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Abstract

The Turán number of a pair of graphs G and H is denoted ex(G,H), and is
the maximum number of edges a subgraph of G may have and still contain no
copy ofH. In this paper, we determine ex(Ka1,a2,...,ar ,mKr), whereKa1,a2,...,ar

denotes a complete r-partite graph with part sizes a1, ..., ar and mKr denotes
m vertex-disjoint copies of Kr, the complete graph on r vertices. We prove
that for any integers 1 ≤ m ≤ a1 ≤ a2 ≤ ... ≤ ar we have

ex(Ka1,a2,...,ar ,mKr) =
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1).

1. Definitions

Definition 1. A graph G is a pair of sets G = (V,E), where V is a fixed
set of vertices, and the edge set E is a set of pairs of distinct elements from
V . We often write V as V (G) and E as E(G).

An example of a graph. The nodes represent vertices and the lines
represent edges.

Definition 2. Let G be a graph. A subgraph H of G is a pair of sets
H = (V ′, E ′) where V ′ ⊆ V and E ′ ⊆ E, which is itself a graph. If H is a
subgraph of G, we write H ⊆ G.



Definition 3. A graph G = (V,E) is called complete if for every pair x 6= y
in V we have xy ∈ E. If |E(G)| = n, this graph is denoted Kn.

Definition 4. A graph G = (V,E) is called a matching if every vertex is
incident to exactly one edge. That is, for any v ∈ V , there is exactly one
vertex w 6= v such that vw ∈ E. If every vertex in G is incident to an edge,
then the graph is a perfect matching.

A perfect matching

Definition 5. A graph G is called r-partite if one can partition the vertex
set into r parts V (G) = V1 ∪ V2 ∪ ... ∪ Vr such that if x and y are both in the
same Vi, then xy /∈ E(G).

A 3-partite (commonly called tripartite) graph

Definition 6. A graph G is called bipartite if it is 2-partite.

A bipartite graph
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Definition 7. A graph G which is bipartite or r-partite is called complete
bipartite or complete r-partite if every pair of vertices among different
vertex sets in the partition (commonly called parts) are adjacent (connected
by an edge). If |Vi| = mi, then this graph is denoted Km1,m2,...,mr .

A complete bipartite graph

Definition 8. A graph G is called a path if the graph is an alternating
sequence of vertices and edges G = v1e1v2e2...vn−1en−1vn, where ei = vivi+1,
and if i 6= j then vi 6= vj

Definition 9. A graph G is called a cycle if the graph is an alternating
sequence of vertices and edges G = v1e1v2e2...vn−1en−1vnenvn+1, where
ei = vivi+1, and if i < j ≤ n then vi 6= vj, and vn+1 = v1.

Definition 10. Let G be a graph. The neighborhood of a particular vertex
v ∈ G is the set of all vertices adjacent to v. The set of neighbors of a vertex
v is denoted N(v). If A ⊆ V (G), then N(A) :=

⋃
v∈A

N(v).

Definition 11. The extremal (Turán) number of a pair of graphs S and
G with S ⊆ G is the maximum number of edges which a subgraph of G may
have and still contain no copy of S. This number is denoted ex(G,H).

Definition 12. The rainbow number of a pair of graphs S and G with
S ⊆ G is defined as the minimum number of colors so that any coloring of
the edges of G will contain a rainbow copy of S.
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2. Basic Results

Theorem 1. Hall’s Theorem Let G be a bipartite graph, with vertex set
partitioned as V (G) = A∪B. Then there exists a matching with every vertex
in A incident to an edge if and only if for any V ⊆ A we have |N(V )| ≥ |V |.
Theorem 2. Let H ⊆ G be graphs. Let

H := {h ⊆ G : h = H − e for some edge e ∈ E(H)}

and define

ex(G,H) := max{n ∈ Z : ∃L ⊆ G such that |E(L)| = n and h 6⊆ L for any h ∈ H}.

Then we have the following:

ex(G,H) + 2 ≤ rb(G,H) ≤ ex(G,H) + 1 (1)

Proof. We first prove the inequality rb(G,H) ≤ ex(G,H) + 1. Let m =
ex(G,H), and color G with m + 1 colors. Construct F ⊆ G by picking one
edge from each color class. Since each color is used, then |E(F )| = m + 1,
and by the definition of F , F is rainbow. Since m + 1 > ex(G,H), that
means H ⊆ F , and since F is rainbow in this coloring, so is this copy of H.
Since the coloring was arbitrary, that means every coloring of G with m+ 1
colors has a rainbow H, so rb(G,H) ≤ m+ 1.

