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ABSTRACT. The origami generator problem can be described as fol-
lows: given a set U of angles, and a set S of points containing 0 and 1,
construct lines at angles in U from each point in S and from all possible
intersection points of constructed lines, the set R(U) is the closure of all
possible points (including initial points) generated by such action. Pre-
vious research has shown many properties regarding the algebraic and
geometric structures of R(U), given U and S satisfying certain condi-
tions. In particular, results have been proven for cases where 1 ∈ U and
S = {0, 1}. In this paper, we venture beyond these restrictions to ex-
plore results for more general cases of U and S. Our main results hold
for cases where U does not contain 1, and when |S| ≥ 2. We will state
and prove the conditions in those cases for R(U) to be a lattice or a ring.

1. INTRODUCTION

The origami generator problem was originally suggested by Erik De-
maine, drawing inspiration from reference points in paper folding. In origami,
we sometimes attempt to obtain reference points by taking the intersection
of creases. As such, we are curious about the following problem: given a
set U of angles, and a set S of points containing 0 and 1, if we are allowed
to fold a plane at angles in U and from points in S, what does the closure
set of all possible points generated in this way look like? This, translated
into mathematical language, leads us to investigate properties of a generated
point setR(U) in the complex plane C. We are particularly interested in the
geometric and algebraic structures of R(U): what kinds of mathematical
properties does R(U) does have? When is R(U) a lattice, or a ring?

Previous research on the topic has produced many important results. Buh-
ler et al. showed that if |U | ≥ 3 and U contains angles that are equally
spaced (i.e. if |U | = n then kπ/n ∈ U , 0 ≤ k < n, k ∈ N), then
R(U) = Z[ζn] if |U | = n is prime; R(U) = Z[1/n, ζn] if |U | = n is
not prime, where ζn = exp(2πi/n). Bahr et al. arrived at results for cases
where 1 ∈ U , showing that when |U | = 3, R(U) is a ring if and only
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if points constructed in the first step are quadratic integers. Nedrenco ex-
plored the question of whether R(U) could still be a ring when U is not a
semi group, and proposed several examples. While these results, some of
which we will discuss in detail in the BACKGROUND section of this paper,
provide solid foundation and great insight into further research, previous
work have mainly addressed special cases of the problem, leaving out more
general cases of U and other possibilities of S. This paper attempts to
generalize certain cases of the origami generator problem, while exploring
structures generated by alternative initial conditions.

In particular, I will begin by listing the necessary definitions, notations,
and basic properties of the problem in the BACKGROUND section. In the
following section, I will state and prove the conditions under which R(U)
is a lattice in C when |U | = 3 and 1 6∈ U , and provide examples. I will also
consider the conditions whereR(U) is a ring. Next, I will explore the possi-
bilities of R(U) when S contains more than two initial points. This section
will include some examples, as well as a conjecture. Finally, I will list some
possible directions for future research related to this problem. All examples
provided in this paper are produced with the help of a data visualization
algorithm I wrote with collaboration.

2. BACKGROUND

We begin by introducing some definitions and notations that will be used
throughout this paper.

Let u, v be distinct angles, and p, q be distinct points in C. Denote
Iu,v(p, q) as the intersection point of the lines l1 : p+ru and l2 : q+sv. Re-
garding this notation, we have the following properties, proven by Buhler
et al.:

Proposition 1. Let u, v be distinct angles, and p, q be distinct points in C.

(I) (Symmetry) Iu,v(p, q)=Iv,u(q, p)

(II) (Reduction) Iu,v(p, q) = Iu,v(p, 0) + Iv,u(q, 0)

(III) (Linearity) Iu,v(p+q, 0) = Iu,v(p, 0)+Iu,v(q, 0) and for all r ∈ R,
Iu,v(rp, 0) = rIu,v(p, 0).

(IV) (Rotation) For w ∈ T, wIu,v(p, q) = Iwu,wv(wp,wq).

We define an iteration to be the construction of new lines and their inter-
sections of the existing set of generated points.
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3. WHEN 1 6∈ U

Theorem 1. (Z Generalization for |U | = 3.) Let U = {u, v, w} with
arg(u) < arg(v) < arg(w) and arg(u) 6= 0, then R(U) is a lattice in C of
the form z1Z+ z2Z if and only if sinv

sinw
· sin(w−u)
sin(v−u) ∈ Q.

