az)" "+ _ e(A;, Aj)(a—1) aras

V1.0 i=2 i,j#1

So that

STIEG \ vievy)] =t =Y e(Ar, A)as — 1)a5 a1 + Y e(Ay, Aj)(az — 1)ay%ay
V1...0p =2 1,771

= |E(G)|(az — 1)a;*as

Plugging this result into the above inequality, we obtain

E(G)) < as [(m D=2+ (g 1>(r;1) A (T

= agay(r —2) +ai(r — 1) + az(m — 1)

)

—a%(r—?)—aQ(T;1> —|—a2(r—1)+a2(<£> —1>

a9 () () )
s af() () )

< |E(G)]

a contradiction.
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We use this proposition to prove our theorem.

Proof. Since Lemma 4 proves the desired lower bound for ex (K, a,...a,, MK,),
all that remains to be shown is

ex(Kay ag,....ar, ME,) < Z a;a; —ajas + az(m—1)+1

1<i<j<r

We fix a particular m and r, and induct on the total number of vertices in
the host graph. Let G C K,, _,, with
|E(G)| = Z a;a; —ajas + az(m—1) + 1.

1<i<j<r

We suppose to the contrary there is a graph that is a counterexample to
our theorem, consider the minimum number of vertices in the host graph
for which there is a counterexample. Let the graph G be a minimum coun-
terexample. By the proposition, the fact that GG is a counterexample implies
a, > as. We consider a fixed vertex v € A, and see that

|[E(G\{v})| < ex(ay,...,ar—1,a, —1,m)

= Z a;a; — Zai —ajas + az(m — 1)

1<i<j<r ir

Where the extremal number is as in our theorem (by induction), and has the
above form as a; < ay <a, —1and ay < gqg; for 3 <i<r —1.

We then have

|E(G)| = [E(G\ {v})| +d(v)

< Z a;a; — Z a; — ayas + az(m — 1) + d(v)
1<i<j<r itr

< Z aiaj—Zai—a1a2+a2(m—l)+2ai
1<i<g<r 1#r i#T

= Z a;a; — ayag + as(m — 1)
1<i<j<r

= [E(G)] -1

which is a contradiction.
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Thus, we must have mK, C G, so

ex(Kay .a9,...an, MEK,) = Z a;a; — ajas + az(m — 1)

1<i<j<r

[1] Chen, He, Xueliang Li, and Jianhua Tu. "Complete Solution for the
Rainbow Numbers of Matchings." Discrete Mathematics 309.10 (2009):
3370-380. Web.
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