Now we prove ex(G,H)+1 < rb(G,H). Let ex(G,H) = n, and let L ⊆ G
such that |E(L)| = n and h 6⊆ L for any h ∈ H. We begin to color G by
coloring every edge in E(G) \ E(L) with color 1, which is never used again.
Note this set of edges is clearly nonempty, as if not, then L = G and H 6⊆ G,
so color 1 is used. We then color every edge in L uniquely. Clearly this
is a coloring of G with n + 1 colors, and we claim that this coloring yields
no rainbow H. Any rainbow subgraph of G must have at most one edge in
E(G) \ E(L). Also, any copy of H in G must contain at least one edge in
E(G) \ E(L), as H 6⊆ L. Thus, to find a rainbow copy of H ⊆ G we must
select exactly one edge in E(G) \E(L), and the rest of the edges from E(L).
That is to say, we must select a subgraph of the form J = F ∪e where F ⊆ L
and e ∈ E(H). But since for any edge e ∈ E(H) we have H \ e 6⊆ L, we have
F ∪ e * H. Thus, no rainbow H exists, and the inequality is proven.

Theorem 3. Chen, Li, Tu (2009)

ex(Ka1,a2 ,mK2) = a2(m− 1)
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3. Results

Theorem 4. For all integers m ≥ 1, z ≥ 0, r ≥ 2 we have

ex(Km+ z,m+ z, ...,m+ z︸ ︷︷ ︸
r times

,mKr) =

(
r

2

)
(m+ z)2 − (m+ z)(z + 1)

For notational simplicity we letK(m+z)r := Km+ z,m+ z, ...,m+ z︸ ︷︷ ︸
r times

, and

we let ex(m, z, r) := ex(K(m+z)r ,mKr). We proceed by proving a series of
lemmas.

Lemma 1. For all m ≥ 1, z ≥ 0, r ≥ 2 we have ex(m, z, r) ≥
(
r
2

)
(m+ z)2 −

(m+ z)(z + 1).

Proof. We construct a graph G ⊆ K(m+z)r satisfying

1. |E(G)| =
(
r
2

)
(m+ z)2 − (z + 1)(m+ z)

2. mKr * G

We let K(m+z)r be r-paritioned as A1 ∪A2 ∪ ...∪Ar. We consider a single
part A1, and a fixed set of z + 1 vertices in that part. We connect these
vertices to no vertex in part A2, and include every other edge from the host
graph. We claim this graph G satisfies conditions 1 and 2. In order to form
a single Kr, we must select at most one vertex from each part, as there are
no edges within a part, and since we must select r vertices, we must select
exactly one from each part, and all the edges between these r vertices must
be present. Thus, in order to form mKr, we would need to select exactly m
vertices from each part, and they would all need to be part of some Kr ⊆ G.
However, there are only m+ z− (z+1) = m− 1 vertices in A1 connected to
any vertex in A2, meaning that if we select m vertices from A1, then at least
one of them has no edge to A2, and so can be involved in no Kr.

We now prove base cases for an inductive argument in the following lem-
mas:

Lemma 2. Our theorem holds for z = 0. That is, for m ≥ 1, z = 0, we have
the following:

ex(m, 0, r) =

(
r

2

)
m2 −m
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Proof. By Lemma 1 we know that ex(m, 0, r) ≥
(
r
2

)
m2 − m, so we show

ex(m, 0, r) <
(
r
2

)
m2 −m+ 1. We note that this is clearly true for m = 1, as

any graph G ⊆ K(1)r = Kr with |E(G)| =
(
r
2

)
(1)2 − 1 + 1 =

(
r
2

)
is exactly

Kr, as desired.
Now we proceed inductively on m. We first let G ⊆ K(m)r satisfying