Proof. (⇐):

We begin with some definitions of points and lengths as follows. As
shown in FIGURE 1, let p1 = Iv,w(0, 1), p2 = Iu,w(0, 1), p3 = Iu,v(0, 1); p4 =

Iw,v(0, 1), p5 = Iw,u(0, 1), p6 = Iv,u(0, 1). Let the length of the line segment
AB where A,B ∈ R(U) be denoted AB.

By the Law of Sines, we have p10 = sinw
sin(w−u) , and p31 = sinv

sin(v−u) . Since
p10
p31

= sinw·sin(v−u)
sinv·sin(w−u) ∈ Q, p10

p31
= b

a
for some a, b ∈ N where (a, b) = 1.

Case 1 We first consider the case where a = b = 1. Then p10 = p31,
as shown in FIGURE 2.We will show that R(U) is a lattice in C of the form
R(U) = p1Z+ p2Z.
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We begin by showing that R(U) is closed under addition and taking ad-
ditive inverses. First, we claim that we can obtain the points 2 and -1. We
claim that Iw,u(p3, p4) = 2 and Iu,w(p1, p6) = −1. As shown in FIGURE

2, since p10 = p31, p1, 0, 1, p3 form a parallelogram, hence p30 = 2p20.
Similarly, p40 = 2p50. Therefore Iw,u(p3, p4)0 = 2 ·1 = 2. By a symmetric
argument, Iu,w(p1, p6) = −1.

Since we can obtain that k+2, k− 1 ∈ R(U) given k and k+1 ∈ R(U)
using the method above, we can show that all n ∈ N are inR(U). Moreover,
given that p and q ∈ R(U), we can obtain p + q by constructing q starting
from p and p+1; given that p ∈ R(U), we can construct−p by constructing
p from 0 and -1, going in the negative direction. Therefore R(U) is closed
under addition and taking additive inverses.

Since R(U) is a subgroup of C with addition, and p1, p2 ∈ R(U), it is
obvious that p1Z+ p2Z ⊆ R(U).

Now we will show that R(U) ⊆ p1Z + p2Z. Since 0, 1, p1, p2, . . . , p6 ∈
p1Z+ p2Z, it suffices to show that p1Z+ p2Z is closed under intersections.
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Let z = Iα,β(p, q), where α, β ∈ {u, v, w}, α 6= β and p, q ∈ {ap1 +
bp2|a, b ∈ Z}. We want to show that z ∈ p1Z + p2Z. Since Iα,β(p, q) =

Iα,β(p, 0)+Iβ,α(q, 0) by reduction, it suffices to show that Iα,β(ap1+bp2, 0) ∈
p1Z+ p2Z. By linearity, Iα,β(ap1 + bp2, 0) = aIα,β(p1, 0) + bIα,β(p2, 0). It
now suffices to show that Iα,β(p1, 0) and Iα,β(p2, 0) ∈ p1Z+ p2Z.

There are 4 possibilities of Iα,β(p1, 0): Iu,w(p1, 0) = p2, Iu,v(p1, 0) = 0,
Iv,w(p1, 0) = Iv,u(p1, 0) = p1, Iw,v(p1, 0) = 0, Iw,u(p1, 0) = p1 − p2, all
of which are in p1Z + p2Z. Similarly, Iα,β(p, q) ∈ p1Z + p2Z Therefore
z = Iα,β(p, q) ∈ p1Z+ p2Z.

The initial points in U = 0, 1 are obviously in p1Z + p2Z. Therefore we
have proven Case 1.

Case 2 We then consider the case where a > b = 1, and show that it can
be reduced, by a linear transformation, to the case where an element of U is
1.