|E(G)| = ex(m, 0, r) + 1 =
(
r
2

)
m2 −m+ 1. Note that

|E(G)| − (ex(m− 1, 0, r) + 1) =

(
r

2

)
m2 −m+ 1−

((
r

2

)
(m− 1)2 − (m− 1) + 1

)
=

(
r

2

)
(m2 − (m− 1)2)− 1

=

(
r

2

)
(2m− 1)− 1

Thus, if we find a Kr ⊂ G such that removing Kr removes no more than(
r
2

)
(2m − 1) − 1 edges, then this will guarantee that (m − 1)Kr ⊆ G \ Kr,

so mKr ⊆ G. Now we show that Kr ⊆ G. We define an r-tuple as a1a2...ar,
with ai ∈ Ai. We define the weight of an r-tuple W (a1a2...ar) to be the
number of edges in G incident to two of the vertices in the r-tuple. We use
this definition to show Kr ⊂ G. We suppose to the contrary that Kr * G,
meaning that ∑

a1a2...ar

W (a1a2...ar) ≤ mr

((
r

2

)
− 1

)
where the sum is taken over all possible r-tuples a1...ar. Now we relate
|E(G)| to

∑
a1...ar

W (a1...ar). Summing over all r-tuples means that each edge

is counted mr−2 times, so that

|E(G)|mr−2 =
∑
a1...ar

W (a1...ar) ≤ mr

((
r

2

)
− 1

)
That is,

|E(G)|mr−2 ≤ mr

((
r

2

)
− 1

)
⇐⇒ |E(G)| ≤ m2

((
r

2

)
− 1

)
And since m ≥ 2, then m2

((
r
2

)
− 1
)
<
(
r
2

)
m2 − m + 1 = |E(G)|, a

contradiction. Thus Kr ⊆ G. We recall that if the number of edges incident
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to the r vertices in this copy of Kr is at most
(
r
2

)
(2m− 1)− 1, then we have

(m − 1)Kr ⊆ G \ Kr which implies mKr ⊆ G. This motivates a definition
- let the degree of an r-tuple, d(a1...ar) be the number of edges incident to
any vertex in the r-tuple. We suppose to the contrary that if a1...ar forms a
copy of Kr ⊆ G, then d(a1...ar) ≥

(
r
2

)
(2m− 1).

We investigate the maximum value that d(a1...ar) can attain. For any
vertex ai in the r-tuple, it may be connected to at most m vertices in each
of the other r − 1 parts. Thus, we have d(a1...ar) ≤ r(r − 1)m −

(
r
2

)
, over-

counting then subtracting the edges counted twice. We note that r(r −
1)m−

(
r
2

)
=
(
r
2

)
(2m− 1). Thus, our assumption to the contrary means that

if a1...ar forms a copy of Kr in G, then d(a1, ..., ar) =
(
r
2

)
(2m − 1), that

is, N(ak) =
⋃

j=1...r: j 6=k

Aj for k = 1, ..., r. We now show that this implies

G = K(m)r . We let ai,j be the ith vertex in the jth part, so 1 ≤ i ≤ m,
and 1 ≤ j ≤ r. We let a1,1, a1,2, ...a1,r be a copy of Kr in G (which we
have already shown exists). We consider the r-tuples formed by varying a
single vertex in a single part. That is, for i = 1, ...,m and k = 1, ..., r,
we consider the r-tuples a1,1, a1,2, ..., ai,k, ..., a1,r. By our assumption that
N(a1,k) =

⋃
j=1...r: j 6=k

Aj for k = 1, ..., r, we have that all these r-tuples form

copies of Kr in G. Since for any vertex ai,k involved in a copy of Kr in G
satisfies N(ai,k) =

⋃
j=1...r: j 6=k

Aj, and every vertex is involved in some Kr in

G, then G = K(m)r , a contradiction.

Lemma 3. Our theorem holds for m = 1, z ≥ 0, r ≥ 2. That is, we have:

ex(1, z, r) =

(
r

2

)
(1 + z)2 − (1 + z)2 =

((
r

2

)
− 1

)
(z + 1)2

Proof. We already have by Lemma 1 that ex(1, z, r) ≥
((

r
2

)
− 1
)
(z + 1)2,

so now we show ex(1, z) <
((

r
2

)
− 1
)
(z + 1)2 + 1. Let G ⊆ K(1+z)r with

|E(G)| =
((

r
2

)
− 1
)
(z + 1)2 + 1. If Kr * G, then we have (using the same

definition for weight as before), that W (a1...ar) ≤
(
r
2

)
− 1 for all r-tuples.
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Then we have (by the same argument as in Lemma 2) that

|E(G)|(1 + z)r−2 =
∑
a1...ar

W (a1...ar)

≤
((

r

2

)
− 1

)
(1 + z)r

=⇒ |E(G)| ≤
((

r

2

)
− 1

)
(1 + z)2

contradicting |E(G)| = (
(
r
2

)
− 1)(1 + z)2 + 1.