Since a > b = 1, p31 = ap10 for some a > 0, a ∈ Z. Then since p31
is parallel to p10, p30 = (a + 1)p20 and p11 = (a + 1)p1p2 . As shown
in FIGURE 3, construct p0 = Iv,w(p2, 0). Now we examine the highlighted
lines in FIGURE 3, as well as points 0, p1, p2. Define

−→
0p2 as a new x′−axis,

and p2 as a new unit 1′, then we have the initial structure of a new U ′ =

{1, v − u,w − u} and S ′ = {0, 1′}. Bahr et al. have shown that R(U ′)
would form a lattice in the form of 1′Z + xZ, where 1′ = p2 and x = p1.
Hence R(U ′) = p1Z+ p2Z ⊆ R(U).
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We now show thatR(U) ⊆ p1Z+p2Z. We resort to the points in FIGURE

3 (initial points of R(U)) that are not in R(U ′), namely, 1 and p3. Since
p30 = (a + 1)p20 and p11 = (a + 1)p1p2 for some a ∈ Z, p3 = (a +

1)p2 ∈ p1Z + p2Z, 1 = ap2 − ap1 ∈ p1Z + p2Z. Similarly, we can
show that p4, p5, p6 ∈ p1Z + p2Z. Since the closure set obtained by taking
intersections of parallels constructed from a set of initial points in the lattice
p1Z+ p2Z cannot contain points outside the lattice, points in R(U) must be
in p1Z+ p2Z, and hence R(U) ⊆ p1Z+ p2Z.

Therefore we have proven Case 2.

Case 3
Finally, we prove the theorem for the general case, i.e. a, b > 1, by

reducing it to the previous case.

Since (a, b) = 1, there exists x, y ∈ Z such that ax + by = 1. Using
the method with which we constructed all integers n in Case 1, as shown in
detail in FIGURE 4, we can construct n(p1 − p2) beginning from both 0 and
1, in opposite directions. Since q0q1 = p1p2 = b

a+b
q01, and (a, b) = 1, we

can obtain qi, rj such that qirj = 1
a+b

q01 .

Once we have a segment of length 1
b
q0q1 =

1
a+b

p10, which we will set to
be a new unit length 1′, all possible segments at angle v can only be integer
multiples of 1′. Similarly, we can obtain a segment of length 1

b
q10 = 1

b
p20

at angle u. We can therefore reduce Case 3 to Case 2, where we have shown
that such structure will produce a lattice of the form 1

b
p1Z+ 1

b
p2Z.

(⇒):

We claim that if sinv
sinw
· sin(w−u)
sin(v−u) is not in Q then R(U) is dense in C . Let

sinv
sinw
· sin(w−u)
sin(v−u) =p31

p10
= t where t ∈ Qc, then as can be illustrated in FIGURE

4, q11
q0q1

= p31
p10

= t, hence p1p2 = q1q0= 1
1+t
q01. Using the method described
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in the proof of Case 3, we can obtain mq01 − np1p0 = m(t + 1)q0q1 −
nq0q1 = (mt + m − n)q0q1 for all m,n ∈ Z. By Kronecker’s Theorem,
given s ∈ Qc, for any ε > 0, there exists x, y ∈ Z such that |xs − y| < ε.
Let s = t + 1, m = q0q1x, n = q0q1y, then there exists m,n ∈ Z such
that |(mt + m − n)q0q1| < ε for all ε > 0. Similarly, we can obtain line
segments at infinitesimal length at any angle. Therefore R(U) is dense in
C.

�

Corollary 1. (Definition of z1 and z2 with angles) Let U = {u, v, w} with
arg(u) < arg(v) < arg(w) and arg(u) 6= 0, and sinv

sinw
· sin(w−u)
sin(v−u) = b

a
for

a, b ∈ Z and (a, b) = 1, thenR(U) = 1
b
(i·sinu+cosu)sinw

sin(w−u) Z+1
b
(i·sinv+cosv)sinw

sin(w−v) Z.

Example. (Lattice) Here is an example of R(U) in the form of a lattice.
FIGURE 5 shows R(U) with u = tan−1(1), v = tan−1(2), w = tan−1(−3),
after 5 iterations in (A), and after 6 iterations in (B). In this example, sinv

sinw
·

sin(w−u)
sin(v−u) = 8

3
∈ Q. Notice that both plots reveal a lattice structure, and the

iteration does not increase the ”density” of the points.

Example. (Dense) Here is another example of R(U) when it is dense in
C. FIGURE 6 shows R(U) with u = π/4, v = π/3, w = 2π/3, after 5
iterations in (A), after 6 iterations in (B), and after 7 iterations in (C).
sinv
sinw
· sin(w−u)
sin(v−u) =

√
3(1+

√
3)csc(120)

2(
√
3−1) 6∈ Q. With each iteration, the plotted

points becomes noticeably ”denser.”