We now use this information to prove our main theorem.

Proof. We proceed by inducting on m and z, with m ≥ 2, z ≥ 1 and r ≥ 2.

1. ex(m− 1, z, r) =
(
r
2

)
(m− 1 + z)2 − (m− 1 + z)(z + 1)

2. ex(m, z − 1, r) =
(
r
2

)
(m+ z − 1)2 − (m+ z − 1)(z)

as the base case z = 0 was proven in Lemma 2, and the base case m = 1
was proven in Lemma 3. Let G ⊆ K(m+z)r with |E(G)| =

(
r
2

)
(m+z)2− (m+

z)(z+1)+1 and suppose to the contrary that mKr * G. If the r-tuple forms
a Kr in G, then we know |E(G\(a1...ar))| ≤ ex(m−1, z, r) because if |E(G\
(a1...ar))| > ex(m− 1, z, r), then (m− 1)Kr ⊆ (G \ (a1...ar)), and adjoining
a1...ar with this (m− 1)Kr yields mKr ⊆ G, a contradiction. If a1...ar does
not form a copy of Kr in G, then we know |E(G\(a1...ar))| ≤ ex(m, z−1, r),
because if |E(G \ (a1...ar))| > ex(m, z − 1), then mKr ⊆ G \ (a1...ar)) ⊆ G,
a contradiction.

We would like to use this information to construct an upper bound on
|E(G)|, which contradictions the known number of edges in G. To aid in this,
we will first show a lower bound on the number of (not necessarily disjoint)
copies of Kr within G.

Suppose there are exactly q copies of Kr in G. Then we should have,
summing over all r-tuples, (using the same definition for weight as before)∑

a1...ar

W (a1...ar) ≤
(
r

2

)
q +

(
(m+ z)r − q

)((r
2

)
− 1

)
= q +

((
r

2

)
− 1

)
(m+ z)r
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Thus, by the same argument as in the lemmas, we have

|E(G)|(m+ z)r−2 =
∑
a1...ar

W (a1...ar) ≤ q +

((
r

2

)
− 1

)
(m+ z)r

So q ≥ |E(G)|(m + z)r−2 −
((

r
2

)
− 1
)
(m + z)r, and we let p := |E(G)|(m +

z)r−2 −
((

r
2

)
− 1
)
(m+ z)r, so that q ≥ p.

Now we bound |E(G)| from above. We consider the following sum over
all r-tuples:∑
a1...ar

|E(G \ (a1...ar))| ≤ q(ex(m− 1, z, r)) + ((m+ z)r − q)(ex(m, z − 1, r))

≤ p(ex(m− 1, z, r)) + ((m+ z)r − p)(ex(m, z − 1, r))

The first inequality is justified by the paragraph immediately following the
proof of Lemma 3. The second inequality is justified by the fact that ex(m, z−
1, r)− ex(m− 1, z, r) = m + z − 1 ≥ 0, so if G had more copies of Kr than
our lower bound, then the upper bound for

∑
a1...ar

|E(G \ (a1...ar))| could only

get smaller.
We now relate this sum to |E(G)|. For any edge ai,jak,l ∈ E(G), we note

that we only count ai,jak,l in
∑

a1..ar

|E(G \ (a1...ar))| if we select neither ai,j

nor ak,l to remove, and select any vertex in each of the remaining r − 1 part
to remove. That is, we count ai,jak,l exactly (m + z − 1)2(m + z)r−2 times.
Thus, we have

|E(G)|(m+ z − 1)2(m+ z)r−2 =
∑
a1...ar

|E(G \ (a1...ar))|

≤ p(ex(m− 1, z, r)) + ((m+ z)r − p)(ex(m, z − 1, r))

Thus, we should have that

|E(G)|(m+z−1)2(m+z)r−2−p(ex(m−1, z, r))+((m+z)r−p)(ex(m, z−1, r)) ≤ 0

Let s = m + z. Substituting m = s − z into this inequality and simplifying
yields sr−1(s − 1) ≤ 0. Since m ≥ 2, z ≥ 1, and r ≥ 2, we have s ≥ 3, and
clearly sr−1(s − 1) > 0, a contradiction. Thus, mKr ⊆ G, and since G was
arbitrary, ex(m, z, r) <

(
r
2

)
(m + z)2 − (m + z)(z + 1) + 1. Since Lemma 1

shows ex(m, z, r) ≥
(
r
2

)
(m+ z)2 − (m+ z)(z + 1), we have
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ex(Km+ z,m+ z, ...,m+ z︸ ︷︷ ︸
r times

,mKr) =

(
r

2

)
(m+ z)2 − (m+ z)(z + 1)

Theorem 5. For any integers 1 ≤ m ≤ a1 ≤ a2 ≤ ... ≤ ar we have

ex(Ka1,a2,...,ar ,mKr) =
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1)

We let Ka1,a2,...,ar be r-partitioned as A1 ∪ A2 ∪ ... ∪ Ar. For notational
simplicity we define ex(a1, a2, ..., ar,m) = ex(Ka1,a2,...,ar ,mKr).

Lemma 4. For any integers 1 ≤ m ≤ a1 ≤ a2 ≤ ... ≤ ar we have

ex(Ka1,a2,...,ar ,mKr) ≥
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1)

Proof. We construct a graph F ⊆ Ka1,...,ar with |E(F )| =
∑

1≤i<j≤r
aiaj −

a1a2 + a2(m − 1) and mKr * F . We consider the part A1 and a fixed
set of a − (m − 1) in that part. We connect these vertices to no vertex
in part A2 and include every other edge from the host graph. In order to
form a single Kr, we must select at most one vertex from each part, and
all edges between these r vertices must be present. Thus, to form mKr, we
would need exactly m vertices from each part. However, we there are only
a− (a− (m+ 1)) = m− 1 vertices in A1 connected to any vertex in A2, and
so can be involved in no Kr. To count the number of edges, we note that
between A1 and A2 there are a2(m − 1) edges, and all other pairs have all
edges present, so |E(F )| =

∑
1≤i<j≤r

aiaj − a1a2 + a2(m− 1).

Proposition 1. For 1 ≤ m ≤ a1 ≤ a2 = a3 = ... = ar we have

ex(Ka1,a2...a2 ,mKr) = a1a2(r − 2) + a22

(
r − 1

2

)
+ a2(m− 1)

The proof is by induction on a1 + m, and we prove base cases for this
induction in the following two lemmas.
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Lemma 5. For 1 = m ≤ a1 ≤ a2 = a3 = ... = ar we have

ex(Ka1,a2...a2 , Kr) = a1a2(r − 2) +

(
r − 1

2

)
a2

Proof. We have a lower bound by the previous lemma. Now to show an
upper bound we let G ⊆ Ka1,a2,...,a2 with |E(G)| = a1a2(r − 2) +

(
r−1
2

)
a2 + 1

and suppose to the contrary that Kr * G.∑
v1...vr

W (v1...vr) ≤
((

r

2

)
− 1

)
a1a

r−1
2

We now relate
∑

v1...vr

W (v1...vr) to |E(G)|, by finding how many times an

edge is counted in the sum. We define e(Ai, Aj) as the number of edges in G
between parts Ai and Aj. Then we have∑

v1...vr

W (v1...vr) =
r∑

j=2

e(A1, Aj)a
r−2
2 +

∑
i,j 6=1

e(Ai, Aj)(a1a
r−3
2 )

We then have

0 ≥
∑
v1...vr

W (v1...vr)−
((

r

2

)
− 1

)
a1a

r−1
2

=
r∑

j=2

e(A1, Aj)a
r−2
2 +

∑
i,j 6=1

e(Ai, Aj)(a1a
r−3
2 )−

((
r

2

)
− 1

)
a1a

r−1
2

= a1a
r−3
2 |E(G)|+

r∑
j=2

e(A1, Aj)(a
r−2
2 − a1a

r−3
2 )−

((
r

2

)
− 1

)
a1a

r−1
2

= (r − 2)(a21a
r−2
2 − a1a

r−1
2 ) + a1a

r−3
2 +

r∑
j=2

e(A1, Aj)(a
r−2
2 − a1a

r−3
2 )