Theorem 2. (Ring Generalization for |U | = 3.) Let U = {u, v, w} with
arg(u) < arg(v) < arg(w) and arg(u) 6= 0, and sinv

sinw
· sin(w−u)
sin(v−u) = a

b

where a, b ∈ Z and (a, b) = 1. Then R(U) is a ring if and only if z =
sin(w−v)
sin(w−u)(cos(v − u) + isin(v − u)) is a non-real quadratic integer.

Proof. In order for R(U) to be a ring, it must first be closed under addition
and taking additive inverses, and hence must be a lattice in C. Corollary 1
gave the general form of R(U) as a lattice: R(U) = 1

b
(i·sinu+cosu)sinw

sin(w−u) Z +
1
b
(i·sinv+cosv)sinw

sin(w−v) Z. We can think of such a lattice as generated by two base

vectors: z1 = 1
b
(i·sinu+cosu)sinw

sin(w−u) and z2 = 1
b
(i·sinv+cosv)sinw

sin(w−v) .

Bahr et al. solved the ring conditions for the lattice R(U) = Z + xZ,
where x is a non-real number in C. In order for Z+ xZ to be a ring, x must
be a quadratic integer. We notice that our case for z1Z + z2Z is essentially
a change of basis from the Z + xZ case. Therefore, if we let z2 be a new
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basis vector 1′, and set z, which denotes z1 with respect to z2, as a new basis
vector x′, then z1Z+ z2Z is a ring if the conditions for x holds for z.
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Since z1 = 1
b
(i·sinu+cosu)sinw

sin(w−u) , z2 = 1
b
(i·sinv+cosv)sinw

sin(w−v) , |z1| = sinw
b·sin(w−u) ,

|z2| = sinw
b·sin(w−v) . Then |z| = z1

z2
= sin(w−v)

sin(w−u) . Since arg(z1) = v, arg(z2) =

u, arg(z) = v − u. Thus z = sin(w−v)
sin(w−u)(cos(v − u) + i · sin(v − u)).

Therefore R(U) = z1Z + z2Z = 1′Z + zZ is a ring if and only if z =
sin(w−v)
sin(w−u)(cos(v − u) + i · sin(v − u)) is a non-real quadratic integer.

�

4. WHEN |S| > 2

We now consider the case where the number of initial points is more than
2, beginning with the case of 3 initial points, and 2 angles. Without loss
of generality, we let two of the points be (0, 0) and (1, 0), and the third be
(x, y) where x, y ∈ R and x, y > 0. Let θ = arctan y

x
where θ ∈ (0, π] and

γ = arctan y
x−1 where γ ∈ (0, π].

4.1. |U |=2.

Example. |U |=2

Here is an example ofR(U) with u = π/4, v = 2π/3, and S = {(0, 0), (1, 0), (3, 1)}.
θ, γ 6∈ U . We can see that R(U) is finite.
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FIGURE 7

FIGURE 8

4.2. |U |=3.

Example. Here is an example of R(U) with u = π/9, v = π/6, w = 7π/9,
and S = {(0, 0), (1, 0), (2, 1)}, after 4 iterations. θ, γ 6∈ U . R(U) seems
to be much denser compared to when S = 2, even with few iterations.
Observe that adding a point that cannot already be generated in with initial
points (0, 0) and (1, 0) can be viewed as adding a new ”dimension” toR(U).

Hence, give the following conjecture:
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Conjecture If both θ and γ are not in U = {u, v, w}, then R(U) is dense
in C.

5. FUTURE WORK

There are many questions left unanswered in this problem. Here, I will
list a few, as directions for future work:

(I) For S > 2:
(a) Prove the stated conjecture on when R(U) is dense.

(b) What if we allow 1 ∈ U , or n ∈ S for some n ∈ R?

(c) When is R(U) a lattice, or a ring?

(II) For U > 3: what are the conditions of R(U) being a lattice or a
ring when 1 6∈ U?

(III) What subrings of C can be origami generated, and for what S and
U?
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