:= b

If a2 = a1, then 0 ≥ b = ar−21 > 0, a contradiction. If a2 > a1, then

b ≥ (r − 2)(a21a
r−2
2 − a1a

r−1
2 ) + a1a

r−3
2 + |E(G)| − |E(Ka2, a2, ..., a2︸ ︷︷ ︸

r−1 times

)|

= ar−22 > 0

a contradiction.
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Lemma 6. For 1 < m = a1 ≤ a2 = ... = ar we have

ex(Ka1,a2,...,a2 , a1Kr) = a1a2(r − 2) + a22

(
r − 1

2

)
+ a2(a1 − 1)

Proof. We already know the extremal number is bounded below by
a1a2(r − 2) + a22

(
r−1
2

)
+ a2(a1 − 1) by Lemma 4. Now we show the extremal

number is strictly less than a1a2(r − 2) + a22
(
r−1
2

)
+ a2(a1 − 1) + 1.

Let G ⊆ Ka1,a2,...,a2 with |E(G)| = a1a2(r− 2) + a22
(
r−1
2

)
+ a2(a1 − 1) + 1.

We begin by noting that

|E(G)|−(ex(Ka1−1,a2−1,...,a2−1, (a1−1)Kr)+1) = a2(r−1)+(r−1)(a1+a2(r−2))−
(
r

2

)
−1,

which is one fewer than full degree of a Kr. Thus, if we find a single Kr with
strictly less than full degree, we may remove it and conclude

|E(G \Kr)| ≥ ex(Ka1−1,a2−1,...,a2−1, (a1 − 1)Kr) + 1.

Thus, (a1 − 1)Kr ⊆ G \Kr =⇒ a1Kr ⊆ G. We know a1 > 1, so |E(G)| >
a1a2(r−2)+a22

(
r−1
2

)
+1 = ex(Ka1,a2...a2 , Kr)+1, where the last equality holds

by Lemma 5. Therefore, Kr ⊆ G by the definition of an extremal number.
By previous reasoning, if any Kr has less than full degree, mKr ⊆ G, so we
suppose to the contrary that every copy of Kr ⊆ G has full degree.

Thus, our assumption to the contrary means that if v1...vr forms a copy
of Kr in G, then N(vk) =

⋃
j=1...r: j 6=k

Aj for k = 1, ..., r. We now show that this

implies G = Ka1,a2,...,a2 . We label the vertices, where vi,j is the ith vertex in
the jth part. We let v1,1, v1,2, ...v1,r be a copy of Kr in G (which we have al-
ready shown exists). We consider the r-tuples formed by varying a single ver-
tex in a single part. That is, we consider the r-tuples v1,1, v1,2, ..., vi,k, ..., v1,r.
By our assumption that N(v1,k) =

⋃
j=1...r: j 6=k

Aj for k = 1, ..., r, we have that

all these r-tuples form copies of Kr in G. Since for any vertex vi,k involved
in a copy of Kr in G satisfies N(vi,k) =

⋃
j=1...r: j 6=k

Aj, and every vertex is

involved in some Kr in G, then G = Ka1,a2,...,a2 , a contradiction.
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We now use these two lemmas to prove our proposition:

Proof. The proof is by induction on a1 +m.
Let G ⊆ Ka1,a2,...,a2 with |E(G)| = a1a2(r− 2) + a22

(
r−1
2

)
+ (m− 1)a2 + 1,

and suppose to the contrary that mKr * G. By the previous two lemmas,
we know that this assumption implies m > 1 and a1 > m. We first obtain a
lower bound on the number of (not necessarily disjoint) copies of Kr in G.
We suppose there are exactly q such copies, and see that

∑
v1...vr

W (v1...vr) ≤ q

(
r

2

)
+ (a1a

r−1
2 − q)

((
r

2

)
− 1

)
=⇒ q ≥

∑
v1...vr

W (v1...vr)− a1a
r−1
2

((
r

2

)
− 1

)

=
r∑

j=2

e(A1, Aj)a
r−2
2 +

∑
i,j 6=1

e(Ai, Aj)a1a
r−3
2 − a1a

r−1
2

((
r

2

)
− 1

)
:= p

We use this lower bound to get an upper bound on the |E(G)|. We note
that:

∑
v1...vr

|E(G \ v1...vr) ≤ q
(
ex(Ka1−1,a2−1,...,a2−1, (m− 1)Kr)

)
+ (a1a

r−1
2 − q)

(
ex(Ka1−1,a2−1,...,a2−1,mKr)

)
= q(1− a2) + (a1a

r−1
2 )

[
(a1 − 1)(a2 − 1)(r − 2)

+ (a2 − 1)2
(
r − 1

2

)
+ (m− 1)(a2 − 1)

]
≤ p(1− a2) + (a1a

r−1
2 )

[
(a1 − 1)(a2 − 1)(r − 2)

+ (a2 − 1)2
(
r − 1

2

)
+ (m− 1)(a2 − 1)

]
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We define t := (p+ a1a
r−1
2 )(1− a2), so that the above inequality reduces

to

∑
v1...vr

|E(G \ v1...vr) ≤ t+ a1a
r−1
2 (a2 − 1)

[
(a1 − 1)(r − 2) + (a2 − 1)

(
r − 1

2

)

+ (m− 1) +

((
r

2

)
− 1

)]
.

A simple counting argument shows that

∑
v1...vr

|E(G\v1...vr)| =
r∑

i=2

e(A1, Aj)(a1−1)(a2−1)(a2)r−2+
∑
i,j 6=1

e(Ai, Aj)(a2−1)2a1ar−32

So that∑
v1...vr

|E(G \ v1...vr)| − t =
r∑

i=2

e(A1, Ai)(a2 − 1)ar−22 a1 +
∑
i,j 6=1

e(Ai, Aj)(a2 − 1)ar−22 a1

= |E(G)|(a2 − 1)ar−22 a1

Plugging this result into the above inequality, we obtain

|E(G)| ≤ a2

[
(a1 − 1)(r − 2) + (a2 − 1)

(
r − 1

2

)
+ (m− 1) +

(
r

2

)
− 1

]
= a2a1(r − 2) + a22(r − 1) + a2(m− 1)

− a22(r − 2)− a2

(
r − 1

2

)
+ a2(r − 1) + a2

((
r

2

)
− 1

)
= |E(G)| − 1− a2

[
a2(r − 2) +

(
r − 1

2

)
− (m− 1) +

((
r

2

)
− 1

)]
≤ |E(G)| − 1− a2

[(
r − 1

2

)
+

((
r

2

)
− 1

)
+ 1

]
< |E(G)|

a contradiction.
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We use this proposition to prove our theorem.

Proof. Since Lemma 4 proves the desired lower bound for ex(Ka1,a2,...,ar ,mKr),
all that remains to be shown is

ex(Ka1,a2,...,ar ,mKr) <
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1) + 1

We fix a particular m and r, and induct on the total number of vertices in
the host graph. Let G ⊆ Ka1,...,ar with

|E(G)| =
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1) + 1.

We suppose to the contrary there is a graph that is a counterexample to
our theorem, consider the minimum number of vertices in the host graph
for which there is a counterexample. Let the graph G be a minimum coun-
terexample. By the proposition, the fact that G is a counterexample implies
ar > a2. We consider a fixed vertex v ∈ Ar and see that

|E(G \ {v})| ≤ ex(a1, ..., ar−1, ar − 1,m)

=
∑

1≤i<j≤r

aiaj −
∑
i 6=r

ai − a1a2 + a2(m− 1)

Where the extremal number is as in our theorem (by induction), and has the
above form as a1 ≤ a2 ≤ ar − 1 and a2 ≤ ai for 3 ≤ i ≤ r − 1.

We then have

|E(G)| = |E(G \ {v})|+ d(v)

≤
∑

1≤i<j≤r

aiaj −
∑
i 6=r

ai − a1a2 + a2(m− 1) + d(v)

≤
∑

1≤i<j≤r

aiaj −
∑
i 6=r

ai − a1a2 + a2(m− 1) +
∑
i 6=r

ai

=
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1)

= |E(G)| − 1

which is a contradiction.
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Thus, we must have mKr ⊆ G, so

ex(Ka1,a2,...,ar ,mKr) =
∑

1≤i<j≤r

aiaj − a1a2 + a2(m− 1)
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